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Abstract—In an effort to better understand connectivity and in the literature [1], [6], [12], [11]. The problem is, howay
capacity in wireless networks, the log-normal shadowing rdio  that the increase in transmission range does not correspond
propagation model is used to capture radio irregularities ad ob- to any real phenomenon [3]. Intuitively speaking, incregsi

stacles in the transmission path. Existing results indicat that log- - : . . .
normal shadowing results in higher connectivity and intererence the irregularity by adding obstructions to the transmisgiath

levels as shadowing (i.e., the radio irregularity) increass. In this ~ Should not generally improve the perceived signal quality.
paper we demonstrate that such a behavior is mainly caused by  The main objective of this paper is therefore to obtain an un-
an unnatural bias of the log-normal shadowing radio propagéion  piased view on the effects of radio irregularity on connaigti
model that results in a larger transmission range as shadowd 54 jnterference in a wireless network. We propose a method

increases. To avoid this effect, we analyze connectivity dn to eliminate the bias introduced by the | | shadawi
interference under log-normal shadowing using a normalizéon O €liMinate the bias introduced Dy the log-normal shadgwin

that compensates for the enlarged radio transmission range Model. This allows us to capture the intrinsic properties of
Our analysis shows that log-normal shadowing still improve the radio irregularity and thus to compare different levels of
connectivity of a wireless network and even reduces interfence. irregularity in a meaningful way. Our approach compensates
We explain this behavior by studying in detail what network for the enlarged radio transmission range by adjusting the

parameters are affected by shadowing. Our results indicat¢hat, ¢ L fth d dinalv. This tectmi
when it comes to connectivity and interference, an analysisased ransmission power o € nodes accordingly. IS tecrenqu

on a circular transmission range leads to worst case results is also used in percolation theory when comparing different
network models [8], [2], [5]. Interestingly, when using ghi
|. INTRODUCTION technique, connectivity still increases and interfereegen

Understanding connectivity and radio interference in wirglecreases as the radio propagation becomes more irregular.
less networks is an important step to determine their overal Overall, these results are an important contribution since
throughput capacity. In an effort to overcome the limitaio when taken together, they show that an analysis of conrigctiv
of the deterministic path loss model (where the transmissi@nd interference in a circular radio propagation modeldgel
range is a perfect circle), connectivity ([4], [1], [7], [6[12]) Wworst case bounds for both connectivity and interferenceil U
and capacity ([10], [11]) have recently been studied in tH#w, the assumption that shadowing increased interferiedce
context of the log-normal shadowing radio propagation rhod® assuming that a circular radio propagation range wasta bes
[9], [14]. In this model, the radio irregularity can be casited case scenario for network capacity.
through a single parameter: the shadowing deviation. As theThe paper is structured as follows: Section Il describes the
shadowing deviation grows, the transmission range turigs imetwork model we use. Effects of radio irregularity on prop-
a more irregular shape, mirroring what happens in realigfties of the network graph like connectivity, node degree a
with antennas that are not ideal (not perfectly isotropiwjl a the distribution of the edge length are described in Sedtlon
obstacles that cut the transmission range short in a givinSection IV we obtain expressions for the cumulated noise
direction. and the number of interfering nodes per network link and

In this paper, we use the log-normal shadowing radio progiscuss how radio irregularity affects interference. Becy/
agation model to explore the impact of radio irregularity oaoncludes the paper.
connectivity and interferenc_e ina Wire_less network. Wewsho Il. NETWORK MODEL
that the log-normal shadowing model introduces an unnbtura
bias into the analysis: as the shadowing deviation groves, th- Deployment Area
radio transmission range not only becomes more irreguldr, b We consider a set of nodes uniformly distributed on a
also enlarges. This naturally leads to an improved corvigcti square area of side length Ay := 1[—\, A]>. The number
At the same time, the enlarged transmission range leads tocnodes on every subar€aC A follows a binomial distribu-
increase in interference. These are results already nmetiotion with success probability2|/A. Keeping the node density

u := n/A\? constant and lettingh — oo yields an infinite

The work presenteq in this paper was _supported (_in part) b)ﬁ\l@tio_nal deployment area\,, = RQ, where the number of nodes
Competence Center in Research on Mobile Information andramication . . L . .
Systems (NCCR-MICS), a center supported by the Swiss Naltissience ON €very subare& is Poisson distributed with expectation
Foundation under grant number 5005-67322. 1|€Q]. While in a real-world scenario or a computer simulation



TABLE | prns(r) = Pr[P > fp* | R = 7] ’
FREQUENTLY USED SYMBOLS

1
Ay = %[—A, 22 Node deployment area 0.8
n Number of nodes ’
uw=n/\? Node density 0.6
PO Transmission power
70 Antenna far-field reference distance 0.4
0 Path loss exponent
8- p* Threshold power for radio reception 0.2
(threshold constan8, ambient noise ’
power p*) T
I Threshold distance 0.5 1 1.5 2
X (E[X] =0, Var[X] = ¢2) | Normal distributed shadowing random
variable Fig. 1. Connection function for log-normal shadowing.
P (or P,_y) Reception power (at node when
sending from node)
R Distance between two randomly
chosen nodes po is a random variable defined by
v :R>p —[0,1] Connection function .
@(r) = Pr[P > Bp* |R = 1] _ o X/10
N.., N Number of neighbors of a node in the P =po (7) 10%/ ’ @)
symmetric and asymmetric link mode!l

with 7o > 0 being thereference distance for the antenna far-
field, o > 0 thepath loss exponenand.X a normal distributed

the deployment area is always finite, analytical calcutatio@ndom variable with zero mean and standard deviation
are often considerably simplified by working dn, = R?, (referred to as theshadowing deV|at|o).1.1 If the shadowing
thereby avoiding boundary conditions. In the paper we aswa§feviation is equal to zerar(= 0), the radio propagation range
indicate when a finite and when an infinite deployment areals @ Perfect circle (this is also called the determinigiath
considered. We explore to which extent results for the itinil0SS model As the shadowing deviation grows, the shape of
case carry over to the finite setting by computer simulatiorf§€ transmission range becomes more random and irregular.
To suppress boundary effects in a simulation we calculate # Particular, the larger the shadowing deviation, the more
quantity in question only over a scope — a square subafikely d|§tant nodes gain connection and nearby nodes lose
centered in the deployment area — and indicate the size G¥nection.

the scope in the legend or caption of the corresponding figure e define thehreshold distancas the distance where the
received signal power, whem = 0, drops to some threshold

B. Connection Function value 3 - p* < po, Where is thethreshold constanand p*

Which node pairs can establish a direct communication lifR€ @mbient noise poweiThe threshold distance is given by
is determined by theonnection functionp : R>¢ — [0, 1] 1/
— the probability that a signal can be received correctly in e =10 ( po*) (2)
distance- from a sender node is given ky(r). The connection Pp
function can be derived from the radio propagation model From (1), the connection function for the log-normal shad-
(the radio propagation models and connection functions weving radio propagation model calculate$ as
consider in the paper are direction invariant). In syenmetric
link modelthe signal path between two nodes is assumed toprns(r) = Pr[P > Gp*|R =r] = Pr {X > %}
behave identical in either direction, whereas in éisgmmetric - 100In(r/re)
link modelthe properties of the signal path are assumed to =g —georf (m) : ®)
depend on the direction of transmission. Thus, two nodes inFig 1 plots the connection probability for log-normal shad
distancer are connected by an undirected edge in the network . =

. o . L owing versus the node distance. The function is shown for
graph with probability(r) in the symmetric link model (one different values of the shadowing deviation normalized to
coin is tossed for every pair of nodes) or with probabilit

. T . Yhe path loss exponent (o), as the shape depends only on
p(r)* in t.he asymmetric link model (two coins are tossed f%is ratio. For small valées of /o, the connection function
every pair of nodes). ' '

becomes a step function and the resulting network graph a
C. Radio Propagation Model unit disk graph with disks of radius/r, = 1.

In the paper we use tHeg-normaI shadowmgadlo propa-. 1From a physical point of view the received signal power nexaeeds the
gation model (LNS) and assume all nodes use the same sigr@bmitted power. Hence, (1) can hold only for 7, while for r < rq the
power (see [9], [3] for experimental evidence, and [4]’ [I], defir;itionf: = po _sh%uld tt)%_?fdopted. g]owev;er,tpumericarlllly éh{(s Qits_tirlction
6], (12], 10],[L1] for relatec work using the same model)*Y X2 £ S901Ka Aererce, e o b e b 1
In the log-normal shadowing model, the reception power iN2the error function is defined for all real numbess as erf(z) :=

distanceR = r from a node transmitting with signal power% Jy exp(=t?)at.
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(b) Asymmetric links.

(b) Asymmetric links.

Fig. 2. Connectivity under log-normal shadowing (simaasi onAzpp0 =

[—1000, 1000]2 in scope[—500, 500]2, o = 4, ¢ = 200). Fig. 3. Expected node degree under log-normal shadowimgu(ations on

A2000 = [—1000, 1000]2, n = 200, o = 4, r = 200).

In this paper, we focus on the log-normal shadowing radEhRat allows a fair comparison of the connectivity in diffete

propag?tlofn model.t_Hov]\c/evetr_, we want to_ emphas]:zle that ¢ gttings as the shadowing deviation changes (Section)IlI-B
concept of connection function we use IS powerlul enouQyyia that the same technique is commonly used in percolation

to capture other probabilistic radio propagation modeld an, h ina th tivity in diff t neti
effects, e.g. Rayleigh fading [6, Sect. II-E] or uniform ﬂucmgggl/SV\Es]er}zﬁo?;ﬁ)armg € connectivity In ditierent networ

tuation of the transmission poweg in (1). For this reason,
throughout the paper we first state our results for an aryitraev
connection function and then consider the special casegef l%x
normal shadowing.

Our results show that connectivity increases with shadgwin
en when the expected node degree is kept constant. We
plain this phenomenon by showing that the connectivity
improvement is the result of shadowing increasing the ayera

Il. | MPACT OF SHADOWING ON CONNECTIVITY length of the network graph edges (Section 1lI-C).

In this section we demonstrate that using the standard Idy- Connectivity in the Standard LNS Model
normal shadowing model to study connectivity leads to an un-To study how connectivity evolves with an increasing
desired effect. The positive impact of the shadowing dexiat shadowing deviation, we performed a number of simulations
on connectivity is first and foremost caused by a bias towardeasuring the probability of the network graph to be con-
an enlarged radio transmission range in the model, rathcted as a function of the node density (we consider only the
than by an intrinsic property of radio irregularity (Sectibl- subgraph within a scope, but connecting paths may contain
A). This is the result of the shadowing deviation inducinghtermediate nodes outside of it). We plot the probabildy f
unrealistic power levels which in turn affect the node degralifferent values of the shadowing deviation normalizedh® t
(i.e., the number of neighbors of a given node). To eliminatth loss exponent( p). Fig. 2(a) shows connectivity in the
this effect, we adapt the transmission power of the nodes sigymmetric link model, and Fig. 2(b) for asymmetric links.
that the expected node degree remains constant with resgemt symmetric links shadowing improves the connectivity (a
to the shadowing deviation. We want to emphasize that thibserved in [1]). For asymmetric links connectivity decesa
should not be seen as a criticism of the log-normal shadowiag the normalized shadowing deviation grows fronto 1
model in general. Instead, we introduce a natural norm#iza (as shown in [12]). Connectivity increases as the normdlize



shadowing deviation grows further @ and 3. We are not of the nodes such that the expected node degree ié kept
aware that this has been observed before. constant for different values of the shadowing deviation. T

We can explain this somewhat counterintuitive behavigive some geometric intuition, this is equivalent to kegpin
through the following theorem (extending results from [7the transmission area always the same regardless of the shap
Sect. lll] and [6, Sect. 1I-D], where only symmetric linksear (and thus equal to a circle area for= 0).

considered). .
) B. Connectivity Under Constant Node Degree
'Lheorembl. Left N‘—_’ ﬁgd Ns fbe ra”g"’”_‘ vaglables denqtmg Based on the above observation, we adjust the transmission
the num _erl_okne% lors or a n? € In the symmetric arﬂ)q)wer of every node as a function of the shadowing deviation,
gsmie_trg;B hmjtzf e, re(:jsjzectlveyl/:; . distributed with such that the expected node degree remains constant anid equa
N Moo = oth V. and N are Poisson distributed With 1, 4t when the shadowing deviation is zero. We can easily

expectations compute the required power values from (5a) and (5b) as
E[N.] = p2m [;° ro(r)dr (4a) follows.
E[Ns] = p2w fooo ro(r)2dr. (4b) Corollary 2. In the log-normal shadowing radio propagation
. . . model onA,, = R?, the transmission powers., and p<
For the log-normal shadowing connection functi@®) these ¢ ., that
integrals evaluate to
]E[N‘_)]'PO:PH = E[NH”UZO (6a)
— 2 In(10)0 \ 2 2
BIN-.] = umrf exp (2(242)") > (5a) EIN=]lpo=p-. = E[N=]lo=o (6b)
E[N<] = pmr? exp (2(#)) (1—erf (2022)) . (5b) gre
Proof. The number of nodes in an annulus of widdr Pes = Po EXP (7(1,1(110%);)2) (7a)

and radius- is Poisson distributed with expectatig2zrrdr. R _e
The number of neighbors in this annulus is Poisson dis- P= = Po¢Xp (=) (1 —erf (=53=)) . (7b)

tributed with expectationu2mro(r)dr for symmetric links  |n Fig. 4 we show how connectivity evolves with the
and p2mro(r)*dr for asymmetric links. The sum of in- shadowing deviation, this time using the transmission pewe
dependent Poisson distributed random variables is Poisgefthat preserve the expected node degree. Again, we @nsid
distributed. D' both the symmetric (Fig. 4(a)) and the asymmetric link model

The expressions (5a) and (5b) quantify how the expectgag' 4(b_))' . o
node degree depends on the shadowing deviation. In Fig. 3°" smulatlon results_ demo_nsf[rate thaannectivity n-
we plot the expected node degree calculated from thedgases W_lth_the shadowmg deviation both for_symmetrlc and
expressions and compare it to simulation results. We ggymmetric links, if the expected. ngde degree Is kept aonsta
this for the symmetric (Fig. 3(a)) and the asymmetric link© the .be§t _of our knowlgdge this is the first resu_lt capturing
model (Fig. 3(b)). The figures indicate that the simulatiowe intrinsic impact of radio irregularity on connectivitpder

results match very well the analytical expressions. Thep allog-n(_)rmal shadowing. In the next section w.e dls_cover a
iilustrate the boundary effects: the results from simolagi P/ausible reason for the observed phenomenon: an incgeasin

considering the whole deployment area differ quantitativeaverage edge length. Before we come to this, let us briefly put

from those restricted to a smaller scope (as nodes clos@to @F @PProach into a wider context. _

boundary have less neighbors). Most importantly, the figure The resullts of [8] and [2], f_ron_1 percolation .theory [,5]
capture the bias introduced by the log-normal shadowin'@radnd'cate an improved _connecqvny if the connection fuonti
propagation model: the expected node degree changes withdftS SPread out, while keeping the expected node degree
shadowing deviation. In the symmetric link model, the imee CONStant. Note, however, that these authors apply a differe
in node degree as shadowing increases naturally improfmalization scheme: Using the symmetric link model they
connectivity. This explains the connectivity increasevshan consider a family of connection functions

Fig. 2(a). In the asymmetric link model, the expected node (l(p(L .)) (8a)
degree first decreases for< o/p < 1.88, it increases again LTV t>0

for O'/Q > 1.88. This explains the counterintuitive behavior Offor an increasing parameteér In the asymmetric link model

connectivity observed in Fig. 2(b). this corresponds to a family of functions
These results show that log-normal shadowing primarily
affects the node degree, which in turn affects connectivity (%cp(% '))t>0- (8b)

This is because an increasing shadowing deviation results ) ) -

not only in a more irregular, but also in an enlarged radi§ contrast to that we consider the function families
transmission range, which is an unnatural side effect ofatye (chNs(O)I _ ) (9a)
normal shadowing radio propagation model. In what follows, PITEeso>0
we avoid this effect by adjusting the transmission power (‘F’LNS(')|M:P:)U>0 (9b)



Connection probability square line picking [13f. °

1 Consider the following experiment on a finite deployment
areaA, = 1[-X, \]?: Choose a pair of nodes at random
0.8 and denote by? and P the distance and the reception power
06 between the two nodes.
' Lemma 3 (M. Trott [13]). The probability density function of
0.4 Ris
0.2 25 (3 -4z ) 0<r<A
" Z 1 (2o
Fr(r) = 25 (4y/Z -1- (23 +2-) (10)

50 100 150 200 250 300 350 400 " —darctan(y/£7-1))  A<r<vaa
(a) Symmetric links.

Connection probability The node distance relates to the reception power via the

radio propagation model. The following lemma relies on basi

0 otherwise.

1
conditional probability laws and is stated without a proof.
0.8 Lemma 4. With the conditional densityp|r_, as a property
of the radio propagation model, the joint densjty » and the
0.6 ; ;
density fp can be calculated as
0.4 fr.p(r,p) = fr(r)fP|R="(D) (11)
0.2 fr@) = J frp(rp)dr. (12)

: : ‘ ‘ : n In the log-normal shadowing radio propagation model,
50 100 150 200 250 300 350 400 the reception powel” is log-normal distributed for a fixed
(b) Asymmetric links. distanceR = r (cp. (1)):

Fig. 4. Connectivity under log-normal shadowing using trengmission . 10 50(In( & (£)9))* 13

powers (7) that preserve the expected node degree (siondatin A2op0 = fP|R:T (p) ~ In(10)V2npo €xXp ( o (In(10)0)2 ) ( )

[~1000, 1000]? in scope[—500,500]2, o = 4, ry = 200). o ] )
2) Edge Length Distribution:Now consider the following

modified experiment: Randomly choose a pair of notthes
for an increasing shadowing deviation are connected by an eddeecall, that we assume links to be

As we will show in the following, the increase in the averageYMmetric throughout this section) and denoterbyand P
edge length holds for both normalization schemes (8) and (gje distance and the reception power between the two nodes.

Theorem 5. The joint probability density function a®’ and

C. Impact of Shadowing on Edge Length P is

To explore why connectivity increases with the shadowing fr(r)fpir="(D) > 3p*
deviation, even when the node degree is kept constant, we frp(rp) = ff* fr(r)e(r)dr - (14)
study the distributions of distance and reception power be- ’ 0 otherwise.

tween a randomly chosen pair of nodes (chosen either among

all pairs of nodes or pairs that are connected by an edgef#f A — oo we have

the network graph, yielding the edge length distributiorhef rfpin=r(p) p> Bp*

network graph). In Theore_m 7 and Co_roIIary 8 we prove tha_t fre.p(r,p) = fU ro(r)dr - (15)
the average edge length increases with the shadowing devia- 0 otherwise,

tion (under constant node degree). The results on the power . _ ) _
distribution will also be used in Section IV when dealingwit provided that the integral in the denominator exists.

interference. Unless specified otherwise, we assume limksHroof. The joint densityfz p can be obtained fronfz p
be symmetric throughout this section. Nevertheless, @ult® by conditioning on P > Jp* and using the relation

apply similarly to the case of asymmetric links. [5e. frip=r(p)dp = Pr[P > Bp* | R = r] = @(r). The
1) Distance and Power DistributionStarting point for our dié’tance density can be written As(r) = 1 (275 +0((%)?))
derivation is the well-known distance distribution for dam for \ — oo, Plugging this into (14) yields (15). [

3If instead of symmetric links the asymmetric link model $Ha used,
every occurrence ofp|g—,(p) and every occurrence @f(r) in (14), (15), “Note that all results in this section remain valid, e.g. foreatangular
(16) and (17) has to be replaced M(r)fpm:r(p) andp(r)2, respectively. or cicular deployment area, only the distance density fandor square line
All other results, in particular (18), remain unchanged. picking has to be replaced by the density function for thgpeetive shape.



Corollary 6. The probability density function a’ is For 7 > 0 we havery;(7) > 0 (: = 1, 2), therefore

fr(r) = —fﬁ{RWW : (16) lim r [ 7p;(F)di > 0 (23)
fr(r)e(r)dr e
’ lim r [* 7 (F)di < lim [~ 7p;(F)di = 0. (24)
For A — co we have 700 7—00
Frr(r) = —l0) (17) This implieslim, ... 7 [ 7;(F)di = 0 (i = 1,2), which in

B fooo ro(r)dr’ ]

provided that the integral in the denominator exists. Foteps  Note that Theorem 7 extends to the asymmetric link model
functiony = 1y, (r; > 0) it does exist andr’ follows a by substitutingp? for ¢, and 3 for ¢s.
triangular distribution: Condition (19a) expresses that andy- generate the same
o expected node degree (cp. (4a)), and (19b) formalizesghat
7
8
Proof. The first two claims follow by plugging (14) and

(18) generates more distant and less nearby neighborsihan
Theorem 7 applies to the connection function for log-normal
(15) into fr/(r) = [° fr,p (r,p)dp. Then (18) follows by
straightforward calculation. O

turn yieldslim, o, ¥ (r) = 0.

0<r<m

fri(r)

otherwise

shadowing when using the transmission powers (7). We leave
it to the reader to check that

i = pins|roze (i =1,2) (25)

Corollary 6 shows that the edge length of the networkdeed satisfy (19) provided thai > 0. The same holds for
graph under log-normal shadowing approximately follows a (26)

triangular distribution ifo /o < 1 andr, < \.5 © pi = ‘P%Ns|ng;;: (i=1,2).
3) Shadowing Increases the Edge Lengihe following ence the average edge length increases with the shadowing
theorem is a very general statement about the edge lengiyiation,. Theorem 7 can also be employed to show that the
of ngtwork graphs resulting from two different connection,majization scheme (8) increases the average edge length
functions. As condition (19) applies to both normalization schemes (8)
Theorem 7. Lety; andy, be connection functions that satisfyand (9) so nicely, it seems to capture the heart of our problem

the relations

(19a)
(19b)

fooo ro1(r)dr = fooo rs (r)dr
/\ [ rer(rydr > [ roa(r)dr,

x>0

and for which [ r2p1 (r)dr and [° r?pa(r)dr are finite.
Then the average edge lengihiR} | andE[R}] of the network

in a natural way.

The following corollary determines the predicted edge
length increase under log-normal shadowing precisely, and
thereby justifies the positive effect of an increasing shadg
deviation on connectivit§.

Corollary 8. Consider the log-normal shadowing radio prop-
agation model onA,, = R? using the transmission powers

graphs onA. = R2 in the symmetric link model resulting(7) that preserve the expected node degree.

from 1 and p2, respectively, satisfy
E[R{] > E[R}]. (20)

Proof. By plugging (17) intoE[R'] = [~ rfr (r)dr and
using the abbreviatiogh(r) := r(¢1(r) — p2(r)) we observe
that it suffices to show that for alt > 0

f;o Y(r)dr >0 = f;o r(r)dr > 0. (22)

Forz > 0 we define¥ (z) := [ ¢ (r)dr and use integration
by parts (note thay ¢ (r)dr = —¥(r) + ¢ for somec € R):

/m o (r)dr / S (22)

If we could show thatim, .., 7¥(r) = 0 this would imply
the theorem sinc@ (z) is non-negative by assumption.

=2¥(z) — lim r¥(r) +

T—00

5Corollary 6 also corrects a result from [7, Sect. 1] on thgyedength
distribution under log-normal shadowing on an infinite dgphent area. The
authors obtain a different density than we get when plug@®8)gnto (17).

6Analogously to the approach in Corollary 6 one can easilyveethe

distribution of the edge poweP’ from Theorem 5. Since this distribution is

not of interest for the rest of the paper, we omit these catioris.

The average length of the network graph edges in the sym-
metric and asymmetric link model is

B[R lpy=p.. )')
')

Both terms are strictly increasing with.

In(10)o
100

(27)

)
(1o ()

(28)

= Zryexp (%(

- 3 In(10)o
In(10)o (1 Crf(2 100

100

E[RS]lpy=p

= Zryexp (%(

Proof. The result for symmetric links follows by succes-
sively plugging (17), (3), (2) and finally (7a) intB[R'] =
f0°° rfr/(r)dr. The calculation for asymmetric links proceeds
similarly, only replacep(r) in (17) by ¢(r)? and use (7b)
instead of (7a). O

7An interesting open question with respect to connectivitythie relation
between the critical node densitiegs and p2 for percolation in network
graphs om\~, = R? based on connection functiops and 2, respectively
(at the critical node density an infinite network graph comgrd appears with
probability one). The aim would be to prove or disprove thandition (19)
implies u1 < pa.

8For the normalization scheme (8), the precise edge lengtiease can be
determined similarly, a calculation we omit due to the leditspace.



fr(r) reduction is caused by a spread of the power distributiore7und
y asp p

0.01 shadowing.
0. 008 A. The SINR Model
0. 006 In the signal-to-interference-plus-noise-ratio mod8INR),

' a signal from nodé can be decoded correctly at nodgif
0. 004 .

# Pa—b 2 ﬁ(p + Zb,eipm—b’) (29)
0. 002} D S
—pr
100 200 3 200 holds, wherd C N\ {a, b} is the subset of nodes transmitting

concurrently withb. Note that (29) with/ = () is necessary for
Fig. 5. Edge length distribution under log-normal shadaivhen using the WO nodes to be connected by an edge in the network_ g_raph. A
transmission power from (72) (analytical curves from (T#jfograms from smallest set of nodessuch thatl = N\ (I U{a, b}) satisfies
simulations 0nA16000 = [~8000, 8000}, n = 12800, ¢ = 4, r+ = 200).  (29) is called aset of interferergw.r.t. the transmission from
nodeb to nodea with reception powep,. ); the interfering

. ot the edge | h distributi ; nodes fromI must not transmit concurrently with node
In Fig. 5 we plot the edge length distribution (17) Olyhile the non-interferersfrom I may do so. The size of a

dlffe_rent vglues of the shadovymg deviation and compare dby of interferers is uniquely determined and referred tthas
to simulation results (be reminded that they are based Almber of interferers

the transmission power (7a) that preserves the expectesl nodA set of interferers can easily be determined by sorting

degree). As can be observed, the analytical curves ma[ﬁg received signal powe(s, ) cx (a.5; and successively

very well the simulation results. The figure also IIIUS'[E"jlt(.eadding nodes to the sdt starting with those that contribute

%% lowest signal powers, as long as (29) is satisfied. Then

and mcrte;]asmgly dewa’:jes frlom ;t;lar_lgular dlstnbutmig!st q(Ng{a, b))\ I is a set of interferers. For the deterministic path
causes he average edge 1engin 1o increase as predicte oQ model (i.e., log-normal shadowing with = 0) sorting

Corollary 8..T.he_increase in the average edge ]ength jLFStiﬁl%e nodes according to signal power and sorting according
the connectivity improvement caused by radio irregulaaisy to distance from node induces the same node order. In this

observed in the prewous section. . . case interferers and non-interferers can be separateditnlea ¢
Our results indicate that — contrary to what intuition mighf, \tared at node

suggest — radio irregularity is indeed beneficial for networ

- Reusing results from Section III-C (recall the definitions
connectivity.

of R, P, R’ and P’), the following theorem determines
IV. | MPACT OF SHADOWING ON INTERFERENCE the expected number of interferers for an arbitrary radio

o . . propagation model, in particular for log-normal shadowing
Throughput capacity is another important property of wire-

less networks. As with connectivity, it is difficult to findased Theorem 9. On Ay = 1[-X, A]? the expected number of
expressions for the capacity of a wireless network, and eviétterferers for a transmission from nod¢o nodea with power
more complicated to analytically study the effects of logpa—b =: p > Bp* equals
normal shadowing on capacity. In [10], it is shown that the oo
capacity of a network is mainly limited by interference (&® b E[|I|| P =p|=(n— 2)/ fr(p)dp, (30)
more precise, by the number of interfering nodes per network T
link). In this section we try to gain a quantitative undenstimg wherer is a solution of the equation
of interference under log-normal shadowing. T

We first describe the signal-to-interference-plus-noate (n— 2)/ pfp(p)dp = p —p*. (32)
model (SINR) and calculate expressions for the number of 0 s
interfering nodes per network link (Section 1V-A). We therProof. From (29) we obtain the maximum admissible noise
demonstrate that the impact of the shadowing deviation éor a transmission from nodeto nodea asp; = p/5 — p*.
interference is mainly caused by a bias towards an enlargilte number of nodes from which nodereceives a signal
transmission range in the radio propagation model (Set¥on in the range[p,p + dp| is (n — 2)fp(p)dp, the noise from
B). We compensate for this effect by adjusting the transioniss these nodes isn — 2)pfp(p)dp. Interferers are nodes from
power of the nodes such that the expected cumulated noiggich nodea receives the highest signal powers, while non-
remains constant with respect to the shadowing deviatiorterferers are nodes from which nodereceives the lowest
(Section IV-C). signal powers (the latter may transmit concurrently withi@o

Our results show that interference decreases with shadowin the former must not). Equating the maximum admissible
when the expected cumulated noise is kept constant. Weise with the cumulated noise from the non-interfererkigie
explain this phenomenon by showing that the interferen¢®l). Suppose this equation has two solutierendr’. Since



=

[|I| | P" = 4Bp*] from (30)

70 = |

1T~

[|p/—app* in SCOPE[—1000, 1000]* |-------+ 1072 |~ E[P.] from (33)

= P,, in scope[—1000, 1000]?

10 12 14

o
(a) Expected number of interferers under log-normal shaupysim- (b) Expected cumulated noise from outside a circle of radius
ulations onAsppp = [—~1000,1000]2, n = 200, po = 1, ro = 1, r’ = 50 under log-normal shadowing (simulations oo =

B = 2.5, re = 200). [—1000, 1000]2, n = 200, po = 1, rg = 1).

Fig. 6. Interference increase as a side effect of log-nohatiowing.

f:/ﬁfp(ﬁ)df) = 0 implies j:/ fp(p)dp = 0 the right hand for all » > 0 the integral [;° rE[P | R = r]dr would not
side of (30) is well-defined. O converge). Plugging this into (32) yields the result. O

The price for the generality of Theorem 9 is, that the In Fig. 6(b) we plot the expected cumulated noise from out-
integrals (30) and (31) can only be treated numerically, Bide a circle of radius’ = 50 versus the shadowing deviation.
particular sincefp itself is given by another integral (12). The expected noise calculated from (33) and the simulation

. results show excellent agreement. Most importantly, theréig
B. Interference in the Standard LNS Model illustrates that the expected cumulated noise increadbshé

To study how interference evolves with an increasing shaghaqowing deviation. This is a side effect of the log-normal

owing deviation, we plot in Fig. 6(a) the expected number & 54owing radio propagation model enlarging the transariss
interferers versus the shadowing deviation, with the pass | r3nge as the shadowing deviation grows. Since interference
exponent as a parameter. The expected number of interfeigrshe SINR model is primarily affected by the cumulated
obtained from (30) and the simulation results match very.weise the increase in the number of interferers is not @irpr

The figure also shows that shadowing increases the numbeff Therefore, to study the impact of radio irregularity on
interfering nodes. _ _ interference in a meaningful way, it is reasonable to adjust
We can explain this behavior by calculating the expectgfe power levels such that the expected cumulated noise is
cumulated noise perceived at a given node, as formalizedgfserved. This resembles our approach from Section Iltevhe
the following theorem. we studied connectivity under constant expected node degre
Theorem 10. Let P, be a random variable denoting thec_
cumulated received signal power from all nodes in a distance
at leastr’ from a receiver node.
On A, = R? the expectation of,. is

Interference Under Constant Noise

Based on the above observation, we adjust the transmission
power as a function of the shadowing deviation, such that the
expected cumulated noise remains constant and equal to that

E[Py] = p2x [ rE[P|R = r]dr. (32) when the shadowing deviation is zero. We can easily compute
For the log-normal shadowing radio propagation model witi"€ required power values from (33) as follows.
o > 2 this integral evaluates to Corollary 11. In the log-normal shadowing radio propagation
: S e
mm( g(% exp ((lngg())g)z)ﬂ)ir,z) < model withp > 2 on A,, = R#, the transmission powep..
E[PT/] = 21)0M7TT‘Q exp (M) SUCh that
7?/9*2(972)200 r' > ro. E[PT’]po:p~ = E[Pr]o=0 (35)

(33) holds forr’ > rq is
Proof. The proof of (32) resembles that of (4).

_ (In(10)0)?
For the log-normal shadowing model we obtain from (1) P~ = Po €Xp (_ 200 ) : (36)
n [ed 2 i i
E[P|R =] = po (%")Qexp ((1 (2183 ) ) (34) In Fig. 7 we plot t.he. expe(_:ted number of interferers versus
the shadowing deviation, with the path loss exponent as a

for r > rg andE[P|R = r] = po for r < ro (we distinguish parameter. Here we employ the transmission power from
betweenr > ro andr < ry here, if otherwise (34) was used(36). Again, we compare the expected number of interferers



60t | —E[I]| P' = 48] y—p. from (30)
= TI[| pr_sg,~ in Scope[—1000,1000] 12
50l 0=353 - fosn? 5x10
}

2x10%?

5x1011
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Fig. 8. Power distribution under log-normal shadowing wheimg the trans-
mission power (36) that preserves the expected cumulates® rfanalytical
curves from (12)A2000 = [—1000, 1000]2, po = 1, 70 = 1, 0 = 4).

Fig. 7. Expected number of interferers under log-normablshéng using
the transmission power (36) that preserves the expecteculated noise
(simulations onAsggp = [—1000,1000]2, n = 200, po = 1, ro = 1,
B8 = 2.5, 7¢ = 200).

that under a reasonable measure of comparability log-rlorma

obtained from (30) to simulation results and find very gooshadowing improves the connectivity of a network and reduce
agreement. In contrast to Fig. 6(a) we observe that the numbrerference. Our results illustrate that the radio irtagty
of interferers no longer increases, but decreases as thk shiaduced by log-normal shadowing has indeed a beneficial
owing deviation grows. impact on connectivity and interference. This is of intéres

This phenomenon can be explained as follows: an increasiiog many existing bounds on the connectivity and throughput
shadowing deviation spreads out the power density functioapacity of wireless networks that have been derived usieg t
fp, increasing both the number of node pairs with a loweterministic path loss model, as our results indicatectlaes
reception power and those with a high reception powwer instead of upper bounds on connectivity and capacity.
(balanced such that the cumulated noise remains constant).
Consequently, it takes more nodes to reach the maximum REFERENCES
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