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Abstract. An adaptivealgorithm, whose step complexity adjusts to the number
of active processes, is attractive for distributed systems with a highly-variable
number of processes. The cornerstone of many adaptive algorithms is an adaptive
mechanism to collect up-to-date information from all participating processes. To
date, all known collect algorithms either have non-linear step complexity or they
are impractical because of unrealistic memory overhead.
This paper presents new randomized collect algorithms with asymptotically op-
timal O(k) step complexity and polynomial memory overhead only. In addition
we present a new deterministic collect algorithm which beats the best step com-
plexity for previous polynomial-memory algorithms.

1 Introduction and Related Work

To solve certain problems, processes need to collect up-to-date information about the
other participating processes. For example, in a typicalindulgentconsensus algorithm [9,
10], a process needs to announce its preferred decision value and obtain the preferences
of all other processes. Other problems where processes need to collect values are in the
area of atomic snapshots [1, 4, 8], mutual exclusion [2, 3, 5, 6], and renaming [2]. A
simple way that information about other processes can be communicated is to use an
array of registers indexed by process identifiers. An active process can update infor-
mation about itself by writing into its register. A process can collect the information it
wants about other participating processes by reading the entire array of registers. This
takesO(n) steps, wheren is the total number of processes.

When there are only a few participating processes, it is preferable to be able to
collect the required information more quickly. Anadaptivealgorithm is one whose step
complexity is a function of the number of participating processes. Specifically, if it
performs at mostf(k) steps when there arek participating processes, we say that it is
f -adaptive. An algorithm iswait-freeif all processes can complete their operations in a
finite number of steps, regardless of the behavior of the other processes [11].

Several adaptive, wait-free collect algorithms are known [2, 7, 8]. In particular, there
is an algorithm that features an asymptotically optimalO(k)-adaptive collect, but its
memory consumption is exponential in the number of potential processes [8], which
renders the algorithm impractical. Other algorithms have polynomial (in the number
of potential processes) memory complexity, but the collect costsΘ(k2) steps [8, 14].3

3 Moir and Anderson [14] employ a matrix structure to solve the renaming problem. The same
structure can be used to solve the collect problem, following ideas of [8].



The lower bound of Jayanti, Tan and Toueg [12] implies that the step complexity of a
collect algorithm isΩ(k). This raises the question of the existence of a collect algorithm
that features an asymptotically optimalO(k) step complexity and needs polynomial
memory size only.

This paper suggests that randomization can be used to make adaptive collect algo-
rithms more practical, in contrast to known deterministic algorithms with either super-
linear step complexity or unrealistic memory overhead. We present wait-free algorithms
that takeO(k) steps to store and collect, while having polynomial memory overhead
only. The algorithms are randomized, and their step complexity bounds hold “with high
probability” as well as “in expectation.” We believe that randomization may bring a
fresh approach to the design of adaptive shared-memory algorithms.

Analogously to previous approaches, both randomized algorithms usesplittersas
introduced by Moir and Anderson to govern the algorithmic decisions of processes [14].
Our first algorithm (Section 4) uses arandomizedsplitter, and operates on a complete
binary tree of depthc log n, for carefully chosen constantc. A process traverses the
tree of random splitters as in the linear collect algorithm [8]. We prove that with high
probability the process stops at some vertex in this shallow tree; in (the low-probability)
case that a process reaches the leaves of the tree, it falls back on a deterministicbackup
structure. A binary tree of radomized splitters was previously used by Kim and Ander-
son [13] for adaptive mutual exclusion.

Our second algorithm (Section 5) uses standard, deterministic splitters [14]. The
splitters are connected in a random graph (with out-degree two), that is, the randomiza-
tion is in the topology rather than in the actual algorithm executed by the processes. A
process traverses the random graph by accessing the splitters. However, if the process
suspects that it has stayed in the graph for too long, it immediately moves to a deter-
ministic backup structure. We prove that with high probability, the graph traversed by
the processes does not contain a cycle, and the backup structure is not accessed at all.
This relies on the assumption that the adversarial scheduler is not allowed to inspect
this graph.

The crux of the step complexity analysis of both algorithms is a balls-into-bins
game, and it requires a probabilistic lemma estimating the number of balls in bins con-
taining more than one ball.

In addition, Section 3 introduces a new wait-free, deterministic algorithm that im-
proves the trade-off between collect time and memory complexity: Using polynomial
memory only, we achieveo(k2) collect. The randomized algorithms fall back on this
algorithm. For any integerγ > 1, the algorithm provides aSTOREwith O(k) step com-
plexity, a COLLECT with O(k2/((γ − 1) log n)) step complexity andO(nγ+1/((γ −
1) log n)) memory complexity. Interestingly, by choosingγ accordingly, our determin-
istic algorithm achieves the bounds of both previously known algorithms [8, 14].

All new algorithms build on the basic collect algorithm on a binary tree [8]. To
employ this algorithm in a more versatile manner than its original design, we rely on a
new and simplified proof for the linear step complexity ofCOLLECT (Section 3.1).



2 Model
We assume a standard asynchronous shared-memory model of computation. A system
consists ofn processes, p1, . . . , pn, communicating by reading from and writing to
sharedregisters.

Processes are state machines, each with a (possibly infinite) set of local states, which
includes a uniqueinitial state. In eachstep, the process determines which operation to
perform according to its local state, and subsequently changes its local state according
to the value returned by the operation.

A register provides two operations:read, returning the value of the register; and
write, changing the register value to the value of its input. Aconfigurationconsists of
the states of the processes and the values of the registers. In theinitial configuration,
every process is in the initial state and all registers are⊥. A scheduleis a (possibly
infinite) sequencepi1 , pi2 , . . . of process identifiers. Anexecutionconsists of the initial
configuration and a schedule, representing the interleaving of steps by processes.

An implementationof an object of typeX provides for every operationOP of X
a set ofn proceduresF1, . . . , Fn, one for each process. (Typically, the procedures are
the same for all processes.) To executeOP on X, processpi calls procedureFi. The
worst-case number of steps performed by some processpi executing procedureFi is
thestep complexityof implementingOP.

An operationOPi precedesoperationOPj (andOPj followsoperationOPi) in an
executionα, if the call to the procedure ofOPj appears inα after the return from the
procedure ofOPi.

Let α be a finite execution. Processpi is activeduring α if α includes a call of
a procedureFi. The total contentionduring α is the number of all processes that are
active duringα. Let f be a non-decreasing function. An implementation isf -adaptive
to total contention if the step complexity of each of its procedures is bounded from
above byf(k), wherek is the total contention.

A collect algorithmprovides two operations: ASTORE(val) by processpi setsval
to be the latest value forpi. A COLLECT operation returns aview, a partial functionV
from the set of processes to a set of values, whereV (pi) is the latest value stored bypi,
for each processpi. A COLLECT operationcopshould not read from the future or miss
a precedingSTOREoperationsop. Formally, the following validity properties hold for
every processpi:

– If V (pi) = ⊥, then noSTOREoperation bypi precedescop.
– If V (pi) = v 6= ⊥, thenv is the value of aSTOREoperationsopof pi that does not

follow cop, and there is noSTOREoperation bypi that followssopand precedes
cop.

3 Deterministic Adaptive Collect
3.1 The Basic Binary Tree Algorithm

Associated to each vertex in the complete binary tree of depthn − 1 is asplitter [14]:
A process entering a splitter exits with eitherstop, left or right . It is guaranteed that
if a single process enters the splitter, then it obtainsstop, and if two or more processes



enter the splitter, then there are two processes that obtain different values. Thus the set
of processes is “split” into smaller subsets, according to the values obtained.

To perform aSTOREin the algorithm of [8], a process writes its value in its acquired
vertex. In case it has no vertex acquired yet it starts at the root of the tree and moves
down the data structure according to the values obtained in the splitters along the path:
If it receives aleft, it moves to the left child, if it receives aright , it moves to the
right child. A process marks each vertex it accesses by raising a flag associated with
the vertex. We call a vertexmarked, if its flag is raised. A processi acquires a vertex
v, or stops inv, if it receives astop at v’s splitter. It then writes its id intov.id and
its value inv.value. In later invocations ofSTORE, processi immediately writes its
value inv.value, clearly leading to a constant step complexityO(1). This leaves us to
determine the step complexity of the first invocation ofSTORE.

In order to perform aCOLLECT, a process traverses the part of the tree containing
marked vertices in DFS order and collects the values written in the marked vertices.

A complete binary tree of depthn − 1 has2n − 1 vertices, implying the following
lemma.

Lemma 1. The memory complexity isΘ(2n).

Lemma 2 ([8]). Each process writes its id in a vertex with depth at mostk − 1 and no
other process writes its id in the same vertex.

Lemma 3. The step complexity ofCOLLECT at most2k − 1.

Proof. In order to perform a collect, a process traverses the marked part of the tree.
Hence, the step complexity of a collect is equivalent to the number of marked (visited)
vertices.

Let xk be the number of marked vertices in a tree, wherek processes access the
root. The splitter properties imply the following recursive equations:

xk = xi + xk−i−1 + 1, (i ≥ 0) (1)

xk = xi + xk−i + 1, (i > 0) (2)

depending on whether (1) or not (2) a process stops in the splitter.
We prove the lemma by induction; note that the lemma trivially holds fork = 1.

For the induction step, assume the lemma is true forj < k, that is,xj ≤ 2j − 1. Then
we can rewrite Equation (1):

xk ≤ (2i− 1) + (2(k − i− 1)− 1) + 1 ≤ 2k − 1

and Equation (2) becomes:

xk ≤ (2i− 1) + (2(k − i)− 1) + 1 ≤ 2k − 1.

ut

3.2 The Cascaded Trees Algorithm

We present a spectrum of algorithms, each providing a different trade-off between
memory complexity and step complexity. For an arbitrary constantγ > 1, the cas-
caded trees algorithmprovides aSTOREwith O(k) step complexity, aCOLLECT with
O(k2/((γ − 1) log n)) step complexity andO(nγ+1) memory complexity.



The Algorithm The algorithm is performed on a sequence ofn/((γ−1)dlog ne) com-
plete binary splitter trees of depthγ log n, denotedT1, . . . , Tn/((γ−1)dlog ne). Except for
the last tree, each leaf of treeTi has an edge to the root of treeTi+1 (Figure 1).

γ log n
T1

Tn/((γ−1) log n

T2

Fig. 1. Organization of splitters in the cascaded trees algorithm.

To perform aSTORE, a process writes in its acquired vertex. If it has not acquired a
vertex yet, it starts at the root of the first tree and moves down the data structure as in
the binary treeSTORE(described in the previous section). A process that does not stop
at some vertex of treeTi continues to the root of the next tree. Note that both the right
and the left child of a leaf in treeTi, 1 ≤ i ≤ n/((γ − 1)dlog ne) − 1, are the root of
the next tree.

The splitter properties guarantee that no two processes stop at the same vertex.
To perform aCOLLECT, a process traverses the part of treeTi containing marked

vertices in DFS order and collects the values written in the marked vertices. If any of
the leaves of treei are marked, the process also collects in treeTi+1.

Analysis We haven/((γ−1) log n) trees, each of depthγ log n, implying the following
lemma.



Lemma 4. The memory complexity is

O

(
nγ+1

(γ − 1) log n

)
.

Let k be the number of processes that callSTOREat least once andki be the number
of processes that access the root of treeTi.

Lemma 5. At leastmin{ki, (γ − 1)dlog ne} processes stop in some vertex of treeTi,
for everyi, 1 ≤ i ≤ n/(γ − 1) log n.

Proof. Let mi be the number of marked leaves in treeTi. Consider the treeT ′i that is
induced by all the paths from the root to the marked leaves ofTi.

A non-leaf vertexv ∈ T ′i with one marked child inT ′i corresponds to at least one
process that does not continue toTi+1. If only one child ofv is visited inTi, then some
process obtainedstop at v and does not continue. Otherwise, processes reachingv are
split between left and right. Since only one path leads to a leaf, say, the one through the
left child, at least one process (that obtainedright atv) does not access the left child of
v and does not reach a leaf ofTi.

The number of vertices inT ′i with two children is exactlymi−1, since at each such
node, the number of paths to the leaves increases by one.

To count the number of vertices with one child, we estimate the total number of
vertices inT ′i and then subtractmi − 1.

Starting from the leaves, the number of vertices on each preceding level is at least
half the number at the current level. For the number of non-leaf verticesni of treeT ′i ,
we therefore get:

ni ≥ mi

2
+

mi

4
+ · · ·+ mi

2dlog mie︸ ︷︷ ︸
mi−1

+ 1 + · · ·+ 1,︸ ︷︷ ︸
γdlog ne−dlog mie

where the number of ones in the equation follows from the fact that the treeTi hast
depthγ log n and afterdlog mie levels the number of vertices on the next level can be
lower bounded by one. The claim follows sincemi ≤ n. ut
Lemma 6. A process writes its id in a vertex at depth at mostk · γ/(γ − 1).

Proof. If k ≤ (γ − 1)dlog ne, the claim follows from Lemma 2.
If k = m · (γ− 1)dlog ne, for somem > 1, then we know by Lemma 5 that in each

tree, at least(γ−1)dlog ne processes will stop in a vertex. Thus, at most(γ−1)dlog ne
processes access treeTm. By Lemma 2, a process stops in a vertex with total depth at
mostγ log n · (m− 1) + γ log n = k · γ/(γ − 1). ut

Since each splitter requires a constant number of operations, by Lemma 6, the step
complexity of the first invocation ofSTOREis O(γ/(γ−1)k) and all invocations there-
after requireO(1) steps.

By Lemma 3, the time to collect in treeTi is 2ki − 1. By Lemma 6, all processes
stop after at mostk/((γ − 1) log n) trees. This implies the next lemma:



Lemma 7. The step complexity of aCOLLECT is

O

(
k2

(γ − 1) log n

)
.

Remark:The cascaded-trees algorithm provides a spectrum of trade-offs between mem-
ory complexity and step complexity. Choosingγ = 1+1/ log n gives an algorithm with
O(k2) step complexity forCOLLECT andO(n2) memory complexity; this matches the
complexities of the matrix algorithm [14]. Settingγ = n/ log n + 1 yields a single
binary tree of heightn; namely, an algorithm where the step complexity ofCOLLECT is
linear ink but the memory requirements are exponential, as in the algorithm of [8].

4 Adaptive Collect with Randomized Splitters

The next two sections present two algorithms that allow toSTOREandCOLLECT with
O(k) step complexity and polynomial memory complexity. For the first algorithm, we
use a new kind of randomized splitters, arranged in a binary tree of small size. The sec-
ond algorithm uses classical splitters (Section 3.1) which are interconnected at random.

For both algorithms, we need the following lemma.

Lemma 8. Assumek balls are thrown intoN bins, i.e. the bins for all balls are chosen
independently and uniformly at random. LetC denote the number of balls ending up in
bins containing more than one ball. We have

k(k − 1)
N

− k3

2N2
≤ E[C] ≤ k(k − 1)

N
(3)

and

Pr

(
C ≥ t +

k2

N

)
≤ 6k2

t2N
(4)

under the condition thatk ≤ N2/3.

Proof. Let us first prove the bounds (3) on the expected valueE[C]. The random vari-
ableBm denotes the number of bins containing exactlym balls. Further,P is the num-
ber of pairs(i, j) of balls for which balli and ballj end up in the same bin. The variable
T is defined accordingly for triples. Clearly, we have

C =
∞∑

m=2

mBm,

as well as

P =
∞∑

m=2

(
m

2

)
Bm and T =

∞∑
m=3

(
m

3

)
Bm.



We get2P − 3T ≤ C ≤ 2P because

2P − 3T = 2B2 +
∞∑

m=3

m(m− 1)

(
1− m− 2

2

)
Bm

≤ 2B2 + 3B3 ≤ C ≤
∞∑

m=2

m(m− 1)Bm = 2P.

Let pij be the probability that a pair of ballsi andj are in the same bin. Accordingly,
pijl denotes the probability that ballsi, j, andl are in the same bin. We havepij = 1/N
andpijl = 1/N2. Usingpij andpijl, we can compute the expected values ofP andT
as

E[P ] =

(
k

2

)
pij =

k(k − 1)
2N

and

E[T ] =

(
k

3

)
pijl ≤ k3

6N2
.

Using2P − 3T ≤ C ≤ 2P and linearity of expectation, the bounds onE[C], claimed
in (3), follow.

We prove Inequality (4) using the Chebyshev inequality. In order to do so, we need
to know an upper bound on the varianceVar[C] of C. Let Ei be the event that balli is
in a bin with at least two balls. Further,Eij is the event thati andj are together in the
same bin whereasEij denotes the complement, i.e. the event thati andj are in different
bins.Var[C] can be written asVar[C] = E[C2]−E[C]2. The expected value ofC2 can
be computed as follows:

E
[
C2

]
= E




(
k∑

i=1

Xi

)2

 = E




k∑

i=1

X2
i + 2

∑

1≤i<j≤k

XiXj




= E[C] + 2 ·
∑

1≤i<j≤k

Pr(Ei ∩ Ej). (5)

We havePr(Ei ∩ Ej) = Pr(Ei) · Pr(Ej |Ei) and

Pr(Ej |Ei) = Pr(Eij |Ei) + Pr(Ej ∩ Eij |Ei)

=
Pr(Eij)
Pr(Ei)

+ Pr(E2 ∩ E12|E13) (6)

≤ Pr(Eij)
Pr(Ei)

+ Pr

(
k⋃

`=4

E2`

∣∣∣∣ E13

)

=
Pr(Eij)
Pr(Ei)

+ Pr

(
k⋃

`=4

E2`

)
. (7)

For Equation (6), we assume that w.l.o.g., ball1 is in the same bin as ball3 and that ball
2 shares the bin with some balli for i = 4, . . . , k. Equation (7) holds becauseE13 and



E2` are independent for̀≥ 4. The probability that two ballsi andj are in the same bin
is Pr(Eij) = 1/N . Using the bounds (3) onE[C] and linearity of expectation, we get
the following bounds for the probability ofEi:

k − 1
N

− k2

2N2
≤ Pr(Ei) ≤ k − 1

N
. (8)

Therefore, we have
Pr(Eij)
Pr(Ei)

≤
1
N

k−1
N − k2

2N2

≤ 2
k − 1

(9)

where the second inequality of (9) holds fork ≤ N2/3 andN ≥ 5. The second term of
Equation (7) can be bounded as

Pr

(
k⋃

`=4

E2`

)
≤

k∑

`=4

Pr(E2`) =
k − 3

N
. (10)

Combining (7), (8), (9), and (10), we get

Pr(Ei ∩ Ej) ≤ k − 1
N

·
(

2
k − 1

+
k − 3

N

)
≤ 2

N
+

k2

N2
.

Applying Equation (5), we have

E[C2] ≤ k(k − 1)
N

+ 2

(
k

2

)(
2
N

+
k2

N2

)
≤ 3k2

N
+

k4

N2

and therefore

Var[C] ≤ 3k2

N
+

k4

N2
−

(
k(k − 1)

N
− k3

2N2

)2

≤ 3k2

N
+

2k3

N2
+

k5

N3
≤

(k≤N3/2)

6k2

N
.

Using the bounds forE[C] andVar[C], we can now apply Chebyshev in order to bound
the probability of the upper tail ofC:

Pr

(
C ≥ t +

k2

N

)
≤ 6k2

t2N
.

This concludes the proof. ut

4.1 The Algorithm

The algorithm presented in this section providesSTOREandCOLLECT with O(k) step
complexity and polynomial memory complexity. It uses a new kind of splitter that
makes a random choice in order to partition the processes to left and right. The al-
gorithm operates on a complete binary tree of depthc log n (c ≥ 3/2) with randomized
splitters (see Algorithm 1) in the vertices. The algorithm uses the cascaded trees struc-
ture (of Section 3.2) as well as an array of lengthn as deterministic backup structures.



Algorithm 1 Randomized Splitter
1: X = idi

2: if Y then return randomlyright or left
3: Y = true
4: if (X == idi) then
5: returnstop
6: else
7: return randomlyright or left
8: fi

The cascaded trees have height2 log(4
√

n) and there are4
√

n/ log(4
√

n) such trees.
That is, we build the structure with the parameterγ = 2 but only for4

√
n processes.

As in the previous algorithms, a process tries to acquire a vertex by moving down
the data structure according to the values obtained from the randomized splitters. If a
process does not stop at a leaf of the tree, it enters the cascaded trees backup structure. If
a process also fails to stop at a vertex of the first backup structure (the cascaded trees), it
raises a flag, indicating that the array structure is used, and stores its value in the array at
the index corresponding to the process ID. That is, processi stores its value at position
i in the array for1 ≤ i ≤ n.

TheCOLLECT works analogously to the previous algorithms. The marked part (vis-
ited splitters) of the randomized splitter tree is first traversed in DFS order. Then, if
necessary, the first backup structure is traversed as described in Section 3.2. Finally, if
the flag of the array is set, the whole array is read.

4.2 Analysis

Clearly, the tree of randomized splitters needsO(nc) randomized splitters and therefore
O(nc) registers. By Lemma 4, the first backup structure requiresO((

√
n)3/ log

√
n) =

O(n3/2/ log n) registers; the array takesn additional registers, implying the following
lemma.

Lemma 9. The memory complexity isO(nc) for c > 3/2.

Lemma 10. The probability that more than4
√

k processes enter the first backup struc-
ture is at mostk/nc.

Proof. In order to get an upper bound on the probability that at least a certain number
of processes reach a leaf of the randomized splitter tree, we can assume that whenever
at least two processes visit a splitter, none of them stops and all of them are randomly
forwarded to the left or the right child. Assume that we extend the random walk of
stopping processes until they reach a leaf. If we do this, the set of processes which
stops in the tree corresponds to the set of processes which arrive at a leaf that is not
reached by any other processes. On the other hand, all processes which are not alone
when arriving at their leaf have to enter the backup structure. Because the leaves of
the processes are chosen independently and uniformly at random, we can view it as a
‘balls-into-bins’ game and the lemma follows by applying Lemma 8 withN = nc and
t = 3

√
k. Note thatk ≤ (nc)2/3, sincec ≥ 3/2. ut



Lemma 11. The number of marked nodes in the random splitter tree is at most3k in
expectation and no more than7k with probability at least1− 1/2k.

Proof. We partition the marked vertices into vertices where the processes are split (there
are processes going leftand processes going rightor some process stops at the node)
and into vertices where all processes proceed into the same direction. If we contract all
the paths of vertices which do not split the processes to single edges, we obtain a binary
tree where all vertices behave like regular splitters (not all processes go into the same
direction). Hence, by Lemma 3, there are at most2k − 1 of those vertices. At most
k − 1 of them are visited by more than one process. All paths of non-splitting vertices
are preceding one of thosek− 1 splitting vertices. That is, there are at mostk− 1 paths
of consecutive vertices where all processes proceed in the same direction. As there are
at least two processes traversing such paths, in the worst case, the lengthZi of each
pathi is geometrically distributed with probabilityPr(Zi = `) ≤ 1/2`+1. Thus, the
distribution of the total numberX of vertices where processes are not split can be by
estimated by the distribution of the sum ofk− 1 independent geometrically distributed
random variables. LetY :=

∑k−1
i=1 Zi, we have

E[X] ≤ E[Y ] = (k − 1)E[Zi] = k − 1.

and therefore, the total number of marked nodes is at most3k in expectation. For the
tail probability, we have

Pr(X ≥ x) ≤ Pr(Y ≥ x). (11)

The random variableY can be seen as the number of Bernoulli trials with success
probability1/2 until there arek − 1 successes, i.e., the distribution ofY is a negative
binomial distribution. We have

Pr(Y = y) =

(
y − 1
k − 2

)(
1
2

)y

.

Fory ≥ 5k, we have

Pr(Y = y + 1)
Pr(Y = y)

=
y

y − k + 2
· 1

2
≤ 5

8
.

Therefore, fory ≥ 5k, Pr(Y ≥ y) can be upper bounded by a geometric series and we
get

Pr(Y ≥ 5k) ≤ 8
3

Pr(Y = 5k) ≤ 8
3

(
5k

k

)
1

25k
≤ 8

3

(
5ek

25k

)k

≤
(k≥2)

1
2k

.

Adding the2k − 1 vertices where processes are split completes the proof. ut
Lemma 12. The step complexity of the first invocation ofSTORErequiresO(k) steps
in expectation and with high probability.

Proof. A process visits at mostc log n vertices in the randomized structure. With prob-
ability 1− k/nc at most4

√
k processes enter the first backup structure and hence stop



there. Applying Lemma 6, we conclude that with high probability the step complexity
of the first store is linear ink. For the expectation we get

E[STORE] ≤
(

1− k

nc

)
(c log n + 2k) +

k

nc
(c log n + 2 log 4

√
n · 4

√
n

log 4
√

n
+ 1)

= O(k).

ut
Lemma 13. An invocation ofCOLLECT requiresO(k) steps with high probability and
in expectation. In any case, the step complexity ofCOLLECT is O(k2 + k log n).

Proof. LetA be the event that more than7k nodes are marked in the random splitters
tree. By Lemma 11,Pr(A) ≤ 1/2k. Further, letB be the event that more than4

√
k

processes enter the cascaded trees backup structure. By Lemma 10 we havePr(B) ≤
k/nc and thereforePr(A ∪ B) ≤ 1/2k + k/nc. Hence, with probability at least1 −
1/2k − k/nc, the step complexity of a collect is at most7k + (4

√
k)2/ log n = O(k).

We compute the expected step complexity of aCOLLECT operation in each of the
three data structures separately. By linearity of expectation, we can sum up those results
and get the total expected step complexity. LetST , SC , andSA denote the number of
steps of aCOLLECT operation, performed on the randomized splitter tree, the cascaded
trees, and the array, respectively. By Lemma 11, we immediately haveE[ST ] ≤ 3k. For
the cascaded trees structure we get

E[SC ] ≤
(

1− k

nc

)
· (4

√
k)2

log n
+

min (k,4
√

n)∑

j=4
√

k

O

(
j2

log n
· 6k2

(
j −

√
k
)2

n3/2

)

+ O

(
6k2

n(4
√

n−√n)2 · n3/2
· (√n

)3
)

≤ O

(
k

log n
+

min (k,
√

n)√
n

· k2

n
+ k

)
= O(k),

where we applied Lemma 8, Lemma 10 and the fact that the number of nodes in the
cascaded trees structure isO((

√
n)3). For the second backup structure, the linear array,

we getE[SA] ≤ k/nc · n = O(k/
√

n). Summing up, we getE[COLLECT] = O(k).
The worst-case number of vertices marked in the binary tree of randomized split-

ters isO(k log n) because each process can mark at most3/2 log n vertices. The step
complexity in the cascaded-tree structure is at mostk2/ log n by Lemma 7. If the lin-
ear array is accessed, the step complexity isO(n). However, this can only happen if
k > 4

√
n, and therefore the lemma follows. ut

5 Randomized Construction for Deterministic Collect

In this section, we show that instead of having processes, which have access to a random
source, it is also possible to have a pre-computed ramdom splitter structure and keep
the processes themselves deterministic. The random structure upon which theSTORE



and COLLECT is performed is constructed in a pre-processing phase. It is a random
directed graph withn3 vertices and out-degree 2 at all vertices. To each of the vertices,
there is an deterministic splitter (cf. Section 3) associated. That is, we are givenn3

vertices, each of which chooses two random successors among the other vertices. The
two successors of a vertexv are associated withleft andright of v’s splitter. One of the
vertices is singled out and called theroot.

The processes traverse the data structure as described in Section 3.1. Additionally,
each process counts the number of visited splitters. If this number exceedsn, the process
immediately leaves the random data structure and enters the backup structure. In the
backup structure the process will then raise a flag at the root, indicating that the backup
structure has been used, and then traverse the cascaded tree structure, as described in
the Section 3.2.

To perform aCOLLECT a process traverses the part of the random data structure
containing marked vertices by simply visiting the children of a marked vertex in DFS
order. The process furthermore memorizes which vertices it has already accessed and
will not access a vertex twice. Additionally, it checks whether the flag in the backup
structure is raised and, if that is the case, collects the values in the backup structure as
described in the previous section.

To prove the correctness and complexity of the algorithm, we will proceed as in the
previous section. Letk be the number of processes that callSTOREat least once.

We haven3 vertices in the randomized structure andnγ+1/ log n, γ > 1 vertices in
the backup structure. Withγ ≤ 2, we get the following lemma.

Lemma 14. The memory complexity isO(n3).

Lemma 15. The probability that a process enters the backup structure is at mostO(1/n).

Proof. A process traverses the data structure according to the values it is given in the
splitters and leaves the random structure if it accessed more thann vertices. We want
to show that, with high probability, the marked part of the data structure is a tree (that
is, we do not have a cycle) and consequently a process stops with high probability after
at mostk ≤ n steps (see Lemma 2). Taking into account that by Lemma 3 in a tree
at most2k − 1 vertices are being marked, this leaves us to prove that the first2k − 1
visited vertices are distinct and hence do not form a cycle with high probability.

We may model the way how the data structure is traversed by the processes as a
‘balls-into-bins’ game, since the children of a vertex were chosen uniformly at random.
The number of balls is2k − 1 and the number of bins isN = n3. If we let C be the
number of balls ending up in a bin containing more than one ball, by Lemma 8 the
probability thatC is at least one can be estimated as

Pr(C ≥ 1) ≤ 6(2k − 1)2

(1− k2/n3)2n3
≤ O(1/n).

ut

Lemma 16. The step complexity of the first invocation ofSTORErequires expected and
with high probabilityO(k) steps.



Proof. By the previous lemma we know that with high probability the marked subgraph
of our randomized data structure is a tree and hence, by Lemma 2, a store takes at most
k − 1 steps. Since a process makes at mostn steps in the randomized structure and, by
Lemma 6,k steps in the cascaded tree structure, we have:

E[STORE] ≤
(

1− 1
n

)
· k +

1
n
· (n + k) = O(k).

ut
Lemma 17. With high probability and in expectation the step complexity ofCOLLECT

is O(k). In any case, the step complexity is at mostO(n2).

Proof. The collect time in the backup structure is at mostn2/ log n and the processes
leave the randomized structure after at mostn steps. Hence, the step complexity of the
COLLECT will never exceedO(n2).

With probability
(
1− 1

n

)
the marked data structure is a tree and no process enters

the backup structure. Hence, we can apply Lemma 3 and the step complexity of a collect
is with high probability at most(2k−1). If it enters the backup structure, a collect costs
by Lemma 7 at mostk2/ log n and furthermore at mostkn vertices are marked in the
randomized structure. Hence, for the expected step complexity we get

E[COLLECT] ≤
(

1− 1
n

)
· (2k − 1) +

(
1
n

)
·
(

kn +
k2

log n

)
= O(k).

ut

6 Conclusions

We presented new deterministic and randomized adaptive collect algorithms. Table 1
compares the three algorithms presented in this paper with previous work. The algo-
rithms are adaptive to so-calledtotal contention, that is, to the maximum number of
processes that were ever active during the execution. There are other contention def-
initions which are more fine-grained, such as point contention. Thepoint contention

Step Complexity
Algorithm COLLECT STORE Memory Complexity
triangular matrix [14] O(k2) O(k) O(n2) deterministic
tree [8] O(k) O(k) O(2n) deterministic
cascaded trees (Sec. 3.2) O(k2/(ε log n)) O(k/ε) O(n2+ε) deterministic
randomized splitters (Sec. 4) O(k) O(k) O(n3/2) randomized
randomized graph (Sec. 5) O(k) O(k) O(n3) randomized

Table 1.Summary of the complexities achieved by different collect algorithms. Note that the kind
of randomization used in the two randomized algorithms is inherently different. For the algorithm
of Section 4, the processes need access to a random source while the algorithm of Section 5 works
on a random graph which can be precomputed.



during an execution interval is the maximum number of processes that were simultane-
ously active at some point in time during that interval. We believe that some of our new
techniques carry over to algorithms that adapt to point contention [2, 4, 7].

Our paper shows that it is possible to perform aCOLLECT operation inO(k) time
with polynomial memory using randomization. We believe that there is no deterministic
algorithm, using splitters, that achieves linearCOLLECT and polynomial memory. To
determine the best possible step complexity forCOLLECT achievable by a deterministic
algorithm with polynomial memory is an interesting open problem.
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