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ABSTRACT
We introduce a novel measure called ε-four-points condition (ε-
4PC), which assigns a value ε ∈ [0, 1] to every metric space quan-
tifying how close the metric is to a tree metric. Data-sets taken
from real Internet measurements indicate remarkable closeness of
Internet latencies to tree metrics based on this condition. We study
embeddings of ε-4PC metric spaces into trees and prove tight upper
and lower bounds. Specifically, we show that there are constants c1

and c2 such that, (1) every metric (X, d) which satisfies the ε-4PC
can be embedded into a tree with distortion (1 + ε)c1 log |X|, and
(2) for every ε ∈ [0, 1] and any number of nodes, there is a metric
space (X, d) satisfying the ε-4PC that does not embed into a tree
with distortion less than (1 + ε)c2 log |X|. In addition, we prove a
lower bound on approximate distance labelings of ε-4PC metrics,
and give tight bounds for tree embeddings with additive error guar-
antees.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complexity]: Non-
numerical Algorithms and Problems—computations on discrete struc-
tures;
G.2.2 [Discrete Mathematics]: Graph Theory—graph algorithms;
G.2.2 [Discrete Mathematics]: Graph Theory—network problems
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1. INTRODUCTION
Several distributed systems (e.g., peer-to-peer overlays) and In-

ternet applications (e.g., content distribution networks) benefit from
the ability to estimate network latency between end hosts instanta-
neously, without incurring the overhead of recurrent measurements.
Current solutions for latency prediction typically involve embed-
ding the network into a low-dimensional coordinate space (such as
Euclidean) through a small number of latency measurements to a
subset of the end hosts [8, 9, 30, 19, 23, 25, 29].

In this paper, we study a more intuitive and practical alterna-
tive for predicting network latency, namely embedding into a tree
metric. A metric V is a tree metric if there exists a tree with non-
negative weights such that V ⊆ T and dV (u, v) = dT (u, v) for
all u, v ∈ V . Note that the embedded tree might contain additional
Steiner nodes not in V . A tree embedding is more intuitive because
even though the Internet is not exactly a tree, it has an inherent hi-
erarchy in the relationships between end hosts and Internet Service
Providers (ISPs) at different tiers (Tier 1, Tier 2, and Tier 3). It is
more practical because trees have been proposed as a basic primi-
tive in distributed systems for multi-cast communication, locality-
aware clustering, and data aggregation. Moreover, trees provide the
same ability as coordinate-based systems for instantaneous distance
estimation through short and efficient distance labels [13, 24].

The primary contribution of this paper is a novel measure called
the ε-four-points condition (ε-4PC) that quantifies how close a net-
work is to a tree. More precisely, ε-4PC assigns a value ε ∈ [0, 1]
to every metric space, where ε = 0 indicates that the metric space
is an exact tree metric. We present evidence from analysis of real
Internet latency measurements that Internet latencies closely ap-
proximate a tree metric even though the Internet does not exactly
embed into a tree.

The rest of the paper studies the accuracy or distortion of em-
bedding network distances into tree metrics within the context of
ε-4PC. In particular, we prove asymptomatically tight upper and
lower bounds of (1+ε)Θ(log |V |) on the distortion of embedding V
into a tree metric, for all metrics V ∈ ε-4PC. Our proof for the up-
per bound is constructive, and provides an algorithm for generating
a tree embedding.

1.1 Definitions and Summary of Contributions
An embedding of a metric space U into another metric space V

is a mapping between the two metric spaces f : U → V . The
distortion of an embedding f is the worst case ratio of the distance
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between two nodes in the original space and the corresponding dis-
tance in the target space, that is,

dist(f) =
max

u,v∈(V
2) dV (f(u), f(v))/dU (u, v)

min
u,v∈(V

2) dV (f(u), f(v))/dU (u, v)
.

A metric space is a tree metric if and only if the sub-metric in-
duced by any four points is a tree metric [7]. This observation is
generally known as the Four-Points Condition (4PC). It states that
for any four points, out of the three possible matchings, the two
matchings that have the maximum weight have equal weight:

DEFINITION 1.1 (4-Points Condition (4PC) [7]). A metric
space (V, d) satisfies the 4PC if for every four points w, x, y, z ∈ V
that are ordered such that d(w, x)+d(y, z) ≤ d(w, y)+d(x, z) ≤
d(w, z) + d(x, y), d(w, y) + d(x, z) = d(w, z) + d(x, y) holds.

We propose the following relaxation of the 4PC, where the max-
imum weight matching is not very far from the second maximum
weight matching:

DEFINITION 1.2 (ε-4-Points Condition (ε-4PC)). A metric
space (V, d) satisfies the ε-4PC for an arbitrary parameter ε ∈
[0, 1] if for every four points w, x, y, z ∈ V that are ordered such
that d(w, x) + d(y, z) ≤ d(w, y) + d(x, z) ≤ d(w, z) + d(x, y),
the following holds:

d(w, z)+d(x, y) ≤ d(w, y)+d(x, z)+2ε·min
{
d(w, x), d(y, z)

}
.

The parameter ε quantifies the closeness of a metric to a tree
metric. On the one hand, for ε = 0, the ε-4PC is exactly the 4PC
and thus a metric space with ε = 0 is a tree metric. On the other
hand, every metric space satisfies the ε-4PC for ε = 1 since the
ε-4PC for ε = 1 follows from the triangle inequality. Note that the
ε-4PC, just like the 4PC, is easy to verify as the condition only de-
pends on end-to-end distances between arbitrary node pairs, which
can be directly measured in the Internet.

The above definition of a relaxed tree metric is closely related to
a prior relaxation called δ-hyperbolicity proposed by Gromov [14].

DEFINITION 1.3 (δ-hyperbolicity [14]). A metric space
(V, d) is δ-hyperbolic for a constant δ > 0 if for every four points
w, x, y, z ∈ V that are ordered such that d(w, x) + d(y, z) ≤
d(w, y) + d(x, z) ≤ d(w, z) + d(x, y), d(w, z) + d(x, y) ≤
d(w, y) + d(x, z) + δ holds.

Note that in contrast to the hyperbolicity condition, the ε-four-
points condition is invariant to scaling. As a consequence, the ε-
4PC is a condition about the embeddability into tree metrics with
respect to multiplicative distortion whereas hyperbolicity is a con-
dition about the embeddability into tree metrics with respect to ad-
ditive distortion. Indeed if a metric space (V, d) satisfies the ε-4PC,
it can be shown that every four-point submetric of (V, d) has a tree
embedding with distortion at most 1 + 2ε. However, the ε-4PC is
stronger than assuming that every four points of a metric embed
into a tree with distortion 1 + cε for some constant c. As an ex-
ample, consider the shortest path metric (V, d) of a 4-cycle with
edge lengths λ ¿ 1, 1, 1, and 1. The metric ((V, d) has a tree em-
bedding with distortion 1 + λ, however the ε-4PC is only satisfied
for ε = 1. The δ-hyperbolicity condition is equivalent to assuming
that every 4 points embed into a tree metric with additive distortion
O(δ).

In practice, however, the ε-4PC is more useful than the δ-hyperbo-
licity condition as a measure for closeness to a tree-metric. Unlike
the latter, the ε is a bounded parameter whose closeness to 0 has

a strong correlation with how close a metric is to a tree-metric. In
the latter, even metrics with small δ might be very far from a tree-
metric.

We derive the following key upper and lower bounds for embed-
ding metrics with ε-4PC into tree metrics (note that unless explic-
itly stated, all logarithms are to base 2 throughout the paper):

THEOREM 1.1 (Upper bound). There is a constant c1 such
that any n point metric space that satisfies the ε-four-points condi-
tion for a given ε ∈ [0, 1] can be embedded into a tree metric with
a maximum distortion of (1 + ε)c1·log n.

THEOREM 1.2 (Lower bound). There is a constant c2 such
that for any δ ∈ [0, 1] and any n > 1 there exists a metric space
Xδ on n points that satisfies the ε-four-points condition for ε =
(e− 1)/ ln 2 · δ such that every embedding of Xδ into a tree metric
has distortion larger than (1 + ε)c2·log n.

Theorems 1.1 and 1.2 are proven in Sections 2 and 3, respec-
tively. In Section 3, we also show how to extend a distance labeling
lower bound for hyperbolic metric spaces (cf. Definition 1.3) from
[12] to ε-4PC metrics. We prove that every (1+ε)log k-approximate
distance labeling requires labels of at least nΩ(1/k) bits.

In addition, we extend results from [14] and [2] for tree embed-
dings with additive stretch in Section 4. We show that the family of
metrics for which every k-point submetric embeds into a tree met-
ric with additive distortion δ embeds into tree metrics with additive
distortion Θ(δ logk n).

1.2 Treeness of the Internet
Before we derive the upper and lower bounds, we first present

evidence to show that tree embeddings are relevant for latency pre-
diction in the Internet. Indirectly, some experimental evidence for
this has been provided in [28] and [6] where it is argued that em-
beddings of Internet latencies into hyperbolic geometries achieve
better accuracy than embeddings into Euclidean geometries.

Figure 1.2 shows the cumulative distribution (CDF) of ε values
for latencies between random sets of four servers on PlanetLab [5],
a planetary-scale distributed platform; the latencies are based on
the minimum latency over a two month segment, spanning April
and May 2006, of the University of Cincinnati all-pairs latency
dataset [32]. For comparison, we also plot the CDF of ε values for
latencies between random nodes drawn from a spherical coordinate
space, which models a network whose latencies are proportional to
distances on the surface of a sphere.

Figure 1.2 shows that PlanetLab latencies are closer to a tree
metric a large number of quadruplets (75 %) have small ε (< 0.3)
with up to 45 % of quadruplets having ε less than 0.1. Compared
to PlanetLab, distances on the Sphere typically have significantly
higher values of ε. Note that in Figure 1.2, about 5 % of quadruplets
have ε greater than 1, which indicates that triangle inequality is
not always preserved in the Internet. Despite occasional triangle
inequality violations, Figure 1.2 indicates that the Internet is rather
‘tree-like.’

1.3 Related Work
For general metrics, it is known that the cycle requires linear

distortion for embedding into a tree [26, 15]. To overcome this
fact, embedding into a distribution of tree metrics (in fact of ultra-
metrics) has been studied (see [4, 11, 10]). These results imply the
existence of an embedding from a weighted graph into a tree, whose
average distortion over all edges is logarithmic. Recently [1] give
an embedding from a weighted graph into one of its spanning trees,
whose average distortion over all pairs is constant. Nevertheless,
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Figure 1: CDF of ε for nodes on PlanetLab vs. nodes on a
Sphere: Latencies on PlanetLab are much closer to a tree met-
ric than distances on the surface of a sphere indicating that the
Internet is rather ‘tree-like’.

all these results apply for arbitrary metrics and hence are bounded
by the worst case linear distortion lower bounds.

Our result can be cast in a more general “local versus global”
question of metric space embeddings: Given that a property is held
“locally” for any set of 4 points what can be said about the “global”
structure of the metric? In [3], a comprehensive study of this theme
is conducted. One of the author’s results is that if any set of k
points 1+ε embed into a ultra-metric then the whole n point space
(1 + ε)O(logk n) embeds into an ultra-metric. Obtaining similar
results if any k points 1 + ε-embed into a tree-metric is left open.
In this context, our results provide a partial answer since every 4
points of an ε-4PC metric (1 + 2ε)-embed into a tree metric.

The study of δ-hyperbolic metric spaces and their (coarse) em-
bedding was initiated by Gromov in [14]. Recently, distance la-
beling [12] as well as a variety of algorithms [18] for δ-hyperbolic
metric spaces have been studied.

Our upper bound results provide a bound on the distortion for
the family of all ε-4PC metrics for a given ε. A related question is
that of algorithmically finding the best embedding of a fixed metric
in polynomial time. This question is studied by [2], given a metric
whose best embedding into a tree metric obtains additive distortion
ε the authors prove that it is NP hard to obtain a 9ε/8 additive
distortion and give a polynomial time embedding with 3ε additive
distortion.

Kleinberg, Slivkins, and Wexler [17] suggest an alternative ap-
proach to explain why internet latencies can be efficiently embed-
ded. They study new notions of embedding with slack. In [31], a
system inspired by work on low-dimensional metrics aims to obtain
efficient latency prediction.

In Bioinformatics, reconstructing tree metrics using a technique
similar to that of Buneman [7] is often called neighbor-joining.
This technique is applied for the creation of phylogenetic trees
based on DNA or protein sequence data (see [27, 22]).

Generally, there has been comprehensive research on low distor-
tion embeddings (see [20, 21]). Typically the goal is to provide low
distortion embedding of a “complex” metric space into a “simpler”
metric space. Such embeddings have found numerous applications
in approximation algorithms (see [16] for a survey).

Algorithm 1 Basic Tree Construction
1: select arbitrary root node r ∈ V ;
2: return tree T := constructTree(V \ {r}, r);
3:
4: function constructTree(V,r):
5:5: if |V | > 1 then
6: choose p, q ∈ V s.t. (p|q)r = maxu,v∈V {(u|v)r}
7: T := constructTree(V \ {q}, r);
8: add Steiner node tq at distance (q|r)p from p;
9: add node q at distance (p|r)q from tq

10: else
11: T is line segment from v ∈ V to r;
12: fi;
13: return T
14: end constructTree

2. ALGORITHM
In this section, we describe an algorithm that, given a metric

space (V, d) satisfying the ε-4PC for some ε ≤ 1, constructs a
Steiner tree T on which the distances of (V, d) are distorted by a
factor of at most (1 + ε)O(log n) where n = |V |. Our algorithm
can be seen as a variant of the algorithm described by Buneman for
computing the Steiner tree representing a given tree metric [7].

First, observe that the distances among every set of three points
x, y, and z of a metric space can be exactly represented by a
tree by adding one additional Steiner node t. The three nodes
x, y, and z are all connected to t. The distance from x to t is
(d(x, y) + d(x, z)− d(y, z))/2 and the distances from y and z to
t are set similarly. It can be verified that x, y, and z have the cor-
rect distances to each other. Note that the distances between t and
the three nodes are non-negative because of the triangle inequality.
For simplicity, we introduce a notation which was introduced by
Gromov in his work on hyperbolic metric spaces [14].

DEFINITION 2.1 (Gromov Product). Let x, y, z ∈ X be
three points of a metric space (X, d). The Gromov product (x|y)z

is

(x|y)z =
1

2
· (d(x, z) + d(y, z)− d(x, y)

)
.

Hence, the Gromov product (x|y)z is the distance of z to the
Steiner node t on the tree connecting x, y, and z described above.
The basic idea of Buneman’s consruction (and of our algorithm) is
to compute the Steiner nodes from the leaves towards the center of
the tree. One way to do this, is to fix some node r as root and to
compute the Steiner nodes in decreasing distance to r. The distance
of the Steiner node connecting r to the path between two nodes p
and q is (p|q)r . For the first Steiner node t, we therefore have to
find p and q such that (p|q)r is maximized. The nodes p and q then
are two leaves that are directly attached to t. This leads to the basic
tree construction given by Algorithm 1. It selects p and q such that
(p|q)r is maximized, removes q from the metric, constructs the tree
for the resulting (n−1)-point metric, and adds the removed node to
the recursively constructed tree by adding the Steiner node t such
that the distances from t to p, q, and r are (q|r)p, (p|r)q , and (p|q)r

respectively.
We can make the following basic observations about Algorithm

1. All nodes are added to the tree such that they have the correct
distance to the root node r, i.e., T (u, r) = d(u, r) for all u ∈ V . In
addition, if p and q are nodes chosen in Line 6 of some execution
of constructTree(X, r), we also have T (p, q) = d(p, q). Both
statements follow by induction and the way q is added to the tree
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in Line 9. By the maximality condition in Line 6 of Algorithm
1, Steiner nodes are computed in decreasing distance to r, and are
therefore inserted in increasing distance to r. Hence, when Steiner
node tq is added to the tree in Line 11, there is no Steiner node
between tq and p. For a node x that is already in T when node q is
added, we therefore have

T (q, x) = T (p, x)−(q|r)p+(p|r)q = T (p, x)−d(p, r)+d(q, r).
(1)

Equation (1) together with the ε-4PC applied to p, q, r, and x will
be the key to analyze the quality of the tree constructed by Algo-
rithm 1 as shown by Lemma 2.1 below.

For the analysis of the algorithm, let us now assume that we
are given a metric space (V, d) that satisfies the ε-4PC for some
ε ∈ [0, 1]. Let T (u, v) be the distance between u and v on the con-
structed tree and let δ(u, v) := T (u, v) − d(u, v) be the additive
error of the distance between u and v in the tree. Further, we de-
fine a function α : V → V which characterizes the dependencies
between nodes in the tree construction. Let p and q be two nodes
chosen in Line 6 of an execution of constructTree(V, r). Node q
is added to the tree with respect to the position of p in the tree. We
define α(q) = p. For the last two nodes v and r that are added in
Line 11, we set α(v) = α(r) = r. The next lemma bounds the
error from a single execution of constructTree(V, r).

LEMMA 2.1. Let x, y ∈ V be two arbitrary nodes such that in
the construction of the tree T , x is removed from the set V before
y is removed from V . We can bound the error δ(x, y) as follows:

δ(α(x), y)−2εd(x, α(x)) ≤ δ(x, y) ≤ δ(α(x), y)+2εd(x, α(x)).

PROOF. Let us look at a call of constructTree(V, r) where x is
removed from V . The nodes p and q in construcTree(V, r) are
therefore x and α(x). By the maximality condition in Line 6,

d(x, α(x)) + d(r, y) ≤ d(x, r) + d(α(x), y),

d(x, α(x)) + d(r, y) ≤ d(x, y) + d(α(x), r).

Applying ε-four-point condition, we obtain

d(α(x), y)− 2εd(x, α(x)) ≤ d(x, y) + d(α(x), r)− d(x, r)

≤ d(α(x), y) + 2εd(x, α(x)).

(2)

For the tree distances, we get

T (α(x), y) = T (x, y) + T (α(x), r)− T (x, r)

= T (x, y) + d(α(x), r)− d(x, r).
(3)

Remember that the tree T is constructed such that tree distances to
r are correct, that is T (u, r) = d(u, r) for all u ∈ V . Combining
Inequality (2) and Equation (3) now implies the claim.

Let T be the tree rooted at r which is defined by α(v) such
that u is the parent node of v if u = α(v). Let z be the least
common ancestor of two nodes x and y in T . By Lemma 2.1,
the absolute value of the error δ(x, y) between x and y can be
bounded by

∑
v 2εd(v, α(v)) where the sum is over all nodes v

on the paths connecting x and y to z in T . The next lemma brings
the sum of the distances d(v, α(v)) on a path on T into a more
suitable form for our analysis. The lemma states the sum in terms
of values βv for every node v, which are defined as follows: βv :=
(v|r)α(v)/(α(v)|r)v . Hence βv is the ratio of the distances of α(v)
and v to the Steiner node tv respectively.

LEMMA 2.2. Let x, y ∈ V be two nodes such that y is an an-
cestor of x in T . Let x = x1, . . . , xk = y be the path connecting
x and y in T . Let t0 = x and ti = txi for i ≥ 1. We have

k−1∑
i=1

d(xi, xi+1) =

k−1∑
i=1

d(xi, α(xi))

≤
k−1∑
i=1

T (ti−1, ti) ·
(

1 + 2 ·
k−1∑
j=i

j∏

`=i

βx`

)
.

(4)

PROOF. We prove that

T (xi, ti) = T (ti−1, ti) +

i−1∑
j=1

T (tj−1, tj) ·
i−1∏

`=j

βx` (5)

by induction on i. Equation (5) holds for i = 1 because T (x1, t1) =
T (t0, t1). For i > 1, we have

T (xi, ti)

= T (ti−1, ti) + T (xi, ti−1)

= T (ti−1, ti) + βxi−1 · T (xi−1, ti−1)

= T (ti−1, ti)+βxi−1


T (ti−2, ti−1)+

i−2∑
j=1

T (tj−1, tj)

i−2∏

`=j

βx`




= T (ti−1, ti) +

i−1∑
j=1

T (tj−1, tj) ·
i−1∏

`=j

βx` .

The second equation follows by definition of βxi−1 , the third equa-
tion uses the induction hypothesis. Given Equation (5) and using
that d(xi, xi+1) = (1 + βxi)T (xi, ti), we can now prove the
lemma as follows:
k−1∑
i=1

d(xi, xi+1)

=

k−1∑
i=1

(1 + βxi)T (xi, ti)

=

k−1∑
i=1

(1 + βxi) ·

T (ti−1, ti) +

i−1∑
j=1

T (tj−1, tj) ·
i−1∏

`=j

βx`




=

k−1∑
i=1

T (ti−1, ti) ·
k−1∑
j=i

(1 + βxj ) ·
k−1∏

`=j+1

βx`

≤
k−1∑
i=1

T (ti−1, ti) ·
(

1 + 2 ·
k−1∑
j=i

j∏

`=i

βx`

)
.

From Lemmas 2.1 and 2.2, we see that the error δ(x, y) between
two nodes x and y depends on the values of βv for all the nodes
on the path connecting x and y in T as well as on the number of
nodes on this path. We have some flexibility which allows us to
play with the values of βv as well as the length of the paths on
T . In Line 7 of Algorithm 1, we remove q from the node set and
recursively construct a tree on the remaining nodes. The Gromov
product (p|q)r is symmetric in p and q. We could therefore change
the roles of p and q in our algorithm and recursively construct the
tree for V \ {p} instead of V \ {q}. Like this, it is possible to
guarantee that all βv ≤ 1 by always removing the node from V
which is farther away from r. It can be shown that by doing this,
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Algorithm 2 Low Distortion Tree Construction
1: select arbitrary root node r ∈ V ;
2: for all v ∈ V do nv := 1 od;
3: return tree T := constructTree(V \ {r}, r);
4:
5: function constructTree(V,r):
6:6: if |V | > 3 then
7: choose p, q ∈ V s.t. (p|q)r = maxu,v∈V {(u|v)r} and(

(q|r)p

(p|r)q
≤ 1

λ

)
∨

(
(q|r)p

(p|r)q
< λ ∧ np ≥ nq

)
;

8: np := np + nq;
9: // α(q) := p; βq := (q|r)p/(p|r)q;

10: T := constructTree(V \ {q}, r);
11: add Steiner node tq at distance (q|r)p from p;
12: add node q at distance (p|r)q from tq

13: else
14: T is line segment from v ∈ V to r;
15: // α(v) := α(r) := r; βv := βr := 0
16: fi;
17: return T
18: end constructTree

the resulting tree has distortion (1 + ε)Θ(n). If we always remove
the node which belongs to the smaller subtree in the final tree, it
is also possible to reduce path lengths on T to O(log n). If we
could guarantee that paths on T have length O(log n) and that all
βv ≤ 1, the resulting tree would have distortion (1 + ε)O(log n).
However, it is not possible to have βv ≤ 1 and short paths on T at
the same time.

Our solution is to introduce a parameter λ > 1. If p and q are
such that we either get βp ≤ 1/λ or βq ≤ 1/λ, we remove the node
farther away from r. The sum of Lemma 2.2 then behaves like a
geometric series and we do not care about the number of terms (i.e.,
the path lengths in T ). If we cannot get βp ≤ 1/λ or βq ≤ 1/λ, we
remove the node belonging to the smaller subtree and try to keep T
as balanced as possible. The details of this are given by Algorithm
2. The following lemma formally states the role of the parameter
λ.

LEMMA 2.3. Let z be the least common ancestor of two nodes
x and y in T and let x = x1, . . . , xkx = z and y = y1, . . . , yky =
z be the paths in T connecting x and y with z, respectively. At
most log n of the values βxi and at most log n of the values βyj

are larger than 1/λ. All β-values are less than λ.

PROOF. Let us look at an execution of constructTree(V, r). In
order to have βq > 1/λ, we need that np ≥ nq . Before the recur-
sive call of constructTree, np is set to np + nq . Thus, in the end,
np = nα(q) ≥ 2nq . Because for all p, np ≤ n, there are at most
log n nodes u with βu > 1/λ on the path from q to r in the tree T .

By combining Lemmas 2.1–2.3, we can now bound δ(x, y) from
below as shown by Lemma 2.4.

LEMMA 2.4. The error δ(x, y) between the tree distance T (x, y)
and d(x, y) is bounded from below by

δ(x, y) = T (x, y)− d(x, y)

≥ −4 · ε · λlog n ·
(

log n +
λ

λ− 1

)
· T (x, y).

PROOF. Let z be the least common ancestor of x and y in T and
let x = x1, . . . , xkx = z and y = y1, . . . , yky = z be the paths in

T connecting x and y with z, respectively. Lemma 2.1 implies that

δ(x, y) ≥ −2ε ·



kx−1∑
i=1

d(xi, xi+1) +

ky−1∑
j=1

d(yj , yj+1)


 .

We can bound the two sums in the above inequality by using Lemma
2.2. By Lemma 2.3, the number of βxi that are larger than 1/λ is
at most log n. Applying this and the fact that βu ≤ λ for all nodes
u, we obtain the following estimate for the first sum of the above
inequality where t0 = x1 and ti = txi for i ≥ 1:

kx−1∑
i=1

d(xi, xi+1) ≤
k−1∑
i=1

T (ti−1, ti) ·
(

1 + 2 ·
k−1∑
j=i

j∏

`=i

βx`

)

≤
k−1∑
i=1

T (ti−1, ti) · 2λlog n

(
log n +

1

1− 1
λ

)

The second of the distances d(yj , yj+1) can be bounded analo-
gously and the lemma now follows because we can write the tree
distance T (x, y) as follows where ti is defined as before and s0 =
y and sj = tyj for j ≥ 1:

T (x, y) = T (x, txkx−1) + T (txkx−1 , tyky−1) + T (tyky−1 , y)

=

kx−1∑
i=1

T (ti−1, ti) + T (txkx−1 , tyky−1)

+

ky−1∑
j=1

T (sj−1, sj).

For ε ¿ 1/ log n, we can obtain a useful upper bound on δ(x, y)
in the same way as the lower bound given by Lemma 2.4. For larger
ε, bounding δ(x, y) from above is less straight-forward, but we can
also do it as shown by the next lemma.

LEMMA 2.5. For λ ≥ (1 + 2ε)/(1− 2ε), the error δ(x, y) be-
tween the tree distance T (x, y) and d(x, y) is bounded from above
by

δ(x, y) = T (x, y)− d(x, y)

≤ 4ε · Aλ · (λ + 2(1 + λ)ε)2 log n−1 · log n

(1− εAλ)2 log n
· d(x, y)

for Aλ = 2λ2

λ−1
.

PROOF. As before, let z be the least common ancestor of x and
y in T and let x = x1, . . . , xkx = z and y = y1, . . . , yky = z be
the paths in T connecting x and y with z respectively. Let K be the
number of values in {βx1 , . . . , βxkx−1} ∪ {βy1 , . . . , βyky−1} that
are larger than 1/λ. We prove the following inequality for K ≥ 1
by induction on K:

δ(x, y) =≤ 2ε · Aλ · (λ + 2(1 + λ)ε)K−1 ·K
(1− 2εAλ)K

· d(x, y) (6)

The lemma then follows by Lemma 2.3. Let us first prove Inequal-
ity (6) directly for K = 1. For a set of β-values {β1, . . . , βk}, we
have

(
1 + 2 ·

k−1∑
j=i

j∏

`=i

β`

)
≤ 2λ

1− 1/λ
= Aλ (7)

if at most one βi ∈ [1/λ, λ] and all other β-values βi ≤ 1/λ. We
can then bound δ(x, y) by using the same techniques as in the proof
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of Lemma 2.4, and obtain

T (x, y)− d(x, y) ≤ 2εAλ · T (x, y)

=⇒ δ(x, y) ≤ 2ε · Aλ

1− 2εAλ
· d(x, y)

for K = 1. Note that the above Inequality also holds if K = 0 and
therefore the lemma also holds in this case.

For the induction hypothesis, let u be the first node such that
u ∈ {x1, . . . , xkx−1} ∪ {y1, . . . , yky−1} with βu > 1/λ that is
removed from V when constructing the tree T . W.l.o.g., we can
assume that u is on the path from x to z. Let us therefore assume
that u = xµ. Let yν be the node closest to y of the nodes yi

remaining in V when xµ is removed. By using Lemma 2.1, we can
now bound δ(x, y) as follows:

δ(x, y) ≤ δ(xµ+1, yν)+2ε·
(

µ∑
i=1

d(xi, xi+1) +

ν−1∑
j=1

d(yj , yj+1)

)
.

We can use the induction hypothesis to bound δ(xµ, yν) and Lemma
2.2 to bound the sums over d(xi, xi+1) and d(yj , yj+1). Setting
t0 = x, ti = txi for i ≥ 1, s0 = y and si = tyi for i ≥ 1 gives

δ(x, y)

≤ 2ε · Aλ · (λ + 2(1 + λ)ε)K−2 · (K − 1)

(1− 2εAλ)K−1
· d(xµ+1, yν)

+2ε·
µ∑

i=1

T (ti−1, ti)·
(

1 + 2 ·
µ∑

j=i

j∏

`=i

βx`

)

+2ε·
ν−1∑
i=1

T (si−1, si)·
(

1 + 2 ·
ν−1∑
j=i

j∏

`=i

βy`

)

≤ 2ε · Aλ · (λ + 2(1 + λ)ε)K−2 · (K − 1)

(1− 2εAλ)K−1
· d(xµ+1, yν)

+2εAλ · T (x, y). (8)

In order to obtain something useful from Inequality 8, we need to
bound d(xµ+1, yν). Consider an execution of constructTree(V, r)
where q is removed from V , let p = α(q), and let w be a node in
V when q is removed. By using the ε-4PC, we get the following
bound on d(p, w):

d(p, w) ≤ d(q, w) + d(p, r)− d(q, r) + 2ε · d(p, q)

= d(q, w) + (βq − 1) · (p|r)q + 2ε(1 + βq) · (p|r)q.

By the maximality condition in Line 7 of the algorithm, we have

d(p, r) + d(q, r)− d(p, q) ≥ d(w, r) + d(q, r)− d(w, q)

and therefore

d(q, w)

≥ (w|r)q

=
1

2
· (d(w, q) + d(q, r)− d(w, r)

)

≥ 1

2
· (d(p, q) + d(q, r)− d(p, r)

)

= (p|r)q.

We can therefore bound d(p, w) as

d(p, w) ≤ (
βq + 2ε(1 + βq)

) · d(q, w).

For βq ≤ 1/λ, we get

d(p, w) ≤
[

1

λ
+ 2ε ·

(
1 +

1

λ

)]
· d(q, w)

≤
[
1− 2ε

1 + 2ε
+ 2ε · 2

1 + 2ε

]
· d(q, w) ≤ d(q, w)

since we assume that λ ≥ (1 + 2ε)/(1− 2ε). For β ≤ λ, we have
d(p, w) ≤ (λ + 2ε(1 + λ)) · d(q, w). Because all βxi and βyj for
i < µ and j < ν are less than 1/λ, we have d(xµ, yν) ≤ d(x, y)
and therefore d(xµ+1, yν) ≤ (λ + 2(1 + λ)ε)d(x, y). Plugging
this into Inequality (8) yields

(1− 2εAλ) · T (x, y) ≤(
1 + 2ε · Aλ · (λ + 2(1 + λ)ε)K−1 · (K − 1)

(1− 2εAλ)K−1

)
· d(x, y)

and therefore

T (x, y) ≤(
1 + 2ε · Aλ + Aλ(λ + 2(1 + λ)ε)K−1(K − 1)

(1− 2εAλ)K

)
· d(x, y).

This concludes the proof.

Based on Lemmas 2.4 and 2.5, it is now possible to prove the
main theorem of this section.

THEOREM 2.6. Let (V, d) be a metric space that satisfies the
ε-4PC for a given ε ∈ [0, 1]. There is a constant κ, such that
it is possible to embed (V, d) into a tree with distortion at most
(1 + ε)κ·log n where n = |V |.

PROOF. We set

λ = max

{
1 +

1

log n
,
1 + 2ε

1− 2ε

}
.

If ε < 1/(2Aλ)−ξ for a constant ξ, the theorem then follows from
Lemmas 2.4 and 2.5. For larger ε, the lemma follows because any
metric space can be embedded into a tree with distortion n.

3. LOWER BOUNDS
In this section, we show that the upper bound given by Theorem

2.6 is essentially tight. We also extend a lower bound from [12] for
distance labelings of hyperbolic metric spaces to metric spaces sat-
isfying the ε-4PC. Both lower bounds are based on a construction
related to the pyramid construction for graphs introduced in [12].
In analogy, we call our construction the pyramid of a metric space:

DEFINITION 3.1. Let X = (X, d) be a metric space. For a
parameter δ ∈ [0, 1], the pyramid Pδ(X ) of X is a space (X, d′)
with a new distance function d′(x, y) := (1+δ)log d(x,y) for x, y ∈
X and d′(x, x) := 0 for x ∈ X .

We want to show that for every metric X and every δ ∈ [0, 1],
the pyramid Pδ(X ) is a metric space that satisfies the ε-4PC for
ε ∈ O(δ). In order to prove this, we need the following lemma.

LEMMA 3.1. For A ≥ B ≥ 0 and 0 ≤ δ ≤ 1, we have

(1 + δ)log(A+B) − (1 + δ)log A ≤ e− 1

ln 2
· δ · (1 + δ)log B .
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PROOF. Let λ := B/A ≤ 1. We then get

(1 + δ)log(A+B) − (1 + δ)log A

= (1 + δ)log A ·
[
(1 + δ)log(1+λ) − 1

]

≤ (1 + δ)log A ·
[
eδ log(1+λ) − 1

]

≤ (1 + δ)log A · (e− 1)δ log(1 + λ)

≤ e− 1

ln 2
· δ · (1 + δ)log λ · (1 + δ)log A

=
e− 1

ln 2
· δ · (1 + δ)log B .

The second inequality uses the fact that ex − 1 ≤ (e − 1)x for
0 ≤ x ≤ 1, the third inequality follows because

log(1 + λ) ≤ λ

ln 2
≤ λlog(1+δ)

ln 2
=

(1 + δ)log λ

ln 2
.

Note that 0 ≤ λ ≤ 1 and 0 ≤ log(1 + δ) ≤ 1.

LEMMA 3.2. For every δ ∈ [0, 1] and every metric space X =
(X, d), the pyramid Pδ(X ) = (X, d′) is a metric space that satis-
fies the ε-4PC for ε = (e− 1)/ ln 2 · δ

PROOF. If F : R+ → R+ is a non-decreasing, concave and
F (0) = 0 then for any metric space (X, d), the metric trans-
form (X, F ◦ d) is also a metric space (Where (F ◦ d)(u, v) =
F (d(u, v))). Therefore Pδ(X ) is a metric space since it is the met-
ric transform induced by F (r) = 0 if r = 0 and F (r) = rlog(1+δ)

otherwise. If is easy to check that F is indeed non-decreasing and
concave.

To prove that Pδ(X ) satisfies the ε-4PC consider four points
w, x, y, z ∈ X . W.l.o.g., assume that

d′(w, x)+d′(y, z)≥max
{
d′(w, y)+d′(x, z), d′(w, z)+d′(x, y)

}

and that

d′(x, z) = min
{
d′(w, y), d′(x, z), d′(w, z), d′(x, y)

}
. (9)

We have

d′(w, x)+d′(y, z)−max
{
d′(w, y)+d′(x, z), d′(w, z)+d′(x, y)

}

≤ d′(w, x) + d′(y, z)− (
d′(w, z) + d′(x, y)

)

= (1 + δ)log d(w,x) + (1 + δ)log d(y,z)

−
(
(1 + δ)log d(w,z) + (1 + δ)log d(x,y)

)

≤ e− 1

ln 2
· δ ·

(
(1 + δ)log(d(w,x)−d(w,z))

+ (1 + δ)log(d(y,z)−d(x,y))
)

≤ 2 · e− 1

ln 2
· δ · (1 + δ)log d(x,z)

= 2 · e− 1

ln 2
· δ · d′(x, z).

The second inequality follows by the triangle inequality in the met-
ric space X and by Lemma 3.1. Note that we need Assumption (9)
to be able to apply Lemma 3.1.

THEOREM 3.3. Consider the metric X = (X, d) with X =
{x1, . . . , xn} and d(xi, xj) = |j − i|. There is a constant κ such
that every tree embedding of Pδ(X ) has distortion larger than (1+
ε)κ·log n for ε = (e− 1)/ ln 2 · δ.

PROOF. For the sake of contradiction assume that there is a tree
T into which Pδ(X ) embeds with distortion at most (1+ ε)κ·log n.
Let T (xi, xj) be the distance between xi and xj on T . W.l.o.g.,
we can assume that the distances on T dominate the distances in
Pδ(X ), that is for all 1 ≤ i < j ≤ n,

d(xi, xj) ≤ T (xi, xj) ≤ (1 + ε)κ·log n · d(xi, xj)

≤ (1 + δ)κ′·log n · d(xi, xj) for κ′ =
e− 1

ln 2
· κ.

(10)

Let r be a node (r can be a Steiner node) that splits T into two
subtrees T1 and T2. We call i a switching index with respect to T1

and T2 if xi ∈ Tθ and xi+1 ∈ T1−θ for θ ∈ {0, 1}. Assume that
there are two switching indices i and j with j − i ≥ nκ′ + 1. The
tree distance between two nodes u ∈ T1 and v ∈ T2 is T (u, v) =
T (u, r) + T (v, r). For two nodes u and v in the same subtree, we
have T (u, v) ≤ T (u, r) + T (v, r). If xi+1 and xj are in the same
subtree, we obtain a contradiction to Inequality (10) because

T (xi+1, r) + T (xj , r) + T (xi, r) + T (xj+1, r)

≥ T (xi+1, xj) + T (xi, xj+1)

≥ d(xi+1, xj) + d(xi, xj+1) > 2(1 + δ)κ′ log n

and

T (xi, r) + T (xi+1, r) + T (xj , r) + T (xj+1, r)

= T (xi, xi+1) + T (xj , xj+1)

≤ (1 + δ)κ′ log n · (d(xi, xi+1) + d(xj , xj+1)
)

= 2(1 + δ)κ′ log n.

In the other case where xi and xj are in the same subtree, a con-
tradiction can be obtained analogously. We can therefore assume
that there is no split into two subtrees with switching indices that
are nκ′ + 1 apart.

In the following, we assume for simplicity that all points xi ∈ X
correspond to leaves of T and that all inner nodes of T are Steiner
nodes of degree 3. By allowing edges of length 0, we can bring any
tree to a tree of this form without changing the distances between
any two nodes xi, xj ∈ X . We consider the size of a subtree of
T to be the number of leaves in the subtree. We first prove that no
Steiner node partitions the T into three large subtrees. In particular,
if T1, T2, and T3 are the three subtrees of a given Steiner node t,
the size of the smallest of the three subtrees is less than nκ′ + 1.
Let us call subtrees with at least nκ′ + 1 nodes heavy and subtrees
with less than nκ′ + 1 nodes light. For the sake of contradiction
assume that all three subtrees of t are heavy. Let i be the smallest
index such that xi and xi+1 belong to two different subtrees and let
j be the largest index such that xj and xj+1 belong to two different
subtrees. If all three subtrees are heavy, we have j − i ≥ nκ′ + 1.
Clearly, two of the four nodes xi, xi+1, xj , and xj+1 belong to the
same subtree. W.l.o.g., let us assume it is T1. Indices i and j then
are switching indices with respect to the subtrees T1 and T2 ∪ T3

and we have a contradiction.
Let us now have a look at all Steiner nodes which have two heavy

subtrees and show that all these nodes lie on a single path P . Con-
sider three such nodes u, v, and w and assume that they do not lie
on a path. Then there is a node t that splits T into three subtrees
Tu, Tv , and Tw containing nodes u, v, and w, respectively. How-
ever, since u, v, and w all have two heavy subtrees, Tu, Tv , and Tw

are all heavy. But, this is not possible because t can only have two
heavy subtrees.

All nodes that are not on the path P are either in the light sub-
trees of the nodes of P or in one of the two heavy subtrees of size
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less than 2(nκ′+1) hanging from the end nodes of P . We now par-
tition P into k segments P1, . . . , Pk such that the combined size of
the subtrees of each segment is between n2κ′ + 1 and 2(n2κ′ + 1).
Let us for s ∈ [k − 1] be the last node of P belonging to seg-
ment Ps, that is, node us splits T into segments {P1, . . . , Ps} and
{Ps+1, . . . , Pk}.

The next step is to get a lower bound on the tree distance between
nodes us and us+1 separating consecutive segments. We partition
the nodes xi into three sets A, B, and C such that A contains all
nodes in segments {P1, . . . , Ps−1}, B contains the nodes of seg-
ment Ps, and C contains the nodes in segments {Ps+1, . . . , Pk}.
Let i be the smallest index for which xi and xi+1 belong to differ-
ent sets. and let j be the largest index for which xj and xj+1 belong
to different sets. Because all sets have size at least n2κ′+1, we have
j− i ≥ n2κ′ +1. Two of the nodes belong to the same subset. It is
not possible that two nodes belong to A because in that case i and j
are switching indices with respect to the partition (A, B ∪C) of T
at node us. Similarly, it is not possible that two nodes belong to C
and we therefore have two nodes in B, one node in A, and one node
in C. Assume that xi ∈ A, xi+1, xj ∈ B, and xj+1 ∈ C. All other
cases are analogous. We know that T (xi, xi+1) ≤ (1 + δ)κ′ log n.
Because us lies on the path connecting xi and xi+1, one of the dis-
tances T (us, xi) and T (us, xi+1) is at most half of T (xi, xi+1).
Assume that T (us, xi+1) ≤ (1 + δ)κ′ log n/2 and similarly that
T (us+1, xj) ≤ (1 + δ)κ′ log n/2. We then have

(1 + δ)2κ′ log n ≤ d(xi+1, xj) ≤ T (xi+1, xj)

= T (xi+1, us) + T (us, us+1) + T (us+1, xj)

≤ T (us, us+1) + (1 + δ)κ′ log n.

We therefore obtain T (us, us+1) ≥ (1+δ)2κ′ log n−(1+δ)κ′ log n.
There is a node x of the first segment P1 for which T (x, u1) ≥ 1/2
and there is a node y of the last segment Pk for which T (y, uk−1) ≥
1/2. We have

T (x, y) = T (x, u1) +

k−2∑
s=1

T (us, us+1) + T (uk−1, y)

≥ 1 + (k − 2) ·
[
(1 + δ)2κ′ log n − (1 + δ)κ′ log n

]
.

The distortion of T therefore is at least

max
x,y∈X

T (x, y)

d(x, y)
≥

1 + (k − 2)
[
(1 + δ)2κ′ log n − (1 + δ)κ′ log n

]

(1 + δ)log n
.

(11)
In order to get a contradiction, we want the right-hand side of In-
equality (11) to be larger than (1 + δ)κ′ log n. To make the right-
hand side large enough, we need

k − 2 >
1

(1 + δ)κ′ ·
(1 + δ)(1+κ′) log n − 1

(1 + δ)κ′ log n − 1
.

By the way, we partition P into segments, we have k−2 > (1/2−
o(1))n1−2κ′ . We further get

(1 + δ)(1+κ′) log n − 1

(1 + δ)κ′ log n − 1

=

b1/κ′c∑
i=0

(1 + δ)(1−iκ′) log n +
(1 + δ)(1−κ′b1/κ′c) log n − 1

(1 + δ)κ′ log n − 1

<

(
2 +

1

κ′

)
· (1 + δ)log n.

We therefore obtain a contradiction to Inequality (10) if

(
1

2
− o(1)

)
n1−2κ′ ≥

(
2 +

1

κ′

)
· (1 + δ)(1−κ′) log n,

which is true for κ′ ≤ 1−log(1+δ)
2−log(1+δ)

− o(1). This is a constant for all
values of δ for which ε < 1, that is, for δ < ln 2/(e− 1).

Since ε-4PC is stronger than assuming that every 4 points of a
metric embed into a tree with distortion 1 + O(ε), Theorem 3.3
implies that there is a metric space that cannot be embedded into
a tree with distortion (1 + ε)κ log n for some constant κ although
every 4-point submetric has a (1 + ε)-distortion tree embedding.
This can be generalized to a condition on k points.

THEOREM 3.4. There is a constant κ > 0 such that for every
ε ∈ [0, 1] there is a metric space Xε = (X, d) such that every k
points ofXε embeds into a tree metric with distortion 1+ε but such
that embeddingXε into a tree requires distortion (1+ε)κ logk(|X|).

PROOF. LetX = (X, d′) be the shortest path metric of a path of
length n. We consider the pyramid Pcδ/ logk

(X ) for some constant
c. The metricPcδ/ logk

(X ) satisfies ε-4PC for ε = c·(e−1)/ ln 2·
δ/ log k. For suitable choice of c, every k points of Pcδ/ logk

(X )
can therefore be embedded into a tree with distortion 1+ ε by The-
orem 2.6. The proof now follows from Theorem 3.3.

A similar result to Theorem 3.4 has been proven in [3]. There
it has been shown that there is a metric space for which every tree
embedding has distortion Ω((1 + ε)dlogk ne) but where every k-
point submetric embeds into a tree metric with distortion 1 + ε.
The statement of Theorem 3.4 is strictly stronger than the result of
[3] if ε ≤ d/ log n for some constant d.

To conclude our section on lower bounds, we show how the tech-
niques developed in this section can be used to extend a distance
labeling lower bound for hyperblic metrics described in [12]. In
[12], it is shown by Gavoille and Ly that there is a family of δ-
hyperbolic metrics where every log(2k)-multiplicative distance la-
beling scheme requires labels of Ω(n1/k) bits. They define the
pyramid graph G of an unweighted graph G and show that G is hy-
perbolic. The family for the distance labeling lower bound is then
obtained by considering the pyramids of all connected subgraphs
of Gn,k where Gn,k is a graph with n nodes, girth k, and maximal
number of edges. By applying our pyramid construction from Def-
inition 3.1 to the shortest path metrics of all connected subgraphs
of Gn,k, we obtain the following lower bound by using the same
argumentation as in [12].

THEOREM 3.5. For all ε ∈ [0, 1], n ≥ 1, and k ≥ 1, there is
a family of metrics satisfying ε-4PC for which every (1 + ε)log k-
approximate distance labeling scheme needs labels of nΩ(1/k) bits.
In particular, every distance labeling with polylogarithmic labels
has stretch (1 + ε)Ω(log log n).

Since trees have exact distance labelings with labels of size
O(log2 n) [13, 24], Theorem 3.5 in particular implies that even
by using a polylogarithmic number of trees, ε-4PC metrics cannot
be approximated better than by a factor of (1 + ε)Ω(log log n).
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4. TREE EMBEDDINGS WITH
ADDITIVE DISTORTION

In his seminal work on hyperbolic metric spaces, Gromov shows
the following result:

LEMMA 4.1. [14] Let (X, d) be a metric and let r ∈ X be an
arbitrary point of this metric. If for every sequence x = x1, . . . , xt =
y of points xi ∈ X \ {r}, (x|y)r ≥ min1≤i<t(xi|xi+1)r − ∆,
(X, d) embeds into a tree metric with additive distortion at most
2∆.

By the definition of the Gromov product, we also directly get that
(x|y)r ≥ min1≤i<t(xi|xi+1)r−6∆ if a given metric embeds into
a tree with additive distortion 2∆. Gromov’s tree embedding thus
gives a 6-approximation for the problem of finding a tree embed-
ding with minimum additive distortion. With a more careful analy-
sis, it is even possible to show that (x|y)r ≥ min1≤i<t(xi|xi+1)r−
3∆ if the given metric embeds into a tree with additive distortion
2∆. We therefore even obtain a 3-approximation for the minimum
additive distortion problem. Independently, a 3-approximation for
the problem of minimizing the additive distortion of a tree embed-
ding has also been described in [2].

The results from [14] and [2] allow us to extend our results to
tree embeddings with additive distortion guarantees. The results
described above directly lead to k-points condition for additive dis-
tortion.

THEOREM 4.2. Every k-point submetric of a metric space (X, d)
embeds into a tree with additive distortion O(δ) if and only if for
every r ∈ X and for every sequence x = x1, . . . , xt = y of length
t < k, (x|y)r ≥ min1≤i<t(xi|xi+1)r −O(δ).

For k = 4, the k-points condition of Theorem 4.2 is equivalent
to the δ-hyperbolicity condition (Definition 1.3). In [14] it is shown
that for δ-hyperbolic metrics (X, d), (x|y)r ≥ min1≤i<t(xi|xi+1)r−
δ · dlog |X|e for every r ∈ X and every sequence of points xi ∈
X \ {r}. The argument used in [14] can be extended to the k-
points condition given by Theorem 4.2 and we obtain the following
theorem.

THEOREM 4.3. If every k-point submetric of a metric space
(X, d) embeds into a tree metric with additive distortion δ, then
the metric (X, d) embeds into a tree metric with additive distortion
O(δ · logk |X|).

By using a slight variation of the pyramid construction of Def-
inition 3.1, we can also extend the lower bound of Section 3 to a
similar statement about additive distortion.

THEOREM 4.4. There is a metric space (X, d) such that every
submetric induced by k point of (X, d) embeds into a tree metric
with additive distortion δ but where every tree embedding of (X, d)
requires additive distortion Ω(δ · logk |X|).
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