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Abstract

Objects can exhibit different dynamics at different spatio-temporal scales, a property that is often exploited by visual tracking algo-
rithms. A local dynamic model is typically used to extract image features that are then used as inputs to a system for tracking the object
using a global dynamic model. Approximate local dynamics may be brittle—point trackers drift due to image noise and adaptive back-
ground models adapt to foreground objects that become stationary—and constraints from the global model can make them more robust.
We propose a probabilistic framework for incorporating knowledge about global dynamics into the local feature extraction processes. A
global tracking algorithm can be formulated as a generative model and used to predict feature values thereby influencing the observation
process of the feature extractor, which in turn produces feature values that are used in high-level inference. We combine such models
utilizing a multichain graphical model framework. We show the utility of our framework for improving feature tracking as well as shape
and motion estimates in a batch factorization algorithm. We also propose an approximate filtering algorithm appropriate for online
applications and demonstrate its application to tasks in background subtraction, structure from motion and articulated body tracking.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Motion analysis algorithms are often structured in a
multistage fashion, with each stage operating at a particu-
lar spatio-temporal scale and exploiting a different model
of scene dynamics. Systems of this type are usually more
computationally efficient than monolithic ones that jointly
model local and global dynamics. They also have the
advantage of modularity, as algorithms at each stage can
be designed independently. Rather than using raw pixel
data, high-level (large scale) stages treat the output of early,
low-level ones as observations. For example, an algorithm
may start by extracting local features (e.g., foreground/
background labels or feature point tracks) from incoming
frames, use these features to determine poses of the objects
moving in the scene, and then analyze object interaction
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based on the individual objects’ poses. High-level algo-
rithms use models that are often too coarse (and/or
approximate) for local motion estimation, but take into
account global spatial relationships.

Low-level algorithms ignore global spatial relationships
by modeling the evolution of each image patch (in feature
extraction [22,25]) or object (in object tracking [17]) inde-
pendently, and compensating for it with restrictive assump-
tions about the local behavior of the scene. Feature-point
trackers usually assume that the image patch about the
point of interest has a relatively stable appearance. Adap-
tive background subtraction modules typically assume that
foreground objects do not remain stationary for extended
periods of time. When these assumptions are violated, the
resulting errors (e.g., so-called ‘‘sleeping man problem’’,
Fig. 1), are propagated to higher-level modules, and these
are not always able to correct them.

While algorithms operating at each stage are often for-
mulated as inference in probabilistic generative models,
most existing multi-stage systems are formed in an ad
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Fig. 1. An example of the ‘‘sleeping man’’ problem in adaptive background subtraction. Adaptive background maintenance systems make an implicit
assumption that foreground objects do not remain stationary. When this is not the case (as in the sequence shown in the top row), the background model
(middle row) adapts to motionless foreground objects which then ‘‘fade-away’’ (the computed foreground maps are in the bottom row).
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hoc fashion and do not have a consistent probabilistic
interpretation—e.g., the uncertainty information is propa-
gated only in one direction, from low- to high-level models.
The need to incorporate a feedback mechanism into multi-
stage systems has long been recognized [20,1]. There are
three desirable criteria for a viable feedback framework.
First, it should preserve existing modularity (i.e., not be
reduced to a monolithic model). Second, it is advantageous
to be able to use existing algorithms with minimal modifi-
cations. Finally, it is critical to have consistent propagation
of uncertainty from high- to low-level processing.

In this paper, we develop a framework that satisfies
these requirements in the case when the constituent track-
ing algorithms can be interpreted as inference in dynamic
generative models. Our motivation in building such a
framework is based on the observation that when two
modules interact, they share scene representation (which,
with some abuse of terminology, we refer to as ‘‘features’’).
The features (e.g., foreground labels or individual object
positions) are latent variables in the lower-level module,
but are treated as observed at the higher-level. We can make
these variables latent high-level generative models by
explicitly modeling their dependency on the images. In a
sense, each model can then be thought of as describing
the evolution of the features across time with different
approximations to the true dynamic. The models may then
be combined by sharing these variables, in a manner simi-
lar to Product of Hidden Markov Models (PoHMMs) [3].

The resulting framework, which we call a Redundant-
State Multi-Chain Model (RSMCM), may be thought of
as performing probabilistic model-based regularization of
low-level algorithms, similar to deterministic model-based
regularization [1]. Since methods operating at different lev-
els are coupled only through latent features, modularity is
preserved with only minimal modification to the
algorithms.

In the following discussion, we focus on systems that
combine feature extraction and individual object tracking,
but the conclusions may be extended to systems which
model more than two levels. We demonstrate the advanta-
ges of our framework by applying it to such problems as
structure from motion recovery, adaptive background sub-
traction and articulated body tracking.

2. Related work

Independence assumptions inherent in low-level track-
ing algorithms, combined with image noise, can lead to
unreliable (or incorrect) results under unexpected noise
conditions. Without relaxing the assumptions, the best that
can be done is to propagate not only feature values but also
an uncertainty about the measurements. For example, dis-
similarity computations [21] and Kalman filtering [20] have
been used to estimate uncertainty of feature-point tracking.

Tracking results may be improved by introducing
dependency between features. This dependency can be rep-
resented both with and without using a higher-level motion
model. Model-free methods such as multi-hypothesis track-
ing [6] and probabilistic data association filters [8] are com-
putationally intensive and can model dependency only at
the data association level (i.e., can be used to disambiguate
feature tracks). These methods cannot correct feature drift,
and have poor performance when dealing with long-dura-
tion occlusions.
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Global dynamics models have been involved in feature
extraction on multiple levels. On the lowest level, robust
methods such as Least Median Squares have been used
to reject feature locations that are deemed to be outliers
[14]. Model parameters estimated at the previous frame
were used to initialize current-frame feature tracking in
[1]. The complete integration of feature extraction and
object motion is achieved in monolithic systems [27,23],
which jointly model foreground and background processes.
Such systems are jointly rather than modularly designed,
inference algorithms are tuned for particular models for
reasons of efficiency, and replacing one of the system’s
components is usually complicated.

The framework proposed in this paper is most closely
related to the intermediate integration approaches of [16]
and [13]. These methods update both global and local mod-
els based on the feature match deterministically selected
from among those predicted by the global and local motion
models. If no matches were produced, the corresponding
feature is dropped. In contrast to these methods, our
approach allows feature extractors to use the global motion
model to recover after multiple frames with no
observations.

We adopt a paradigm of reconciling multiple generative
models (each corresponding to a particular set of indepen-
dence assumptions and dynamics representations) that
describe the same set of observations. This is in contrast
to sensor fusion techniques [26] that use a single dynamical
model to interpret multiple streams of observations.

Representing complex distributions as products of sim-
ple ones has been proposed in Product of Experts (PoE)
[11] and Product of HMMs (PoHMMs) [3] frameworks.
The PoHMMs is based on co-training training multiple
simple HMMs on the same set of training data, and assign-
ing a novel sequence probability equal to the scaled prod-
uct of probabilities assigned by each HMM. Our
framework also uses renormalized products of tractable
probability distributions to model data that satisfies con-
straints arising from different models.

There are two major differences between our redundant-
state multi-chain model and PoHMMs. First, individual
chains in our model share a latent rather than an observed
variable, which enables a two-way flow of information
between states of the individual modules (e.g., object
tracker and background maintenance). In particular, glo-
bal spatial relationships are introduced into low-level mod-
ules by using the feature predictions available from the
high-level generative model. In our example, object posi-
tions predicted by the object interaction model influence
individual object tracking; position and appearance predic-
tions from independent object tracking model then modify
the behavior of the adaptive background subtraction.

The second difference is that in order for the product
approximation to be advantageous, the errors in the pre-
dictions by the individual chains have to be uncorrelated.
This property is ensured during the training process in
the PoHMMs model. We, on the other hand, assume that
stochastic models combined in RSMCM are completely
prespecified, and that the appearance feature hierarchy (if
any) is known; we concern ourselves with inference on
the combined model, rather than learning its structure.
Under these assumptions, the decorrelation of errors (and
thus the improvement in estimation) has to be demon-
strated separately. This can be done analytically (as we
do for a purely linear-Gaussian models), or empirically.

Our approach differs significantly from factorial models
of [9,15,7]. These methods partition the state into indepen-
dently evolving subsets that jointly generate the observa-
tion. Furthermore, Boyen and Koller [2] have shown the
conditions under which the posterior distribution of the
state can be viably approximated as a product of marginal
distributions of subsets, which allows for more efficient
inference. However the model is constrained to a single
state (and evolution) model. It does not easily allow simul-
taneous use of multiple alternative ways to generate the
same observations, which is the key property of our
approach.
3. Developing a redundant state model

We pose probabilistic model-based regularization as a
problem of reconciling two generative models describing
evolution of the observations using the same latent vari-
ables. Feature extraction algorithms can often be seen as
inference in a generative model with a structure similar to
the one in Fig. 2(a). The feature set at time t, F t ¼ fF t

kg,
is generated based on the hidden low-level state Rt (e.g.,
a background model), and is in turn used to generate the
observed image, It. Feature behavior is typically modeled
as independent, with the state evolving according to local
dynamics pðRtþ1jRtÞ ¼

Q
kpðRtþ1

k jRt
kÞ. The features are then

generated according to pðF tjRtÞ ¼
Q

kpðF t
kjRt

kÞ. The objec-
tive of the algorithm is to infer Fts that are then used as
input for object-tracking algorithms. As a consequence of
the independence assumption both the state prediction,
p(RtjRt�1), and the prior over features, which is given by

pðF tjI0...t�1Þ ¼
Z

pðF tjRtÞ

�
Z

pðRtjRt�1ÞpðRt�1jI0...t�1ÞdRt�1 dRt

is overly broad making the system susceptible to unmod-
eled image variations (e.g., template warps).

Similarly, a probabilistic object tracking algorithm may
be formulated as inference in the model shown in Fig. 2(b).
The hidden high-level state, St, evolves according to global
dynamics, p(StjSt�1). The feature set, Ft, is generated at
every frame based on the rendering model p(FtjSt). This
model treats features as observations, ignoring the fact that
in reality they are obtained from images by a low-level fea-
ture-extraction process. Random variables and conditional
distributions used in this discussion are summarized in
Table 1.



Fig. 2. Combining local and global dynamics for object tracking. (a) A generative model used in feature extraction algorithms. The low-level state,
R = {Rk}, evolves according to the local dynamic model, pðRtþ1jRtÞ ¼

Q
kpðRtþ1

k jRt
kÞ. At time t, the observed image is drawn from p(IkjFk), where the

feature set, F t ¼ fF t
kg, is generated from the state according to pðF tjRtÞ ¼

Q
kpðF t

k jRt
kÞ. (b) Generative model used for object tracking. The high-level state,

St, contains pose and appearance information about moving object(s), and evolves according to global dynamic model, p(St+1jSt). The feature set, Ft,
generated based on the appearance and pose is considered to be observed. (c) Combined model with potentials corresponding to the conditional
probabilities in the individual models (e.g., /(Rt,Rt�1) = p(RtjRt�1), etc.).

Table 1
Summary of random variables and conditional distributions used in this paper

t Time index
It Image observed at time t

St State of the high-level (tracking) generative model, e.g., 2D position and velocity of the object and its appearance
p(StjSt�1) High-level state evolution model
Rt State of the low-level (feature extraction) generative model, e.g., per-pixel background models
p(RtjRt�1) Low-level state evolution model
Ft Latent instantaneous description of the world used by both models, e.g., pixels intensity values with corresponding

foreground/background labels
p(FtjSt) The distribution used to generate latent features based on the high-level model state
p(FtjRt) The distribution used to generate latent features based on the low- level model state
p(ItjFt) Observation generation model
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Both of the models described above are approximate.
The question we address is how to combine them in a sta-
tistically consistent fashion so as to leverage complimen-
tary properties of each. The local dynamic model ignores
dependency between features, and the global dynamic
model is usually too coarse to be of use for feature match-
ing. By ignoring dependency between features, the feature
extraction algorithm assumes that the joint distribution
of the state and the appearance conditioned on all previous
observations is

pðF t;RtjI0...t�1Þ ¼ pðF tjRtÞ
Z

pðRtjRt�1ÞpðRt�1jI0...t�1ÞdRt�1; ð1Þ

but the true distribution, which accounts for interfeature
dependencies, is of the form

pðF t;RtjI0...t�1Þ ¼ qðF t;Rt; I0...t�1Þ

�
Z

pðRtjRt�1ÞpðRt�1jI0...t�1ÞdRt�1

� qðF t;Rt; I0...t�1Þ 6¼ pðF tjRtÞ: ð2Þ

That is, when the true dynamic model is used, Ft (and It)
are independent from prior observations conditioned on
Rt

i. However this is not the case when the approximate dy-
namic is used. Modeling the dependencies between Ft and
prior observations that are unaccounted for by feature
extraction model allows for better estimation of the state
posterior. We chose the approximation to q(Ft,Rt; I0. . .t�1)
that incorporates the information available to the object
tracking model via a product

q̂ðF t;Rt; I0...t�1Þ / pðF tjRtÞ
Z

pðF tjStÞpðStjI0...t�1ÞdSt: ð3Þ

This is equivalent to the undirected dual-chain model shown
in Fig. 2(c), with potentials corresponding to conditional dis-
tributions from constituent models (/(St,St�1) = p(StjSt�1),
/(Ft,St) = p(FtjSt), /(It,Ft) = p(ItjFt), etc.). Sharing of the
feature nodes between two individual models allows them
to influence each other. For example, in the case of back-
ground subtraction, the background model would not be
adapted to pixels that the tracking system predicts to be
generated by the foreground objects; vice versa, pixels that
are predicted to belong to the background would not be
considered by the tracker. In the case of feature-point
tracking, the prediction based on the global dynamic would
serve as a data association filter, (e.g., it would mitigate
individual point drift). The intuition behind this approxi-
mation from the modeling point of view is that while both
models define broad priors over features, their product
(similar to the fuzzy and operator) would be more narrow,
making the overall system less sensitive to observation
noise.

Although have so far we discussed the case when indi-
vidual models use the same latent appearance features, it
is possible to combine models with intersecting feature sets.
In that case, the combined feature model would be the
union of individual feature sets, and the likelihood poten-
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tials are extended to produce uniform likelihoods for fea-
tures that are not part of the original submodel. In general,
when the feature sets are disjoint, the model would reduce
to a PoHMMs model with non-interacting chains. Since we
are interested in combining models that correspond to
interacting stages of a feed-forward algorithm, we do not
consider such cases.

3.1. Approximate filtering in the multi-chain model

Single-chain models are popular because there exist effi-
cient algorithms for performing inference in them. While
our proposed multi-chain model introduces loops
(Fig. 3(a)), complicating inference in general, we take
advantage of the fact that we are interested only in mar-
ginal distributions for the state nodes to propose an effi-
cient algorithm for filtering in our multi-chain model.

Consider the model in Fig. 3(a). At time t = 1, we are
concerned with nodes with superscripts (times) t 6 1. If
the initial states S0 and R0 are independent (as shown),
then the resulting subgraph is a tree, and we can use the
standard Belief Propagation [18] technique to compute
exact marginal distributions at state nodes S1 and R1.

pðS1jI1Þ ¼ 1

Z

Z
/ðS1; S0ÞpðS0ÞdS0

� � Z
/ðF 1Þ/ðF 1; S1Þ

�

�
Z

/ðF 1;R1Þ
Z

/ðR1;R0ÞpðR0ÞdR0 dR1 dF 1

�
;

ð4Þ

where /(F1) ” /(I1,F1). The expression for p(R1jI1) can be
similarly derived. Filtering at the next time step (t = 2) is
more complex since the model now contains loops and
the exact inference would require representing the joint
p(S1,R1jI1):

pðS2jI1; I2Þ ¼ 1

Z

Z
/ðF 2Þ/ðF 2; S2Þ

Z
/ðF 2;R2Þ

�
Z Z

/ðS2; S1Þ/ðR2;R1ÞpðS1;R1jI1Þ

� dR1 dS1 dR2 dF 2: ð5Þ

In order to simplify computations, we approximate the
joint distribution, p(S1,R1jI1) with a product, q(S1)q(R1).
It can be easily shown that the best such approximation
Fig. 3. Graph structures used in inference algorithms in the dual-chain model. (
performed. The marginal distributions, p(St�1jI0. . .t�1) and p(Rt�1jI0. . .t�1), ha
observed. (b and c) Subgraphs for coordinate ascent in the dual-chain model. B
model shown in (b). Existing feature-extraction algorithms may be adapted to
R0. . .T are fixed (c) an existing high-level optimization algorithm can be applie
(in the KL-divergence sense) is the product of marginal dis-
tributions, p(S1jI1) and p(R1jI1). Substituting
p(S1jI1)p(R1jI1) for p(S1,R1jI1) in Eq. (5), we obtain an
approximate inference equation:

pðS2jI2Þ ¼ 1

Z

Z
/ðS2; S1ÞpðS1ÞdS1

Z
/ðF 2Þ/ðF 2; S2Þ

�
Z

/ðF 2;R2Þ

�
Z

/ðR2;R1ÞpðR1ÞdR1 dR2 dF 2: ð6Þ

The similarity between Eqs. (4) and (6) suggests an approx-
imate filtering algorithm that estimates marginal distribu-
tions of the state variables by recursively applying Belief
Propagation to acyclic subgraphs of the form shown in
Fig. 3(a), using the marginal state distribution obtained
at time t � 1 as priors at time t. It can be shown that this
approximation preserves the main property of the exact
model: the appearance features that are assigned zero prob-
ability under any of the constituent models are assigned
zero probability in the computation of all of the marginal
distributions. The messages exchanged between nodes dur-
ing Belief Propagation are computed as described in Algo-
rithm 1. Note that computations required for the
prediction and update steps, as well as for part of the fea-
ture estimation step, are the same as those of individual ob-
ject tracking and feature extraction algorithms.

If inference on constituent Markov chains were per-
formed individually, it would still involve steps analogous
to the prediction, update, and to part of the feature predic-
tion steps of the approximate algorithm; consequently,
combining models introduces very little additional com-
plexity to the inference process.
3.2. Batch optimization in the multi-chain model

While filtering is appropriate for online tasks, some
object-tracking problems are formulated as global optimi-
zations in single-chain models such as the one in
Fig. 2(b). For example, in structure-from-motion estima-
tion we may be interested in computing the shape of the
object based on all observed data, that is computing
arg maxS0...T pðF 1...T jS0...T Þ. Once again, the algorithms devel-
a) A tree-shaped subgraph on which a single step of approximate filtering is
ve been computed at the previous iteration, and are not modified; It is
y fixing values of states S0. . .T, the structure is reduced to the single-chain
perform inference in this model with relatively little modifications. When

d.
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oped for single-chain models need to be modified to be of
use in the dual-chain setting.

Algorithm 1. Recursive Belief Propagation Algorithm for
Filtering in a Dual-Chain Model

for all t P 0 do
PREDICT the current state of the object and states of individual
features, compute messages:

lSt�1!St ¼
R

dSt�1/ðSt; St�1ÞpðSt�1jI0...t�1Þ and
lRt�1!Rt ¼

R
dRt�1/ðRt;Rt�1ÞpðRt�1jI0...t�1Þ.

ESTIMATE feature distributions based on predicted states and
current observations, compute messages:

lSt!F t ¼
R

dSt/ðF t; StÞlSt�1!St ,
lRt!F t ¼

R
dRt/ðF t;RtÞlRt�1!Rt ,

lF t!St ¼
R

dF tlRt!F t /ðI t; F tÞ, and
lF t!Rt ¼

R
dF tlSt!F t /ðI t; F tÞ.

UPDATE object state using features predicted by feature
extractor and state of the feature extractor using features predicted
by object model:

pðStjI0...tÞ / lSt�1!St lF t!St and
pðRtjI0...tÞ / lRt�1!Rt lF t!Rt .

end for

Algorithm 2.Coordinate Ascent for Batch Optimization in
a Dual-Chain Model

APPLY feature-extraction algorithm to all available observations.
while not converged do
APPLY the global optimization algorithm to object model
COMPUTE feature predictions from the object model for each
time step.
APPLY feature-extraction algorithm to all available observations
while incorporating predictions from the object model on the fea-
ture level.

end while

We base our optimization approach on a coordinate
ascent algorithm that alternates between optimizing one
set of states (either R0. . .T or S0. . .T) while keeping the other
one fixed. The dual-chain structure, with latent feature
nodes separating states, naturally lends itself to this algo-
rithm. Fixing one set of states reduces the problem to a sin-
gle-chain optimization that can be performed with
available algorithms, (cf., Figs. 3(b and c). The summary
of our method is presented in Algorithm 2.

3.3. Analyzing approximation validity

The redundant-state model described above is quite gen-
eral, in that it allows combining any two dynamics models
sharing the same ‘‘feature’’ representation. It is clear that
there are cases when one of the constituent models would
produce better results than RSMCM. For example if the
R and S are defined over the same state space, and shape
the same dynamics, then the product model would amplify
the errors rather than decrease them! Taking the product of
the approximate temporal prior with itself results in a prior
that is more certain (has smaller variance) about an incor-
rect estimate. While the Product of HMMs [3] model may
suffer from the same drawback, it is specifically trained to
reduce the correlation between individual models and
reduce the probability of being overconfident. Individual
models are predefined in our framework, we analytically
define when it is appropriate to combine two single-chain
models into a RSMCM.

We analyze a case where the underlying and both
approximate models are linear-Gaussian in order to obtain
a closed-form solution; this case is directly useful and pro-
vides intuition about more complicated cases.

We consider the system that is described by the follow-
ing equations:

F t ¼ gðF t�1Þ þ xt
0; xt

0 � Nðxt
0; 0;R0Þ

I t ¼ F t þ mt; mt � Nðmt; 0;RmÞ;

(
ð7Þ

where N(Æ;l,R) is a multi-variate Gaussian distribution
with mean l and covariance R. The approximate models
are described by

St ¼ ĝ1ðSt�1Þ þ xt
1; xt

1 � Nðxt
1; 0;R1Þ

F t ¼ St

I t ¼ F t þ mt; mt � Nðmt; 0;RmÞ;

8><
>: ð8Þ

and

Rt ¼ ĝ2ðRt�1Þ þ xt
2; xt

2 � Nðxt
2; 0;R2Þ

F t ¼ Rt

I t ¼ F t þ mt; mt � Nðmt; 0;RmÞ:

8><
>: ð9Þ

Both approximate models share the emission (image gener-
ation) equations with the true model, but incorporate
approximate evolution functions ĝ1(Æ) and ĝ2(Æ) rather than
the true function g(Æ). All functions are modeled as linear.
We denote l1 = ĝ1(Ft�1) � g(Ft�1) and l2 = ĝ2(Ft�1) �
g(Ft�1).

For ease of analysis we assume that both approximate
estimators are unbiased, that is

EF t�1 ½l1� ¼ EF t�1 ½l2� ¼ 0 ð10Þ

and have the covariance structure

EF t�1

l1

l2

� �
ð l1 l2 Þ

� �
¼

P 1 P 12

P T
12 P 2

� �
ð11Þ

with the expectation taken with respect to the marginal dis-
tribution p(Ft�1). Evolution equations of each model can
be described via conditional distributions

pðF tjF t�1Þ ¼ NðF t; gðF t�1Þ;R0Þ ð12Þ
q1ðF tjF t�1Þ ¼ NðF t; gðF t�1Þ;R1Þ ð13Þ
q2ðF tjF t�1Þ ¼ NðF t; gðF t�1Þ;R2Þ ð14Þ

by using the property Ft = St and Ft = Rt of approximate
models. All models share the same emission model

pðI tjF tÞ ¼ NðI t; F t;RmÞ ð15Þ

Using these conditional distributions we can define poster-
ior distributions
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pðF tjI t; F t�1Þ / pðI tjF tÞpðF tjF t�1Þ;
q1ðF tjI t; F t�1Þ / pðI tjF tÞq1ðF tjF t�1Þ; and

q2ðF tjI t; F t�1Þ / pðI tjF tÞq2ðF tjF t�1Þ:

We define the cost of using an approximate evolution mod-
el as an expected value of KL-divergence between the opti-
mal (i.e., using the correct model) and approximate
posteriors.1

CðqÞ ¼ EIt ;F t�1 DKL pðF tjI t; F t�1ÞkqF jIðF tjI t; F t�1Þ
� �h i

ð16Þ

We assume that single-chain models combined into a
RSMCM are optimal, in the sense that they use noise dis-
tributions that would, on average, result in the best poster-
ior estimates. Lemma 1 describes the conditions under
which C(q1) and C(q2) are optimal.

Lemma 1. C(q1) and C(q2) are minimized by setting

R1 = P1 + R0 and R2 = P2 + R0.

Theorem 2 describes sufficient conditions under which the
product approximation that uses the conditional
distribution

q�ðF tjF t�1Þ / q1ðF tjF t�1Þq2ðF tjF t�1Þ
has cost C(q*) that is less than the cost of each of the con-
stituent models.

Theorem 2. C(q*) < C(q1) and C(q*) < C(q2) if matrices

C1 ¼ Q1gP 1 � Q1gP 12 þ ðQ1gP 12ÞT þ ðQ1gR0ÞT
� 	

and

C2 ¼ Q2gP 2 � Q2gP T
12 þ ðQ2gP T

12Þ
T þ ðQ2gR0ÞT

� 	
are both positive semidefinite when

Q1g ¼ ðIþ ðR0 þ P 1ÞR�1
m Þ
�1

Q2g ¼ ðIþ ðR0 þ P 2ÞR�1
m Þ
�1

The proofs of this theorem and Lemma 1 can be found in
Appendix A.

Theorem 2 confirms our intuition that the models com-
bined into RSMCM should be decorrelated. In the extreme
case where the models are perfectly correlated, P1 = P12

and C1 ¼ �ðQT
1gðP T

12 þ RT
0 ÞÞ

T is not positive semidefinite.
While it is well understood that unbiased estimators,

whose errors are uncorrelated, can be coherently combined
to produce an improved estimate, the previous analysis is
more specific. For the Gaussian case, Theorem 2 quanitfies
the degree of correlation in the estimation errors which can
be tolerated and still produce an improved using an
RSMCM. It is instructive to consider a one-dimensional
case when all constituent matrices become scalars. The suf-
ficient conditions then reduce to

p1 P 2p12 þ r2
0 and

p2 P 2p12 þ r2
0

ð17Þ
1 KL-divergence is, for reasons detailed in [5], a natural way to measure
differences between distributions.
That is each of the diagonal terms on the covariance matrix
of the estimators should be greater than the sum of the off-
diagonal terms and the noise variance of the underlying
model. The off-diagonal terms in this case are equal toffiffiffiffiffiffiffiffiffi

p1p2

p
q12 where q12 is the correlation coefficient. For the

above conditions to be satisfied, it is necessary for the cor-
relation coefficient to be less than 0.5.

4. Applications

We demonstrate the utility of our RSMCM framework
in three different domains. We present a redundant articu-
lated-body tracking approach combining rigid 2D head
and hand motion model with articulated body dynamics.
We also show how ubiquitous low-level methods such as
adaptive background subtraction and feature-point track-
ing, used in many high-level motion-analysis algorithms
(e.g, [28,22,4,12,1]) can benefit from spatial coherence
information available to those high-level algorithms. In
particular, we demonstrate that the results can be dramat-
ically improved by using a RSMCM formulation to com-
bine adaptive background subtraction and multi-object
(blob) tracking. Finally, structure-from-motion estimates
in a RSMCM framework that includes a feature-point
tracker are shown to be superior to those in a feed-forward
system.

4.1. Articulated body tracking

We have used the multi-chain framework for tracking
human motion. We modeled the human upper body with
an articulated tree with 13 degrees of freedom—2 in-plane
translational dofs, 3 rotational dofs at the neck, 3 rota-
tional dofs at each shoulder and 1 rotational dof at each
elbow.

Since no good parametric form is known for body-pose
distribution, we chose to use a sample-based density repre-
sentation. Common sample-based particle-filtering
approaches (e.g., CONDENSATION) compute a posterior
state distribution at each time step by sampling from the
distribution at the previous time step propagated by
dynamics and reweighting samples by their likelihood. If
the configuration space is complex, then this procedure
results in many samples falling into areas of zero likelihood
unless the dynamics are well known. This increases the
number of samples that need to be drawn. An alternative
is likelihood sampling [24], when pose samples are drawn
from the pose likelihood function and are reweighted based
on the temporal prior. Although this method results in
greater per-sample complexity, it enables us to use fewer
samples since they are placed more appropriately with
respect to the posterior distribution.

To implement likelihood sampling we take advantage of
the fact that we are able to not only evaluate, but also draw
samples from observation likelihood definitions for the
head and hand locations (in this case, mixtures of Gaussi-
ans corresponding to the face detector outputs and to
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detected flesh-colored blobs). We define observation likeli-
hood using latent image observation likelihoods: face
detector output for the head segment, flesh-color likeli-
hoods for the hands, and occlusion edge map matching
for the rest of the segments. Once the 2D face and hand
position samples have been drawn, we use them together
with inverse kinematics constraints to define a pose-pro-
posal distribution. We then use this distribution in the
importance sampling framework to obtain samples from
the pose likelihood.

We define our proposal distribution as in [24]. In defin-
ing the proposal distribution, we take advantage of the fact
that once head and hand positions and neck configuration
are specified, then arm configurations (shoulder and elbow
angles) are independent, and each arm has only two
degrees of freedom. The complete description of likelihood
pose-sampling may be found in [24].

While a tracker based on likelihood sampling can suc-
cessfully operate with a small number of samples and is self
recovering, it is extremely sensitive to feature detector fail-
ures (such as flesh-color misdetections). In this work, we
combine a likelihood-sampling tracker with low-level
flesh-blob tracking using robust Kalman filtering. These
tracking systems share appearance features (flesh-colored
blobs), enabling us to combine them in the RSMCM
model.

We have applied our RSMCM tracker to three sample
sequences, with results shown in Figs. 4 and 5. For each
frame in the sequence, we have rendered 40 randomly
drawn samples from the posterior state distribution (the
frontal view overlaid on top of the input image is shown
in the middle row, and side view is shown in the bottom
row). The tracking results for the first sequence are also
available in the submitted video file (rendered at one third
Fig. 4. Applying dual-chain tracking to sample sequence 1. The top row contai
distributions are shown: in the middle row, the particles are rendered onto the
view.
of the framerate). In most frames, the tracker succeeded in
estimating poses that contained significant out of plane
components and self occlusions, and was able to recover
from mistracks (e.g., around frame 61 in the third
sequence).

In Fig. 6, we compare the performance of the enhanced
RSMCM tracker using 1000 samples per frame (first col-
umn), likelihood-sampling tracker using 1000 samples (sec-
ond column), CONDENSATION tracker with 5000
samples that runs as fast as the RSMCM tracker (third col-
umn), and finally CONDENSATION tracker with 15,000
samples (the smallest number of samples that enables
CONDENSATION to perform with accuracy approaching
RSMCM tracker performance). The results are presented
using the same method as in Fig. 4, the frontal view is
shown overlayed on top of the input image, with the side
view to the right of it.

The RSMCM tracker was able to successfully track the
body through the entire sequence. The likelihood-sampling
tracker was generally able to correctly estimate the pose
distribution, but failed on frames where image features
were not correctly extracted (cf. frames 20, 60, etc.). The
CONDENSATION variant with 5000 samples failed after
30 frames partly due to sample impoverishment (note that
only a few distinct samples were drawn in frames 40 and
later). Increasing the size of sample set to 15,000 (with sim-
ilar increase in the running time) allowed CONDENSA-
TION to successfully track through most of the sequence
(see Fig. 6).

Our method improves upon likelihood-sampling, and
compares favorably with the CONDENSATION algo-
rithm in two ways. First, a monolithic approach using
CONDENSATION requires a significantly greater number
of samples in order to explore the configuration space suf-
ns input frames. Forty random particles from the estimated posterior pose
input image (frontal view); in the bottom row they are rendered in the side



Fig. 5. Applying dual-chain tracking to sample sequence 3. The top row contains input frames. Forty random particles from the estimated posterior pose
distributions are shown: in the middle row, the patricles are rendered onto the input image (frontal view); in the bottom row they are rendered in the side
view. Note that while a mistrack has occurred on the third sequence near frame 61, the tracker was able to recover.

2 Available from ftp://pets.rdg.ac.uk/PETS2001/.
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ficiently as compared to the RSMCM with likelihood sam-
pling. Secondly, in the experiments presented, the estimate
of the posterior state distribution more accurately repre-
sents the uncertainty of the upper-body pose than the alter-
native methods.

4.2. Improving adaptive background subtraction performance

Adaptive background models are popular since they are
able to adjust to scene changes due to causes other than
objects of interest (e.g., lighting variations). An important
assumption made in all these models is that the back-
ground objects remain stationary for extended periods of
time, while foreground objects tend to move frequently.
So, when a foreground object stops for more than a few
frames, the model adapts to it, causing it to ‘‘fade’’ into
the background, and its location is no longer labeled as
foreground (Fig. 1).

Common adaptive background algorithms similar to
[22] can be represented as inference in a generative model
that can then be incorporated into a RSMCM framework.
This model maintains the background scene at time t as a
set of independent per-pixel models fRt

kg. A binary back-
ground label, Bt

k, is generated for every pixel according to
the prior probability, P ðBt

kÞ. The latent pixel value, Lt
k, is

generated according to the predicted model, Rt, if the pixel
belongs to the background ðBt

k ¼ 1Þ and by a uniform dis-
tribution otherwise. The value of Lt

j contaminated by
observation noise is then observed as I t

k. By denoting
F t

k ¼ ðBt
k; L

t
kÞ, we obtain the form shown in Fig. 2(a).

The ‘‘fade-away’’ effect is caused, in part, by the use of
constant P ðBt

kÞ, that governs the rate at which the back-
ground model is adapted to new observations. This prob-
lem may be alleviated by, modifying P ðBt

kÞ based on
feedback from an object (blob) tracking system. We
achieve this by combining this background model with an
object tracker (with the form shown in Fig. 2(b)) in the
RSMCM framework.

We have used an object (blob) tracker with first-order
linear dynamics similar to the one described in [22]. In this
case, high-level state, St, contained appearances of the
moving objects and their 2D positions and velocities. The
background scene distribution was modeled with a single
(per-pixel) Gaussian with fixed variance and variable mean.
Model dynamics and observation noise were also repre-
sented with Gaussian distributions with fixed variances.
Based on these modules, we implemented and compared
the performance of the RSMCM algorithm and of the
stand-alone background subtraction modules with different
values of P ðBt

k ¼ 1Þ. The resulting RSMCM implementa-
tion is able to solve the ‘‘sleeping man’’ problem described
in Section 1. Compare the segmentation results from a
stand-alone system in Fig. 1 and the redundant state sys-
tem output in Fig. 7.

The systems were evaluated on datasets provided for the
PETS 2001 workshop.2 Algorithms were evaluated as fol-
lows: at every frame, we computed a raw foreground
map by thresholding (at 0.5) the background probability
value at every pixel and then extracted a set of connected
components from this map.

We were interested in three common classes of errors:
missing people, missing vehicles, and incorrectly detected
‘‘ghost’’ objects. We evaluated the following performance
metrics: (1) less than 50% of a pedestrian covered by
extracted components; (2) less than 50% of a vehicle cov-



Fig. 6. Applying four tracking algorithms to a sample sequence. For each frame a set of 40 random pose samples were drawn from estimated posterior
distribution and the corresponding skeletons were rendered (frontal view overlaid on the frame and side view below). Errors in feature detection caused
likelihood-sampling tracker to fail on some of the frames (no samples were produced).
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ered by extracted components; and (3) a foreground com-
ponent detected in a location where no moving objects
were present. Quantitative comparison results are summa-
rized in Fig. 8. Sample frames from the first sequence with
corresponding estimated background images and fore-
ground components are shown in Fig. 11. The stand-alone
background subtraction module suffers from the ‘‘sleeping
man’’ problem and adapts to stationary vehicles (one in the
middle of the screen and another in the bottom left corner).
This may or may not be correct behavior for the car in the
middle, since it does not move for the remainder of the
sequence; it is clearly incorrect for the van in the bottom
left, since it is lost by a tracker after the background model
has adapted to it, and its subsequence motion results in
mislabeled foreground regions. The RSMC model is not
subject to these errors.

Importantly, replacing the feed-forward tracking algo-
rithm with a RSMCM framework did not result in a large
performance penalty. In our experiments, the difference
between running times of the RSMCM algorithm and the
feed-forward system was less than 4%. Partially optimized
code on a 2.8 GHz workstation was able to achieve 9.6 fps



Fig. 7. Fixing ‘‘sleeping man’’ problem. Performance of the dual-chain system on the sequence shown in Fig. 1. Note that the correct background model
and foreground maps are maintained while the person is stationary.
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for sequential processing and 9.3 fps for RSMCM process-
ing on 768 · 576 images (this time included reading images
from the hard drive).
4.3. Structure from motion estimation

We have evaluated our batch optimization algorithm by
applying it to the problem of extracting structure from
motion sequences. Our algorithm combines a Kalman-filter
based feature point tracker with structure-from-motion
estimation [10].

Feature point tracking was implemented in a manner
similar to that of [16]. The initial points of interest were
located using Tomasi-Kanade feature point detector [25],
and the 5 · 5 patches around the points were extracted.
The points were then tracked using a first order Kalman fil-
ter, with the likelihood computed based on the normalized
correlation scores around the location predicted by the fil-
ter. The concatenated states of individual point trackers
were considered to be the state R of the feature-extraction
chain, and the feature set F consisted of the 2d positions of
the individual feature points and their appearances
F = {(ui,vi,ai)}.

Since the point tracking was part of a batch process, it
was possible to further smooth point tracks using an
RTS smoother [19].

A structure from motion estimation algorithm was
implemented based on the variant of factor-analysis based
method [10]. Denoting the 3D position of the ith point as
(xi,yi,zi), its projection at time t as ðut

i; v
t
iÞ, and first two

rows of the homogeneous projection matrix at time t as
mt ¼ ðmt
1; . . . ;mt

8Þ, the noisy projection equations for P
points in T frames are written by [10] as
u1
1 . . . u1

P v1
1 . . . v1

P

..

. . .
. ..

. ..
. . .

. ..
.

uT
1 . . . uT

P vT
1 . . . vT

P

0
BB@

1
CCA¼

m1
1 . . . m1

8

..

. . .
. ..

.

mP
1 . . . mP

8

0
BB@

1
CCAAþ g½T�2P�;

ð18Þ

where

A ¼

S

11�P

S

11�P

0
BBB@

1
CCCA; S ¼

x1 . . . xP

y1 . . . yP

z1 . . . zP

0
B@

1
CA; gij � Nð0; r2

ijÞ:

This equation is then solved using standard EM algorithm
for factor analysis. The temporal coherence in pose esti-
mates is enforced by adding second-order smoothness con-
straints over camera-motion parameters mt:

mt ¼ mt�1 þ _mt�1 þ 1

2
€mt�1 þ �1;

_mt ¼ _mt�1 þ €mt�1 þ �2;

€mt ¼ €mt�1 þ �3:

This algorithm may be converted to inference in the single-
chain model in Fig. 2(b) by using St ¼ ðSt;mt; _mt; €mtÞ,
where St ¼ ðx1; y1; z1; . . . ; xP ; yP ; zP Þ and F t ¼ ðut

1; . . . ; ut
P ;

vt
1; . . . ; vt

P Þ. The model dynamics are then
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pðStjSt�1Þ¼dðSt�St�1ÞN
mt

_mt

€mt

0
B@

1
CA;

1 1 1
2

0 1 1

1

0
B@

1
CA

0
B@

mt�1

_mt�1

€mt�1

0
B@

1
CA;R�

1
CA;
ð19Þ

where the first factor preserves the constancy of shape esti-
mates across time and the second term describes the pose
evolution. The feature generation model is

pðF tjStÞ ¼ NðF t; mtA;RgÞ; ð20Þ

with A defined in Eq. (18).
The feature tracking and structure estimation chains

were combined as described in Algorithm 2. The feature
tracking process was modified by replacing the Kalman
prediction in the individual feature’s prior by the product
of the prediction available from the global model and the
Kalman prediction. The effect of this combination was
Fig. 8. Quantitative evaluation of background subtraction performance on P
foreground components corresponding to a pedestrian have been detected. 2: no
foreground component detected when no foreground object is present. Total
sequence remains stationary after parking, its incorporation into the backgrou
shows results for sequence 1 ignoring type 2 errors corresponding to this car. E
two-fold: it reduced the point drift and allowed for more
robust handling of occlusions. If the feature point became
occluded (i.e., the peak correlation value was below the
threshold), the uncertainty in its position quickly became
too large and it was dropped by the stand-alone tracker,
and a new track was started when the point became visible
again. In the RSMCM, the high-level prediction was, in
effect, providing a virtual observation, which would pre-
serve the track for longer periods of time. We have empir-
ically verified that the errors in the low-level and high-level
predictions have low correlation; the result of Section 3.3 is
thus applicable.

We have experimented with RSMCM extensions of both
the pure factor-analysis based algorithm and a variant that
enforced pose coherence. In order to quantitatively com-
pare the performance of these algorithms, we have created
a synthetic dataset that emulates the behavior of common
feature trackers on real data. Forty points randomly dis-
ETS 2001 image sequences. Three error classes were differentiated. 1: no
foreground components corresponding to a vehicle have been detected. 3:

number of errors in sequence 1 is presented in (a). Since one car in this
nd model by single-chain trackers can be justified. The error chart in (b)

rror statistics for sequence 2 are shown in (c). See the text for more details.
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tributed on a unit cylinder were observed for 60 frames by
a camera moving with constant angular velocity. To emu-
late occlusions and misdetections, every point changed
state from visible to invisible in each frame with probability
P(loose). To emulate template drift, consistent bias was
introduced into each visible point for five frames with
probability P(drift).

Shapes recovered for P(loose) = 0.1, P(drift) = 0.3 are
shown in Fig. 9. The shapes computed by the single-chain
variants contain more points. This is due to the fact that
each point on the cylinder has produced several partial
Truth

a b

c d

Fig. 9. Comparison of typical performance of factor analysis (a), factor analy
chain factor analysis with temporal coherence (d) structure-from-motion algo
details). Single-chain methods produce much poorer results in the presence of o
tracks of the same point.
tracks separated by occlusions. The inability of a feature
tracker to recognize partial tracks as belonging to a single
feature complicates shape recovery. Since RSMCM meth-
ods are able to use the global model for data association,
their shape estimates are much more accurate.

A quantitative evaluation of this experiment is shown
in Fig. 10. The errors in individual feature trackers’ and
structure-based predictions have been empirically verified
to have low correlation, so, as we would expect from the
analysis in Section 3.3, RSMCM estimates have signifi-
cantly lower errors than those from a feed-forward sys-
sis with temporal coherence (b), dual-chain factor analysis (c), and dual-
rithms on a synthetic sequence (P(loose) = 0.1, P(drift) = 0.3, see text for
cclusions due to their inability to establish correspondences between partial



Fig. 10. Quantitative comparison of structure-from-motion recovery algorithms on the synthetic sequence with varying amounts of drift and occlusion.
Top row—total reprojection error as a function of drift with no occlusion, i.e., P(loose) = 0 (left) and with 12% chance of occlusion, i.e., P(loose) = 0.12
(right). Bottom row—total reprojection error as a function of occlusion for P(drift) = 0 (left) and P(drift) = 0.2 (right). Dual-chain algorithms were able to
approximately reconstruct shape in all cases. Single-chain methods failed for even small values of P(loose).
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tem. Note that the number of occlusions (related to
P(loose)) had the greatest impact on the shape estima-
tion. Neither of the single-chain approaches was able
to deal with multiple partial tracks observed for one fea-
ture point. They failed to correctly recover the shape
(signified by large reprojection errors), even for small val-
ues of P(loose).

The results of applying factor analysis with temporal
coherence and its RSMCM variant to a fifty-frame video
sequence3 of a rotating box are shown in Fig. 12. The shape
recovered by stand-alone factor analysis contains many
spurious points, but the RSMCM framework succeeded
in approximately estimating the correct shape.
3 We used part of an original sequence from http://www.cs.ucla.edu/
5. Conclusions

We have proposed a method for combining probabilistic
feature extraction and object tracking systems into a uni-
fied probabilistic model The approach was motivated by
the observation that both of these models marginalize over
an intermediate feature representation between state and
observation. By making the feature representation explicit,
we obtained a straightforward means of mediating between
the constituent models. The resulting fused model has a
clear probabilistic interpretation, reconciling multiple gen-
erative models that describe the same observations, each
corresponding to a particular set of independence assump-
tions and dynamical model. In this paper we have concen-
trated on two-chain models with a single feature
representation, although our framework is quite general
and can incorporate multiple dynamic models and hierar-
chies of features.

http://www.cs.ucla.edu/~hljin/research/voi.html


Fig. 11. Qualitative comparison of background subtraction performance on one PETS2001 image sequence. Second column holds input frames.
Estimated background model and the computed foreground components are presented in the third and fourth columns for stand-alone background
subtraction and in the fifth and sixth columns for dual-chain model. Note that while input images are in color, all computations were performed in
grayscale. See text for more details.
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Using the proposed framework requires some extra
modeling in order to combine existing low- and high-level
vision algorithms. An integrated model is enabled by the
introduction of an explicit latent appearance model: this
model is desirable for reasons of global consistency; how-
ever, exact inference on the resulting combined model is
complicated by the introduction of loops. We have pro-
posed two methods for adapting algorithms designed for
constituent modules to operate in a combined system. An
approximate inference method based on sequential infer-
ence on acyclic subgraphs provides a suitable alternative
to exact filtering and was shown to perform well in online
tracking applications. A coordinate-ascent based algorithm
has been designed for the batch inference case and success-
fully applied to structure-from-motion estimation. Our
method compared favorably to the pure feed-forward
approaches in such diverse applications as articulated body
tracking, background subtraction, and structure from
motion estimation.
Appendix A. Proofs of analysis theorems

In order to prove Lemma 1 and Theorem 2 we first
prove the following lemma
Lemma 3. If

pyðyÞ ¼
Z

pyjxðyjxÞpxðxÞdx;

pxjyðxjyÞ ¼
pyjxðyjxÞpxðxÞ

pyðyÞ
;

qyðyÞ ¼
Z

pyjxðyjxÞqxðxÞdx; and

qxjyðxjyÞ ¼
pyjxðyjxÞqxðxÞ

qyðyÞ
and all densities are absolutely continuous w.r.t. each other,

then
Ey�py ðyÞ½DKLðpxjyðxjyÞkqxjyðxjyÞÞ�
¼ DKLðpxðxÞkqxðxÞÞ � DKLðpyðyÞkqyðyÞÞ
Proof.

The lemma follows from [5] (p. 34, first equality). h

Using Lemma 3, we can re-express C(q) as



Fig. 12. Comparing shape points computed by the stand-alone factor-
analysis with temporal coherence and its dual-chain variant. Top row:
four frames of the input video sequence. Bottom row: (a) view from above
onto the top part of the shape produced by factor-analysis and (b) view
from above onto the top part of the shape produced by the dual-chain
algorithm. Note that in the shape produced by factor analysis more than
half of the points were spurious.
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CðqÞ ¼ EIt ;F t�1 ½DKLðpðF tjI t; F t�1ÞkqðF tjI t; F t�1ÞÞ�
¼ EF t�1 ½EIt ½DKLðpðF tjI t; F t�1ÞkqðF tjI t; F t�1ÞÞ��
¼ EF t�1 ½DKLðpðF tjF t�1ÞkqðF tjF t�1ÞÞ�
� EF t�1 ½DKLðpðI tjF t�1ÞkqðI tjF t�1ÞÞ�

ðA:1Þ
Substituting expressions (12), (13) and (15) into Eq. (A.1),
using a closed-form expression for KL divergence4

DKLðNðx; m1; S1ÞkNðx; m2; S2ÞÞ

¼ 1

2
log
jS2j
jS1j
þ Tr S1S�1

2 þ S�1
2 ðm2 � m1Þðm2 � m1ÞT

� 	
� d

� �
and denoting l1 = ĝ1(Ft�1) � g(Ft�1), we obtain an expres-
sion for C(q1),

Cðq1Þ ¼
1

2
EF t�1 log

jR1j
jR0j
þ Tr R0R

�1
1 þ R�1

1 l1l
T
1

� 	� �

� 1

2
EF t�1 log

jR1 þ Rmj
jR0 þ Rmj

þ Tr ðR0 þ RmÞðR1 þ RmÞ�1
��

ðA:2Þ

þ ðR1 þ RmÞ�1l1l
T
1

��
4 d is the dimensionality of the space.
¼ 1

2
log
jR1j
jR0j
þ TrðR0R

�1
1 þ R�1

1 EF t�1 ½l1l
T
1 �Þ

�

� log
jR1 þ Rmj
jR0 þ Rmj

�TrððR0 þ RmÞðR1 þ RmÞ�1

þ ðR1 þ RmÞ�1EF t�1 ½l1l
T
1 �Þ
�

¼ 1

2
log
jR1j
jR0j
þ TrðR�1

1 ðR0 þ P 1ÞÞ � log
jR1 þ Rmj
jR0 þ Rmj

�

þTrððR1 þ RmÞ�1ðR0 þ Rm þ P 1ÞÞ
�

The expression for C(q2) can be obtained in the similar
manner.We can now prove Lemma 1.

Proof of Lemma 1. The derivative of C(q1) with respect to
R1 is

d

dR1

Cðq1Þ ¼
d

dR1

1

2
log
jR1j
jR0j
þ TrðR�1

1 ðR0 þ P 1ÞÞ
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1 :

�ðR1 þ RmÞ�1ðR1 � R0 � P 1ÞðR1 þ RmÞ�1

�
ðA:3Þ

Setting the derivative to 0, we obtain the only minimum at
R1opt = R0 + P1. Applying the similar analysis to the sec-
ond approximation, we obtain R2opt = R0 + P2. h

The costs of the optimal approximations can be
obtained by plugging in the optimal values for dynamic
noise covariance into cost expressions:

Cðq1optÞ ¼ log
jR1optj
jR0j

� log
jR1opt þ Rmj
jR0 þ Rmj

Cðq2optÞ ¼ log
jR2optj
jR0j

� log
jR2opt þ Rmj
jR0 þ Rmj

ðA:4Þ

The product of optimal individual priors (for a particular
Ft�1) is a normal distributions with mean l* and covari-
ance R*, where
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R� ¼ R�1
1opt þ R�1

2opt

� ��1

l� ¼ l�ðF t�1Þ ¼ R� R�1
1optðĝ1ðF �1Þ � gðF �1ÞÞ

�
þR�1

2optðĝ2ðF �1Þ � gðF �1ÞÞ
�

The cost of the approximation is

Cðq�Þ ¼ EF t�1 ½DKLðpxðxÞjjq�;xðxÞÞ� � EF t�1 ½DKLðpyðyÞjjq�;yðyÞÞ�

¼ 1

2
EF t�1 log

jR�j
jR0j
� TrðR�1

� R0 þ R�1
� l�l

T
� Þ � log

jR� þ Rmj
jR0 þ Rmj

�

þTrððR� þ RmÞ�1ðR0 þ RmÞ þ ðR� þ RmÞ�1l�l
T
� Þ
�

¼ 1

2
EF t�1 log

jR�j
jR0j
� log

jR� þ Rmj
jR0 þ Rmj

�
þ TrððR� þ RmÞ�1ðR0 þ RmÞ � R�1

� R0

þððR� þ RmÞ�1 � R�1
� Þl�lT

� Þ
�

¼ 1

2
log
jR�j
jR0j
� log

jR� þ Rmj
jR0 þ Rmj

�
þTrððR� þ RmÞ�1ðR0 þ RmÞ � R�1

� R0Þ

þTrðððR� þ RmÞ�1 � R�1
� ÞEF t�1 ½l�lT

� �Þ
�

ðA:5Þ
Expressing

EF t�1 ½l�lT
� � ¼ R�ðR�1

1optP 1R
�1
1opt þ R�1

1optP 12R
�1
2opt þ R�1

2optP
T
12R

�1
1opt

þ R�1
2optP 2R

�1
2optÞR�;

the cost may be rewritten as

Cðq�Þ ¼
1

2
log
jR1optj
jR0j

� log
jR1opt þ Rmj
jR0 þ Rmj

Þ
� �

� 1

2
log
jD1j
R2opt

þ TrðR2optD
�1
1 þ D�1

1 C1Þ � d
� �

¼ Cðq1optÞ �
1

2
log
jD1j
R2opt

þ TrðR2optðD1Þ�1

�

þD�1
1 C1Þ � d

�
ðA:6Þ

with

D1 ¼ ðR�1
1opt þ R�1

m Þ
�1 þ R2opt

C1 ¼ ðR�1
1opt þ R�1

m Þ
�1R�1

1optðP 1 � P 12Þ
þ ð�R0 � P T

12ÞR�1
1optðR�1

1opt þ R�1
m Þ
�1

¼ Q1gP 1 � Q1gP 12 þ ðQ1gP 12ÞT þ ðQ1gR0ÞT
� 	

;

where Q1g ¼ ðIþ ðR0 þ P 1ÞR�1
m Þ
�1

The proof of Theorem 2 follows from the observation that

C(q1opt) > C(q*) iff 1
2
ðlog jD1j

R2opt
þ TrðR2optD

�1
1 þ D�1

1 C1 � dÞ > 0.

If C1 is positive semidefinite, then C1 can be written as

C1 ¼
Xd

i¼1

ð
ffiffiffiffi
ki

p
eiÞð

ffiffiffiffi
ki

p
eiÞT

where (ki,ei) are its eigenvalue/eigenvector pairs, and then
Cðq1optÞ � Cðq�Þ ¼
1

2
log
jD1j
jR2optj

þ TrðR2optD
�1
1 þ D�1

1 C1Þ � d
� �

¼ 1

d

Xd

i¼1

1

2
log
jD1j
jR2optj

þ TrðR2optD
�1
1

�

þD�1
1 ð

ffiffiffiffiffiffiffi
dki

p
eiÞð

ffiffiffiffiffiffiffi
dki

p
eiÞT Þ � d

�

¼ 1

d

Xd

i¼1

DKL Nðx; 0;R2optÞkNðx;
ffiffiffiffiffiffiffi
dki

p
ei;D1Þ

� �
> 0
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