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Abstract— In an effort to better understand connectivity and
capacity in wireless networks, the log-normal shadowing radio
propagation model is used to capture radio irregularities and ob-
stacles in the transmission path. Existing results indicate that log-
normal shadowing results in higher connectivity and interference
levels as shadowing (i.e., the radio irregularity) increases. In this
paper we demonstrate that such a behavior is mainly caused by
an unnatural bias of the log-normal shadowing radio propagation
model that results in a larger transmission range as shadowing
increases. To avoid this effect, we analyze connectivity and
interference under log-normal shadowing using a normalization
that compensates for the enlarged radio transmission range.
Our analysis shows that log-normal shadowing still improves the
connectivity of a wireless network and even reduces interference.
We explain this behavior by studying in detail what network
parameters are affected by shadowing. Our results indicatethat,
when it comes to connectivity and interference, an analysisbased
on a circular transmission range leads to worst case results.

I. I NTRODUCTION

Understanding connectivity and radio interference in wire-
less networks is an important step to determine their overall
throughput capacity. In an effort to overcome the limitations
of the deterministic path loss model (where the transmission
range is a perfect circle), connectivity ([4], [1], [7], [6], [12])
and capacity ([10], [11]) have recently been studied in the
context of the log-normal shadowing radio propagation model
[9], [14]. In this model, the radio irregularity can be controlled
through a single parameter: the shadowing deviation. As the
shadowing deviation grows, the transmission range turns into
a more irregular shape, mirroring what happens in reality
with antennas that are not ideal (not perfectly isotropic) and
obstacles that cut the transmission range short in a given
direction.

In this paper, we use the log-normal shadowing radio prop-
agation model to explore the impact of radio irregularity on
connectivity and interference in a wireless network. We show
that the log-normal shadowing model introduces an unnatural
bias into the analysis: as the shadowing deviation grows, the
radio transmission range not only becomes more irregular, but
also enlarges. This naturally leads to an improved connectivity.
At the same time, the enlarged transmission range leads to an
increase in interference. These are results already mentioned
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in the literature [1], [6], [12], [11]. The problem is, however,
that the increase in transmission range does not correspond
to any real phenomenon [3]. Intuitively speaking, increasing
the irregularity by adding obstructions to the transmission path
should not generally improve the perceived signal quality.

The main objective of this paper is therefore to obtain an un-
biased view on the effects of radio irregularity on connectivity
and interference in a wireless network. We propose a method
to eliminate the bias introduced by the log-normal shadowing
model. This allows us to capture the intrinsic properties of
radio irregularity and thus to compare different levels of
irregularity in a meaningful way. Our approach compensates
for the enlarged radio transmission range by adjusting the
transmission power of the nodes accordingly. This technique
is also used in percolation theory when comparing different
network models [8], [2], [5]. Interestingly, when using this
technique, connectivity still increases and interferenceeven
decreases as the radio propagation becomes more irregular.

Overall, these results are an important contribution since,
when taken together, they show that an analysis of connectivity
and interference in a circular radio propagation model yields
worst case bounds for both connectivity and interference. Until
now, the assumption that shadowing increased interferenceled
to assuming that a circular radio propagation range was a best
case scenario for network capacity.

The paper is structured as follows: Section II describes the
network model we use. Effects of radio irregularity on prop-
erties of the network graph like connectivity, node degree and
the distribution of the edge length are described in SectionIII.
In Section IV we obtain expressions for the cumulated noise
and the number of interfering nodes per network link and
discuss how radio irregularity affects interference. Section V
concludes the paper.

II. N ETWORK MODEL

A. Deployment Area

We consider a set ofn nodes uniformly distributed on a
square area of side lengthλ, Λλ := 1

2 [−λ, λ]2. The number
of nodes on every subareaΩ ⊆ Λλ follows a binomial distribu-
tion with success probability|Ω|/λ2. Keeping the node density
µ := n/λ2 constant and lettingλ → ∞ yields an infinite
deployment areaΛ∞ = R

2, where the number of nodes
on every subareaΩ is Poisson distributed with expectation
µ|Ω|. While in a real-world scenario or a computer simulation



2TABLE I

FREQUENTLY USED SYMBOLS.

Λλ = 1

2
[−λ, λ]2 Node deployment area

n Number of nodes
µ = n/λ2 Node density
p0 Transmission power
r0 Antenna far-field reference distance
̺ Path loss exponent
β · p∗ Threshold power for radio reception

(threshold constantβ, ambient noise
powerp∗)

rt Threshold distance
X (E[X] = 0, Var[X] = σ2) Normal distributed shadowing random

variable
P (or Pa←b) Reception power (at nodea when

sending from nodeb)
R Distance between two randomly

chosen nodes
ϕ : R≥0 → [0, 1] Connection function
ϕ(r) = Pr[P ≥ βp∗ |R = r]
N↔, N⇆ Number of neighbors of a node in the

symmetric and asymmetric link model

the deployment area is always finite, analytical calculations
are often considerably simplified by working onΛ∞ = R

2,
thereby avoiding boundary conditions. In the paper we always
indicate when a finite and when an infinite deployment area is
considered. We explore to which extent results for the infinite
case carry over to the finite setting by computer simulations.
To suppress boundary effects in a simulation we calculate the
quantity in question only over a scope — a square subarea
centered in the deployment area — and indicate the size of
the scope in the legend or caption of the corresponding figure.

B. Connection Function

Which node pairs can establish a direct communication link
is determined by theconnection functionϕ : R≥0 → [0, 1]
— the probability that a signal can be received correctly in
distancer from a sender node is given byϕ(r). The connection
function can be derived from the radio propagation model
(the radio propagation models and connection functions we
consider in the paper are direction invariant). In thesymmetric
link model the signal path between two nodes is assumed to
behave identical in either direction, whereas in theasymmetric
link model the properties of the signal path are assumed to
depend on the direction of transmission. Thus, two nodes in
distancer are connected by an undirected edge in the network
graph with probabilityϕ(r) in the symmetric link model (one
coin is tossed for every pair of nodes) or with probability
ϕ(r)2 in the asymmetric link model (two coins are tossed for
every pair of nodes).

C. Radio Propagation Model

In the paper we use thelog-normal shadowingradio propa-
gation model (LNS) and assume all nodes use the same signal
power (see [9], [3] for experimental evidence, and [4], [1],[7],
[6], [12], [10], [11] for related work using the same model).
In the log-normal shadowing model, the reception power in
distanceR = r from a node transmitting with signal power
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Fig. 1. Connection function for log-normal shadowing.

p0 is a random variable defined by

P = p0

(r0
r

)̺

10X/10, (1)

with r0 > 0 being thereference distance for the antenna far-
field, ̺ > 0 thepath loss exponent, andX a normal distributed
random variable with zero mean and standard deviationσ
(referred to as theshadowing deviation).1 If the shadowing
deviation is equal to zero (σ = 0), the radio propagation range
is a perfect circle (this is also called the deterministicpath
loss model). As the shadowing deviation grows, the shape of
the transmission range becomes more random and irregular.
In particular, the larger the shadowing deviation, the more
likely distant nodes gain connection and nearby nodes lose
connection.

We define thethreshold distanceas the distance where the
received signal power, whenσ = 0, drops to some threshold
valueβ · p∗ < p0, whereβ is the threshold constantand p∗

the ambient noise power. The threshold distance is given by

rt = r0

(
p0

βp∗

)1/̺

. (2)

From (1), the connection function for the log-normal shad-
owing radio propagation model calculates as2

ϕLNS(r) = Pr[P ≥ βp∗ |R = r] = Pr
[

X ≥ 10̺ ln(r/rt)
ln(10)

]

= 1
2 − 1

2 erf
(

10̺ ln(r/rt)√
2 ln(10)σ

)

. (3)

Fig. 1 plots the connection probability for log-normal shad-
owing versus the node distance. The function is shown for
different values of the shadowing deviation normalized to
the path loss exponent (σ/̺), as the shape depends only on
this ratio. For small values ofσ/̺, the connection function
becomes a step function and the resulting network graph a
unit disk graph with disks of radiusr/rt = 1.

1From a physical point of view the received signal power neverexceeds the
transmitted power. Hence, (1) can hold only forr > r0, while for r ≤ r0 the
definition P = p0 should be adopted. However, numerically this distinction
rarely makes a significant difference, the only time we have to take it into
account is in Theorem 10 where otherwise integrals would notconverge.

2The error function is defined for all real numbersx as erf(x) :=
2√
π

∫ x

0
exp(−t2)dt.
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Fig. 2. Connectivity under log-normal shadowing (simulations onΛ2000 =
[−1000, 1000]2 in scope[−500, 500]2, ̺ = 4, rt = 200).

In this paper, we focus on the log-normal shadowing radio
propagation model. However, we want to emphasize that the
concept of connection function we use is powerful enough
to capture other probabilistic radio propagation models and
effects, e.g. Rayleigh fading [6, Sect. II-E] or uniform fluc-
tuation of the transmission powerp0 in (1). For this reason,
throughout the paper we first state our results for an arbitrary
connection function and then consider the special case of log-
normal shadowing.

III. I MPACT OF SHADOWING ON CONNECTIVITY

In this section we demonstrate that using the standard log-
normal shadowing model to study connectivity leads to an un-
desired effect. The positive impact of the shadowing deviation
on connectivity is first and foremost caused by a bias towards
an enlarged radio transmission range in the model, rather
than by an intrinsic property of radio irregularity (Section III-
A). This is the result of the shadowing deviation inducing
unrealistic power levels which in turn affect the node degree
(i.e., the number of neighbors of a given node). To eliminate
this effect, we adapt the transmission power of the nodes such
that the expected node degree remains constant with respect
to the shadowing deviation. We want to emphasize that this
should not be seen as a criticism of the log-normal shadowing
model in general. Instead, we introduce a natural normalization
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Fig. 3. Expected node degree under log-normal shadowing (simulations on
Λ2000 = [−1000, 1000]2, n = 200, ̺ = 4, rt = 200).

that allows a fair comparison of the connectivity in different
settings as the shadowing deviation changes (Section III-B).
Note that the same technique is commonly used in percolation
theory when comparing the connectivity in different network
models [8], [2], [5].

Our results show that connectivity increases with shadowing
even when the expected node degree is kept constant. We
explain this phenomenon by showing that the connectivity
improvement is the result of shadowing increasing the average
length of the network graph edges (Section III-C).

A. Connectivity in the Standard LNS Model

To study how connectivity evolves with an increasing
shadowing deviation, we performed a number of simulations
measuring the probability of the network graph to be con-
nected as a function of the node density (we consider only the
subgraph within a scope, but connecting paths may contain
intermediate nodes outside of it). We plot the probability for
different values of the shadowing deviation normalized to the
path loss exponent (σ/̺). Fig. 2(a) shows connectivity in the
symmetric link model, and Fig. 2(b) for asymmetric links.
For symmetric links shadowing improves the connectivity (as
observed in [1]). For asymmetric links connectivity decreases
as the normalized shadowing deviation grows from0 to 1
(as shown in [12]). Connectivity increases as the normalized
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shadowing deviation grows further to2 and 3. We are not
aware that this has been observed before.

We can explain this somewhat counterintuitive behavior
through the following theorem (extending results from [7,
Sect. III] and [6, Sect. II-D], where only symmetric links are
considered).

Theorem 1. LetN↔ andN⇆ be random variables denoting
the number of neighbors of a node in the symmetric and
asymmetric link model, respectively.
On Λ∞ = R

2 bothN↔ andN⇆ are Poisson distributed with
expectations

E[N↔] = µ2π
∫∞
0
rϕ(r)dr (4a)

E[N⇆] = µ2π
∫∞
0
rϕ(r)2dr. (4b)

For the log-normal shadowing connection function(3) these
integrals evaluate to

E[N↔] = µπr2t exp
(

2
(

ln(10)σ
10̺

)2
)

≥ µπr2t (5a)

E[N⇆] = µπr2t exp
(

2
(

ln(10)σ
10̺

)2
) (

1 − erf
(

ln(10)σ
10̺

))
. (5b)

Proof. The number of nodes in an annulus of widthdr
and radiusr is Poisson distributed with expectationµ2πrdr.
The number of neighbors in this annulus is Poisson dis-
tributed with expectationµ2πrϕ(r)dr for symmetric links
and µ2πrϕ(r)2dr for asymmetric links. The sum of in-
dependent Poisson distributed random variables is Poisson
distributed.

The expressions (5a) and (5b) quantify how the expected
node degree depends on the shadowing deviation. In Fig. 3
we plot the expected node degree calculated from these
expressions and compare it to simulation results. We do
this for the symmetric (Fig. 3(a)) and the asymmetric link
model (Fig. 3(b)). The figures indicate that the simulation
results match very well the analytical expressions. They also
illustrate the boundary effects: the results from simulations
considering the whole deployment area differ quantitatively
from those restricted to a smaller scope (as nodes close to the
boundary have less neighbors). Most importantly, the figures
capture the bias introduced by the log-normal shadowing radio
propagation model: the expected node degree changes with the
shadowing deviation. In the symmetric link model, the increase
in node degree as shadowing increases naturally improves
connectivity. This explains the connectivity increase shown in
Fig. 2(a). In the asymmetric link model, the expected node
degree first decreases for0 ≤ σ/̺ ≤ 1.88, it increases again
for σ/̺ > 1.88. This explains the counterintuitive behavior of
connectivity observed in Fig. 2(b).

These results show that log-normal shadowing primarily
affects the node degree, which in turn affects connectivity.
This is because an increasing shadowing deviation results
not only in a more irregular, but also in an enlarged radio
transmission range, which is an unnatural side effect of thelog-
normal shadowing radio propagation model. In what follows,
we avoid this effect by adjusting the transmission power

of the nodes such that the expected node degree is kept
constant for different values of the shadowing deviation. To
give some geometric intuition, this is equivalent to keeping
the transmission area always the same regardless of the shape
(and thus equal to a circle area forσ = 0).

B. Connectivity Under Constant Node Degree

Based on the above observation, we adjust the transmission
power of every node as a function of the shadowing deviation,
such that the expected node degree remains constant and equal
to that when the shadowing deviation is zero. We can easily
compute the required power values from (5a) and (5b) as
follows.

Corollary 2. In the log-normal shadowing radio propagation
model onΛ∞ = R

2, the transmission powersp↔ and p⇆

such that

E[N↔]|p0=p↔ = E[N↔]|σ=0 (6a)

E[N⇆]|p0=p⇆
= E[N⇆]|σ=0 (6b)

are

p↔ = p0 exp
(
− (ln(10)σ)2

100̺

)
(7a)

p⇆ = p0 exp
(
− (ln(10)σ)2

100̺

) (
1 − erf

(
ln(10)σ

10̺

))− ̺

2 . (7b)

In Fig. 4 we show how connectivity evolves with the
shadowing deviation, this time using the transmission powers
(7) that preserve the expected node degree. Again, we consider
both the symmetric (Fig. 4(a)) and the asymmetric link model
(Fig. 4(b)).

Our simulation results demonstrate thatconnectivity in-
creases with the shadowing deviation both for symmetric and
asymmetric links, if the expected node degree is kept constant.
To the best of our knowledge this is the first result capturing
the intrinsic impact of radio irregularity on connectivityunder
log-normal shadowing. In the next section we discover a
plausible reason for the observed phenomenon: an increasing
average edge length. Before we come to this, let us briefly put
our approach into a wider context.

The results of [8] and [2] from percolation theory [5]
indicate an improved connectivity if the connection function
gets spread out, while keeping the expected node degree
constant. Note, however, that these authors apply a different
normalization scheme: Using the symmetric link model they
consider a family of connection functions

(
1
tϕ

(
1√
t
•
))

t>0
(8a)

for an increasing parametert. In the asymmetric link model
this corresponds to a family of functions

(
1
tϕ

(
1
t •

))

t>0
. (8b)

In contrast to that we consider the function families
(
ϕLNS(•)|p0=p↔

)

σ>0
(9a)

(
ϕLNS(•)|p0=p⇆

)

σ>0
(9b)
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Fig. 4. Connectivity under log-normal shadowing using the transmission
powers (7) that preserve the expected node degree (simulations onΛ2000 =
[−1000, 1000]2 in scope[−500, 500]2, ̺ = 4, rt = 200).

for an increasing shadowing deviationσ.
As we will show in the following, the increase in the average

edge length holds for both normalization schemes (8) and (9).

C. Impact of Shadowing on Edge Length

To explore why connectivity increases with the shadowing
deviation, even when the node degree is kept constant, we
study the distributions of distance and reception power be-
tween a randomly chosen pair of nodes (chosen either among
all pairs of nodes or pairs that are connected by an edge in
the network graph, yielding the edge length distribution ofthe
network graph). In Theorem 7 and Corollary 8 we prove that
the average edge length increases with the shadowing devia-
tion (under constant node degree). The results on the power
distribution will also be used in Section IV when dealing with
interference. Unless specified otherwise, we assume links to
be symmetric throughout this section. Nevertheless, our results
apply similarly to the case of asymmetric links.3

1) Distance and Power Distribution:Starting point for our
derivation is the well-known distance distribution for random

3If instead of symmetric links the asymmetric link model shall be used,
every occurrence offP |R=r(p) and every occurrence ofϕ(r) in (14), (15),
(16) and (17) has to be replaced byϕ(r)fP |R=r(p) andϕ(r)2, respectively.
All other results, in particular (18), remain unchanged.

square line picking [13].4

Consider the following experiment on a finite deployment
area Λλ = 1

2 [−λ, λ]2: Choose a pair of nodes at random
and denote byR andP the distance and the reception power
between the two nodes.

Lemma 3 (M. Trott [13]). The probability density function of
R is

fR(r) =







2 r

λ2

(
r2

λ2−4 r
λ

+π
)

0≤r≤λ

2 r

λ2

(
4
√

r2

λ2−1−( r2

λ2 +2−π)

−4 arctan(
√

r2

λ2−1)
)

λ≤r≤
√

2λ

0 otherwise.

(10)

The node distance relates to the reception power via the
radio propagation model. The following lemma relies on basic
conditional probability laws and is stated without a proof.

Lemma 4. With the conditional densityfP |R=r as a property
of the radio propagation model, the joint densityfR,P and the
densityfP can be calculated as

fR,P (r, p) = fR(r)fP |R=r(p) (11)

fP (p) =
∫
√

2λ

0 fR,P (r, p)dr. (12)

In the log-normal shadowing radio propagation model,
the reception powerP is log-normal distributed for a fixed
distanceR = r (cp. (1)):

fP |R=r(p) = 10
ln(10)

√
2πpσ

exp
(

−
50(ln( p

p0
( r

r0
)̺))2

(ln(10)σ)2

)

. (13)

2) Edge Length Distribution:Now consider the following
modified experiment: Randomly choose a pair of nodesthat
are connected by an edge(recall, that we assume links to be
symmetric throughout this section) and denote byR′ andP ′

the distance and the reception power between the two nodes.

Theorem 5. The joint probability density function ofR′ and
P ′ is

fR′,P ′(r, p) =







fR(r)fP |R=r(p)
∫ √

2λ

0
fR(r)ϕ(r)dr

p ≥ βp∗

0 otherwise.
(14)

For λ→ ∞ we have

fR′,P ′(r, p) =







rfP |R=r(p)
∫ ∞
0

rϕ(r)dr
p ≥ βp∗

0 otherwise,
(15)

provided that the integral in the denominator exists.

Proof. The joint densityfR′,P ′ can be obtained fromfR,P

by conditioning on P ≥ βp∗ and using the relation
∫∞

βp∗ fP |R=r(p)dp = Pr[P ≥ βp∗ | R = r] = ϕ(r). The
distance density can be written asfR(r) = 1

λ

(
2π r

λ +O(( r
λ)2)

)

for λ→ ∞. Plugging this into (14) yields (15).

4Note that all results in this section remain valid, e.g. for arectangular
or cicular deployment area, only the distance density function for square line
picking has to be replaced by the density function for the respective shape.
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Corollary 6. The probability density function ofR′ is

fR′(r) = fR(r)ϕ(r)
∫ √

2λ

0
fR(r)ϕ(r)dr

. (16)

For λ→ ∞ we have

fR′(r) = rϕ(r)∫ ∞
0

rϕ(r)dr
, (17)

provided that the integral in the denominator exists. For a step
functionϕ = 1[0,rt] (rt > 0) it does exist andR′ follows a
triangular distribution:

fR′(r) =

{

2 r
r2

t

0 ≤ r ≤ rt

0 otherwise.
(18)

Proof. The first two claims follow by plugging (14) and
(15) into fR′(r) =

∫∞
0
fR′,P ′(r, p)dp. Then (18) follows by

straightforward calculation.

Corollary 6 shows that the edge length of the network
graph under log-normal shadowing approximately follows a
triangular distribution ifσ/̺≪ 1 andrt ≪ λ.5 6

3) Shadowing Increases the Edge Length:The following
theorem is a very general statement about the edge length
of network graphs resulting from two different connection
functions.

Theorem 7. Letϕ1 andϕ2 be connection functions that satisfy
the relations

∫∞
0
rϕ1(r)dr =

∫∞
0
rϕ2(r)dr (19a)

∧

x≥0

∫∞
x
rϕ1(r)dr ≥

∫∞
x
rϕ2(r)dr, (19b)

and for which
∫∞
0 r2ϕ1(r)dr and

∫∞
0 r2ϕ2(r)dr are finite.

Then the average edge lengthsE[R′1] andE[R′2] of the network
graphs onΛ∞ = R

2 in the symmetric link model resulting
from ϕ1 andϕ2, respectively, satisfy

E[R′1] ≥ E[R′2]. (20)

Proof. By plugging (17) intoE[R′] =
∫∞
0 rfR′(r)dr and

using the abbreviationψ(r) := r(ϕ1(r) − ϕ2(r)) we observe
that it suffices to show that for allx ≥ 0

∫∞
x
ψ(r)dr ≥ 0 =⇒

∫∞
x
rψ(r)dr ≥ 0. (21)

For x ≥ 0 we defineΨ(x) :=
∫∞

x ψ(r)dr and use integration
by parts (note that

∫
ψ(r)dr = −Ψ(r) + c for somec ∈ R):

∫ ∞

x

rψ(r)dr = xΨ(x) − lim
r→∞

rΨ(r) +

∫ ∞

x

Ψ(r)dr. (22)

If we could show thatlimr→∞ rΨ(r) = 0 this would imply
the theorem sinceΨ(x) is non-negative by assumption.

5Corollary 6 also corrects a result from [7, Sect. II] on the edge length
distribution under log-normal shadowing on an infinite deployment area. The
authors obtain a different density than we get when plugging(3) into (17).

6Analogously to the approach in Corollary 6 one can easily derive the
distribution of the edge powerP ′ from Theorem 5. Since this distribution is
not of interest for the rest of the paper, we omit these calculations.

For r̃ ≥ 0 we haver̃ϕi(r̃) ≥ 0 (i = 1, 2), therefore

lim
r→∞

r
∫∞

r r̃ϕi(r̃)dr̃ ≥ 0 (23)

lim
r→∞

r
∫∞

r
r̃ϕi(r̃)dr̃ ≤ lim

r→∞

∫∞
r
r̃2ϕi(r̃)dr̃ = 0. (24)

This implieslimr→∞ r
∫∞

r
r̃ϕi(r̃)dr̃ = 0 (i = 1, 2), which in

turn yieldslimr→∞ rΨ(r) = 0.

Note that Theorem 7 extends to the asymmetric link model
by substitutingϕ2

1 for ϕ1 andϕ2
2 for ϕ2.

Condition (19a) expresses thatϕ1 andϕ2 generate the same
expected node degree (cp. (4a)), and (19b) formalizes thatϕ1

generates more distant and less nearby neighbors thanϕ2.
Theorem 7 applies to the connection function for log-normal

shadowing when using the transmission powers (7). We leave
it to the reader to check that

ϕi := ϕLNS| p0=p↔
σ=σi

(i = 1, 2) (25)

indeed satisfy (19) provided thatσ1 > σ2. The same holds for

ϕi := ϕ2
LNS| p0=p

⇆
σ=σi

(i = 1, 2). (26)

Hence, the average edge length increases with the shadowing
deviationσ. Theorem 7 can also be employed to show that the
normalization scheme (8) increases the average edge length.
As condition (19) applies to both normalization schemes (8)
and (9) so nicely, it seems to capture the heart of our problem
in a natural way.7

The following corollary determines the predicted edge
length increase under log-normal shadowing precisely, and
thereby justifies the positive effect of an increasing shadowing
deviation on connectivity.8

Corollary 8. Consider the log-normal shadowing radio prop-
agation model onΛ∞ = R

2 using the transmission powers
(7) that preserve the expected node degree.
The average length of the network graph edges in the sym-
metric and asymmetric link model is

E[R′↔]|p0=p↔ = 2
3rt exp

(
3
2

(
ln(10)σ

10̺

)2
)

(27)

E[R′⇆]|p0=p⇆
= 2

3rt exp
(

3
2

(
ln(10)σ

10̺

)2
)

(
1−erf

(
3
2

ln(10)σ
10̺

))

(
1−erf

(
ln(10)σ

10̺

)) 3
2
.

(28)

Both terms are strictly increasing withσ.

Proof. The result for symmetric links follows by succes-
sively plugging (17), (3), (2) and finally (7a) intoE[R′] =
∫∞
0
rfR′ (r)dr. The calculation for asymmetric links proceeds

similarly, only replaceϕ(r) in (17) by ϕ(r)2 and use (7b)
instead of (7a).

7An interesting open question with respect to connectivity is the relation
between the critical node densitiesµ1 and µ2 for percolation in network
graphs onΛ∞ = R

2 based on connection functionsϕ1 andϕ2, respectively
(at the critical node density an infinite network graph component appears with
probability one). The aim would be to prove or disprove that condition (19)
implies µ1 ≤ µ2.

8For the normalization scheme (8), the precise edge length increase can be
determined similarly, a calculation we omit due to the limited space.
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Fig. 5. Edge length distribution under log-normal shadowing when using the
transmission power from (7a) (analytical curves from (17),histograms from
simulations onΛ16000 = [−8000, 8000]2, n = 12800, ̺ = 4, rt = 200).

In Fig. 5 we plot the edge length distribution (17) for
different values of the shadowing deviation and compare it
to simulation results (be reminded that they are based on
the transmission power (7a) that preserves the expected node
degree). As can be observed, the analytical curves match
very well the simulation results. The figure also illustrates
how the edge length distribution spreads out with shadowing
and increasingly deviates from a triangular distribution.This
causes the average edge length to increase as predicted by
Corollary 8. The increase in the average edge length justifies
the connectivity improvement caused by radio irregularityas
observed in the previous section.

Our results indicate that — contrary to what intuition might
suggest — radio irregularity is indeed beneficial for network
connectivity.

IV. I MPACT OF SHADOWING ON INTERFERENCE

Throughput capacity is another important property of wire-
less networks. As with connectivity, it is difficult to find closed
expressions for the capacity of a wireless network, and even
more complicated to analytically study the effects of log-
normal shadowing on capacity. In [10], it is shown that the
capacity of a network is mainly limited by interference (to be
more precise, by the number of interfering nodes per network
link). In this section we try to gain a quantitative understanding
of interference under log-normal shadowing.

We first describe the signal-to-interference-plus-noise-ratio
model (SINR) and calculate expressions for the number of
interfering nodes per network link (Section IV-A). We then
demonstrate that the impact of the shadowing deviation on
interference is mainly caused by a bias towards an enlarged
transmission range in the radio propagation model (SectionIV-
B). We compensate for this effect by adjusting the transmission
power of the nodes such that the expected cumulated noise
remains constant with respect to the shadowing deviation
(Section IV-C).

Our results show that interference decreases with shadowing
when the expected cumulated noise is kept constant. We
explain this phenomenon by showing that the interference

reduction is caused by a spread of the power distribution under
shadowing.

A. The SINR Model

In thesignal-to-interference-plus-noise-ratio model(SINR),
a signal from nodeb can be decoded correctly at nodea, if

pa←b ≥ β
(

p∗ +
∑

b′∈Ī
pa←b′

︸ ︷︷ ︸

=:pĪ

)

(29)

holds, wherēI ⊆ N \{a, b} is the subset of nodes transmitting
concurrently withb. Note that (29) with̄I = ∅ is necessary for
two nodes to be connected by an edge in the network graph. A
smallest set of nodesI such thatĪ = N \ (I ∪{a, b}) satisfies
(29) is called aset of interferers(w.r.t. the transmission from
nodeb to nodea with reception powerpa←b); the interfering
nodes fromI must not transmit concurrently with nodeb,
while the non-interferersfrom Ī may do so. The size of a
set of interferers is uniquely determined and referred to asthe
number of interferers.

A set of interferers can easily be determined by sorting
the received signal powers(pa←b′)b′∈N\{a,b} and successively
adding nodes to the set̄I, starting with those that contribute
the lowest signal powers, as long as (29) is satisfied. ThenI :=
(N \{a, b})\ Ī is a set of interferers. For the deterministic path
loss model (i.e., log-normal shadowing withσ = 0) sorting
the nodes according to signal power and sorting according
to distance from nodea induces the same node order. In this
case interferers and non-interferers can be separated by a circle
centered at nodea.

Reusing results from Section III-C (recall the definitions
of R, P , R′ and P ′), the following theorem determines
the expected number of interferers for an arbitrary radio
propagation model, in particular for log-normal shadowing.

Theorem 9. On Λλ = 1
2 [−λ, λ]2 the expected number of

interferers for a transmission from nodeb to nodea with power
pa←b =: p ≥ βp∗ equals

E[|I| | P ′ = p] = (n− 2)

∫ ∞

τ

fP (p̃)dp̃, (30)

whereτ is a solution of the equation

(n− 2)

∫ τ

0

p̃fP (p̃)dp̃ =
p

β
− p∗. (31)

Proof. From (29) we obtain the maximum admissible noise
for a transmission from nodeb to nodea aspĪ = p/β − p∗.
The number of nodes from which nodea receives a signal
in the range[p̃, p̃ + dp̃] is (n − 2)fP (p̃)dp̃, the noise from
these nodes is(n − 2)p̃fP (p̃)dp̃. Interferers are nodes from
which nodea receives the highest signal powers, while non-
interferers are nodes from which nodea receives the lowest
signal powers (the latter may transmit concurrently with node
b, the former must not). Equating the maximum admissible
noise with the cumulated noise from the non-interferers yields
(31). Suppose this equation has two solutionsτ andτ ′. Since
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(a) Expected number of interferers under log-normal shadowing (sim-
ulations onΛ2000 = [−1000, 1000]2 , n = 200, p0 = 1, r0 = 1,
β = 2.5, rt = 200).
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(b) Expected cumulated noise from outside a circle of radius
r′ = 50 under log-normal shadowing (simulations onΛ2000 =
[−1000, 1000]2, n = 200, p0 = 1, r0 = 1).

Fig. 6. Interference increase as a side effect of log-normalshadowing.

∫ τ ′

τ p̃fP (p̃)dp̃ = 0 implies
∫ τ ′

τ fP (p̃)dp̃ = 0 the right hand
side of (30) is well-defined.

The price for the generality of Theorem 9 is, that the
integrals (30) and (31) can only be treated numerically, in
particular sincefP itself is given by another integral (12).

B. Interference in the Standard LNS Model

To study how interference evolves with an increasing shad-
owing deviation, we plot in Fig. 6(a) the expected number of
interferers versus the shadowing deviation, with the path loss
exponent as a parameter. The expected number of interferers
obtained from (30) and the simulation results match very well.
The figure also shows that shadowing increases the number of
interfering nodes.

We can explain this behavior by calculating the expected
cumulated noise perceived at a given node, as formalized in
the following theorem.

Theorem 10. Let Pr′ be a random variable denoting the
cumulated received signal power from all nodes in a distance
at leastr′ from a receiver node.
On Λ∞ = R

2 the expectation ofPr′ is

E[Pr′ ] = µ2π
∫∞

r′ rE[P |R = r]dr. (32)

For the log-normal shadowing radio propagation model with
̺ > 2 this integral evaluates to

E[Pr′ ] =







p0µπ
(
r2
0

(
2

̺−2 exp
(

(ln(10)σ)2

200

)
+1

)
−r′2

)
r′ ≤ r0

2p0µπr̺

0 exp
(

(ln(10)σ)2

200

)

r′̺−2(̺−2) r′ ≥ r0.
(33)

Proof. The proof of (32) resembles that of (4).
For the log-normal shadowing model we obtain from (1)

E[P |R = r] = p0

(
r0

r

)̺
exp

(
(ln(10)σ)2

200

)

(34)

for r > r0 andE[P |R = r] = p0 for r ≤ r0 (we distinguish
betweenr > r0 andr ≤ r0 here, if otherwise (34) was used

for all r ≥ 0 the integral
∫∞
0 rE[P | R = r]dr would not

converge). Plugging this into (32) yields the result.

In Fig. 6(b) we plot the expected cumulated noise from out-
side a circle of radiusr′ = 50 versus the shadowing deviation.
The expected noise calculated from (33) and the simulation
results show excellent agreement. Most importantly, the figure
illustrates that the expected cumulated noise increases with the
shadowing deviation. This is a side effect of the log-normal
shadowing radio propagation model enlarging the transmission
range as the shadowing deviation grows. Since interference
in the SINR model is primarily affected by the cumulated
noise, the increase in the number of interferers is not surpris-
ing. Therefore, to study the impact of radio irregularity on
interference in a meaningful way, it is reasonable to adjust
the power levels such that the expected cumulated noise is
preserved. This resembles our approach from Section III where
we studied connectivity under constant expected node degree.

C. Interference Under Constant Noise

Based on the above observation, we adjust the transmission
power as a function of the shadowing deviation, such that the
expected cumulated noise remains constant and equal to that
when the shadowing deviation is zero. We can easily compute
the required power values from (33) as follows.

Corollary 11. In the log-normal shadowing radio propagation
model with̺ > 2 on Λ∞ = R

2, the transmission powerp∼
such that

E[Pr′ ]p0=p∼ = E[Pr′ ]σ=0 (35)

holds forr′ ≥ r0 is

p∼ = p0 exp
(

− (ln(10)σ)2

200

)

. (36)

In Fig. 7 we plot the expected number of interferers versus
the shadowing deviation, with the path loss exponent as a
parameter. Here we employ the transmission power from
(36). Again, we compare the expected number of interferers
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Fig. 7. Expected number of interferers under log-normal shadowing using
the transmission power (36) that preserves the expected cumulated noise
(simulations onΛ2000 = [−1000, 1000]2, n = 200, p0 = 1, r0 = 1,
β = 2.5, rt = 200).

obtained from (30) to simulation results and find very good
agreement. In contrast to Fig. 6(a) we observe that the number
of interferers no longer increases, but decreases as the shad-
owing deviation grows.

This phenomenon can be explained as follows: an increasing
shadowing deviation spreads out the power density function
fP , increasing both the number of node pairs with a low
reception power and those with a high reception power
(balanced such that the cumulated noise remains constant).
Consequently, it takes more nodes to reach the maximum
admissible noisepĪ (cp. (29)) — nodes that qualify as non-
interferers. Hence the number of interferers decreases. Fig. 8
shows the power distribution for different values of the shad-
owing deviation. As can be observed, low reception powers
become more likely as the shadowing deviation grows. The
same holds for high reception powers, but this is not depicted
in the figure to maintain its clarity.

To the best of our knowledge this is the first result captur-
ing the intrinsic impact of radio irregularity on interference
under log-normal shadowing. Our results indicate that radio
irregularity is not only beneficial for connectivity but also for
interference.

An interesting open question is how radio-irregularity im-
pacts other factors apart from interference that influence the
throughput capacity of a wireless network (route length, edge
usage), and finally to address capacity itself. One difficulty
here is to define a reasonable measure of comparability for
the radio-irregularity induced by log-normal shadowing, since
capacity is affected by graph-theoretic (route length, edge
usage) and non-graph-theoretic properties (SINR interference).

V. CONCLUSION

In this paper we have studied the impact of log-normal
shadowing on connectivity and interference in a wireless
network. Unlike previous work, where results are distorted
by an artifact of the log-normal shadowing radio propagation
model, we employ a method that allows a fair comparison
among different levels of radio irregularity. We have shown

2´10-15 2´10-14 2´10-13

2´1011

5´1011

2´1012

5´1012

p

fP (p)

σ = 0σ = 2

σ = 4

σ = 6

Fig. 8. Power distribution under log-normal shadowing whenusing the trans-
mission power (36) that preserves the expected cumulated noise (analytical
curves from (12),Λ2000 = [−1000, 1000]2 , p0 = 1, r0 = 1, ̺ = 4).

that under a reasonable measure of comparability log-normal
shadowing improves the connectivity of a network and reduces
interference. Our results illustrate that the radio irregularity
induced by log-normal shadowing has indeed a beneficial
impact on connectivity and interference. This is of interest
for many existing bounds on the connectivity and throughput
capacity of wireless networks that have been derived using the
deterministic path loss model, as our results indicate these are
lower instead of upper bounds on connectivity and capacity.
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