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Abstract
Achieving a global goal based on local information is chal-
lenging, especially in complex and large-scale networks such
as the Internet or even the human brain. In this paper, we
provide an almost tight classification of the possible trade-
off between the amount of local information and the quality
of the global solution for general covering and packing prob-
lems. Specifically, we give a distributed algorithm using only
small messages which obtains an (ρ∆)1/k-approximation for
general covering and packing problems in time O(k2), where
ρ depends on the LP’s coefficients. If message size is un-
bounded, we present a second algorithm that achieves an
O(n1/k) approximation in O(k) rounds. Finally, we prove
that these algorithms are close to optimal by giving a lower
bound on the approximability of packing problems given
that each node has to base its decision on information from
its k-neighborhood.

1 Introduction

Many of the most fascinating and fundamental systems
in the world are large and complex networks, such as
the human society, the Internet, or the human brain.
Such systems have in common that their entirety is
composed of a multiplicity of individual entities; human
beings in society, hosts in the Internet, or neurons in
the brain. As diverse as these systems may be, they
share the key characteristic that the capability of direct
communication of each individual entity is restricted to
only a small subset of neighboring entities. Most human
communication, for instance, is between acquaintances
or within the family, and neurons are directly linked
with merely a relatively small number of other neurons
for neurotransmission. On the other hand, in spite of
each node thus being inherently “near-sighted,” i.e.,
restricted to local communication, the entirety of the
system is supposed to come up with some kind of global
solution, or to keep an equilibrium.

Achieving a global goal based on local information
is challenging. Many of the systems which are the
focus of computer science fall exactly into the above
mentioned category of networks. In the Internet, large-
scale peer-to-peer systems, or mobile ad hoc and sensor
networks, no node in the network is capable of keeping

global information on the network. Instead, these nodes
have to perform their intended (global) task based on
local information only. In other words, all computation
in these systems is inherently local! Not surprisingly,
studying the fundamental possibilities and limitations of
local computation is therefore of interest to theoreticians
in approximation theory, distributed computing, and
graph theory.

The study of local computation has been initiated
by the pioneering work of Linial [11], and Naor and
Stockmeyer [15] more than a decade ago. Also, the
work of Peleg [17] has resulted in numerous interesting
and deep results. But nonetheless, there remains a great
number of important open problems related to questions
such as what kind of global tasks can be performed
by individual entities that have to base their decisions
on local information, or how much local information is
required in order to come up with a globally optimal
solution. For instance, the open question from [16], that
is, characterizing the trade-off between communication
among agents to exchange information and the global
utility achieved, has been unanswered. It is the goal of
this paper to make a step towards answering this open
problem and, more generally, to bring forward some of
the underlying principles and trade-offs governing local
computation.

Not surprisingly, many global criteria such as count-
ing the total number of nodes in the network or ob-
taining a minimum spanning tree cannot be met if ev-
ery node’s decision is based solely on local knowledge.
On the other hand, many fundamental coordination
tasks and applications in large-scale networks appear
to be easier to handle from a “local-global” perspec-
tive. Specifically, classic graph theory problems such
as dominating set or matching can be formulated as
standard covering and packing problems. The nature
of simple covering and packing problems like minimum
vertex cover or maximum matching appears to be local
and intuitively, one may think that each node’s (edge’s)
decision is not affected by very distant nodes (edges).
Interestingly, we prove in this paper that this intuition
is misleading even for the most basic packing problems.



On the positive side, we show that there exist distributed
approximation algorithms that almost achieve the op-
timal trade-off, even in the practically important case
in which the amount of information exchanged in each
message is limited. Specifically, we give the following
results:
• Consider a network with n nodes and maximum

degree ∆. Assume that each node in a network
graph has to base its decision on its k-hop neigh-
borhood. We present an efficient deterministic dis-
tributed algorithm that operates with small mes-
sages of size O(log n) bits. The algorithm achieves
a (ρ∆)1/k-approximation for general covering and
packing problems in O(k2) communication rounds,
where ρ depends on the coefficients of the underlying
LP.

• When message size is unbounded, each network node
can easily gather the entire information from its
O(k)-neighborhood in O(k) communication rounds.
Hence, in this case, the achievable trade-off is a true
consequence of locality restriction only. We present
an algorithm producing an O(n1/k)-approximation
if each node knows its O(k)-neighborhood.

• In combination with (distributed) randomized
rounding, the above algorithms can be transformed
into constant-time distributed algorithms having
non-trivial approximation ratios for various combi-
natorial problems.

• Finally, we show that the trade-off achieved by
our algorithms is almost tight. Specifically, we
prove that even the most simple packing prob-
lem, (fractional) maximum matching, cannot be ap-
proximated within Ω(nc/k2

/k) and Ω(∆1/k/k), re-
spectively. This implies Ω(

√
log n/ log log n) and

Ω(log ∆/ log log ∆) time lower bounds for (possibly
randomized) distributed algorithms in order to ob-
tain a constant or polylogarithmic approximation for
maximum matching and packing problems, even if
message size is unbounded. This lower bound ex-
tends a similar result that has recently been achieved
for the minimum vertex cover problem in [9].
Note that by giving upper and lower bounds for

general covering and packing LPs, we show that many
different natural problems behave similarly with regard
to local approximability. This is of great theoretical
interest since such a classification of problems may
provide a completely new insight into the impact of
locality on algorithms.

Related work and the model of computation are de-
scribed in Sections 2 and 3. In subsequent Sections 4
and 5, we give distributed algorithm for general cover-
ing and packing LPs in the bounded and unbounded

message model, respectively. The packing lower bound
is derived in subsequent Section 6. Section 7 concludes
the paper. Due to lack of space, some proofs are omitted
from this extended abstract.1

2 Related Work

Little is known about the fundamental limitations of
locality-based approaches. Fich and Ruppert, for in-
stance, describe a numerous lower bounds and impos-
sibility results in distributed computing [5]. But most
of them apply to other computational models where lo-
cality is no issue or there are additional, more restric-
tive limiting factors, such as bounded message size [4].
There have been virtually no nontrivial lower bounds
for local computation, besides Linial’s seminal Ω(log∗n)
time lower bound for constructing a maximal indepen-
dent set on a ring [11]. In addition, we have shown
that minimum vertex cover and thus covering prob-
lems cannot be approximated better than Ω(nc/k2

/k)
and Ω(∆1/k/k) if each node’s information is restricted
to its k-neighborhood [9]. On the positive side, it was
shown by Naor and Stockmeyer [15] that there exist
locally checkable labelings which can be computed in
distributed constant time, i.e., with completely local in-
formation only.

The focus of this paper is to understand locality
in problems that can be formulated as packing and
covering LPs. There are a number of (parallel) al-
gorithms for solving such LPs which are faster than
interior-point methods that can be applied to general
LPs (e.g. [6, 14, 18, 22]). All these algorithms need at
least some global information to work. The problem
of approximating positive LPs using only local informa-
tion has been introduced in [16]. The first algorithm
achieving a constant approximation in polylogarithmic
time is described in [2]. Distributed algorithms tar-
geted for specific covering and packing problems include
algorithms for the minimum dominating set problem
[3, 8, 19] as well as algorithms for maximal matchings
and maximal independent sets [1, 7, 13]. This implies a
constant approximation for maximum matching.

All described distributed algorithms have a time
complexity which is at least logarithmic in n. That
is, each node may gather information which is as far
away as O(log n) hops. Hence, while these algorithms
provide solutions to particular problems, they do not
fully explore the trade-off between local knowledge and
solution quality. A distributed algorithm for minimum
dominating set running in an arbitrary, possibly con-
stant number of rounds is found in [10].

1A version containing all proofs can be found as TIK techni-
cal report 229 at ftp://ftp.tik.ee.ethz.ch/pub/publications/TIK-
Report229.pdf



3 Model

We describe the network as an undirected graph G =
(V,E). The vertices V = {v1, . . . , vn} represent the
network entities or nodes (e.g. processors) and the edges
represent bidirectional communication channels. We
distinguish two prototypical and classic message passing
models [17], LOCAL and CONGEST , depending on
how much information can be sent in each message.

In the LOCAL model (e.g., [11, 15, 17]), knowing
your k-neighborhood and performing k communication
rounds are equivalent. It is assumed that in every
communication round, each node in the network can
send an arbitrarily long message to each of its neighbors.
Local computations are for free. Each node has a unique
identifier and initially, nodes have no knowledge about
the network graph. In k communication rounds, a
node v may collect the IDs and interconnections of all
nodes up to distance k from v, because messages are
unbounded. Hence, each node has a partial (local) view
of the graph; it knows its entire vicinity up to distance
k. Let Tv,k be the topology seen by v after k rounds.
Tv,k is the graph induced by the k-neighborhood of v
without all edges between nodes at distance exactly
k. The labeling (i.e., the assignment of IDs) of Tv,k

is denoted by L(Tv,k). The view of a node v is the pair,
Vv,k := (Tv,k,L(Tv,k)). The view of an edge e = (u, v)
is the union of views of its incident nodes. The best
a local algorithm can do in time k, is to have every
node v collect its k-neighborhood and base its decision
on Vv,k. Since the LOCAL model abstracts away other
aspects arising in the design of distributed algorithms
(congestion, fast local computation, . . . ), it is the most
fundamental model when studying the phenomenon of
locality; particularly for lower bounds.

In practice, the amount of information exchanged
between two neighbors in one communication step is
limited. The CONGEST model [4, 17] takes into
account the volume of communication. This model
limits the information that can be sent in one message
to O(log n) bits. Given this additional restriction, even
problems on the complete network graph, which could
be solved optimally in a single communication round in
the LOCAL model, become nontrivial.

A fractional covering problem (PP) and its dual
fractional packing problem (DP), are linear programs
of the canonical forms

min cTx

s.t. A · x ≥ b

x ≥ 0

max bTy

s.t. AT · y ≤ c

y ≥ 0

where all aij , bi, and ci are non-negative. We will use

the term primal LP (PP) for the minimization and dual
LP (DP) for the maximization problem. The number
of primal and dual variables are denoted by m and
n, respectively. Let amax := maxi,j{aij , bi, ci} be the
maximum coefficient and amin := mini,j{aij , bi, ci}\{0}
be the minimum non-zero coefficient of (PP) and (DP).
ρ := amax/amin is the maximum ratio between any two
coefficients.

Analogously to [2, 16], we consider the following
distributed setting. The linear program is bound to a
network graph G = (V, E). Each primal variable xi and
each dual variable yj is associated with a node v

(p)
i ∈ V

and v
(d)
j ∈ V , respectively. There are communication

links between primal and dual nodes wherever the re-
spective variables occur in the corresponding inequality.
Thus, (v(p)

i , v
(d)
j ) ∈ E if and only if xi occurs in the jth

inequality of (PP), i.e., v
(p)
i and v

(d)
j are connected iff

aji > 02. The degrees of v
(p)
i and v

(d)
j are called δ

(p)
i and

δ
(d)
j , respectively. ∆p := maxi δ

(p)
i and ∆d := maxj δ

(d)
j

are called the primal and dual degree, respectively. The
set of dual neighbors of v

(p)
i is denoted by N

(p)
i , the set

of primal neighbors of v
(d)
i by N

(d)
i . Where convenient,

N
(p)
i and N

(d)
j also denote the sets of the indices of the

respective nodes.

4 Bounded Messages

In this section, we describe an efficient distributed
algorithm to approximate covering and packing linear
programs in the CONGEST model. For our algorithm,
we need the LPs (PP) and (DP) to be of the following
special form:

(4.1) ∀i, j : bi = 1, aij = 0 or aij ≥ 1.

The transformation to (4.1) is done in two steps. First,
every aij is replaced by âij := aij/bi and bi is replaced
by 1. In the second step, the ci and âij are divided
by λi := minj{âji} \ {0}. The optimal objective
values of the transformed LPs are the same. A feasible
solution for the transformed LP (4.1) can be converted
to a feasible solution of the original LP by dividing
all x-values by the corresponding λi and by dividing
the y-values by the corresponding bi. This conserves
the values of the objective functions. Note that the
described transformation can be computed locally in a
constant number of rounds. For the rest of this section,

2Note that in order to solve such a problem in a real network
setting where only some variables correspond to nodes, the other
variables may be simulated by the nodes as well. Variables
associated to edges (like in vertex cover or maximum matching)
can be simulated by incident nodes.



LP Approximation LP Approximation
Algorithm for Primal Node v

(p)
i : Algorithm for Dual Node v

(d)
i :

1: xi := 0; 1: yi := y+
i := wi := fi := 0; ri := 1;

2: for ep := kp − 2 to −f − 1 by −1 do 2: for ep := kp − 2 to −f − 1 by −1 do
3: for 1 to h do 3: for 1 to h do
4: (∗ γi := cmax

ci

∑
j ajirj ∗) 4: r̃i := ri;

5: for ed := kd − 1 to 0 by −1 do 5: for ed := kd − 1 to 0 by −1 do
6: γ̃i := cmax

ci

∑
j ajir̃j ; 6:

7: if γ̃i ≥ Γep/kp
p then 7:

8: x+
i := 1/Γed/kd

d ; xi := xi + x+
i ; 8:

9: fi; 9:

10: send x+
i , γ̃i to dual neighbors; 10: receive x+

j , γ̃j from primal neighbors;
11: 11: y+

i := y+
i + r̃i

∑
j aijx

+
j /γ̃j ;

12: 12: w+
i :=

∑
j aijx

+
j ;

13: 13: wi := wi + w+
i ; fi := fi + w+

i ;
14: 14: if wi ≥ 1 then r̃i := 0 fi;
15: receive r̃j from dual neighbors 15: send r̃i to primal neighbors
16: od; 16: od;
17: 17: increase duals();
18: receive rj from dual neighbors 18: send ri to primal neighbors
19: od 19: od
20: od; 20: od;
21: xi := xi/ min

j∈N
(p)
i

∑
` aj`x` 21: yi := yi/ max

j∈N
(d)
i

1
cj

∑
` a`jy`

Algorithm 1: Distributed LP Approximation Algorithm

we assume that the coefficients of the LP are given
according to (4.1).

We start the description of the algorithm with a
general outline. As our algorithm borrows from the
greedy dominating set/set cover algorithm, it is useful
to view the distributed LP algorithm in this context.
The greedy minimum dominating set (MDS) algorithm
starts with an empty set and sequentially adds the node
which covers the most not yet covered nodes. The LP
relaxation of MDS asks for variables xi for the nodes vi

such that the sum of the xi in the 1-neighborhood of
every node is at least 1. Analogous to the sequential
greedy approach, we also start with all xi set to 0
and we give priority to nodes with many uncovered
neighbors when increasing the xi. In particular, we
always increase the xi of all the nodes whose number of
uncovered neighbors is maximum up to a certain factor
(active nodes). In order not to ‘over-cover’ a node with
many active neighbors, we have to carefully choose the
increment of the xi at active nodes. As we proceed,
we simultaneously compute a solution for the dual LP
such that the objective values of the solutions stay the
same. In the end, each node is covered at least f times
and each dual constraint is fulfilled up to a factor αf .
Hence by dividing by f and αf , we obtain feasible, α-

approximate primal and dual solutions, respectively.
In order to achieve that every primal inequality is

fulfilled f times, each dual node v
(d)
i needs a requirement

ri ≤ 1 which is decreased every time the corresponding
primal constraint is achieved and a variable fi which
counts how many times the primal constraint has been
fulfilled (cf. [21]). The decision whether a primal node
v
(p)
i is active and can increase xi is based on the

efficiency per cost ratio γi which is defined as follows:

γi :=
cmax

ci

∑

j

ajirj .

For simplicity, we assume that all nodes know cmax :=
max{ci} as well as two other global quantities Γp and
Γd which are defined as

Γp := max
i

cmax

ci
·

n∑

j=1

aji and Γd := max
i

m∑

j=1

aij .

At the price of a considerably more complicated (and
less readable) algorithm, it is possible to get rid of this
assumption. For details, we refer to the full paper.

The detailed algorithm is given by Algorithm 1
along with the procedure increase duals() which is



procedure increase duals():
1: if wi ≥ 1 then
2: if fi ≥ f then
3: yi := yi + y+

i ; y+
i := 0;

4: ri := 0; wi := 0
5: else if wi ≥ 2 then
6: yi := yi + y+

i ; y+
i := 0;

7: ri := ri/Γbwic/kp
p

8: else
9: λ := max{Γ1/kd

d ,Γ1/kp
p };

10: yi := yi + min{y+
i , riλ/Γep/kp

p };
11: y+

i := y+
i −min{y+

i , riλ/Γep/kp
p };

12: ri := ri/Γ1/kp
p

13: fi;
14: wi := wi − bwic
15: fi

used by the dual nodes. The algorithm has two pa-
rameters kp ≥ 1 and kd ≥ 1 which determine the trade-
off between time complexity and approximation quality.
The bigger kp and kd, the better the approximation ra-
tio of the algorithm. On the other hand, smaller kp and
kd lead to a faster algorithm. Algorithm 1 also makes
use of two values f and h which are defined as follows:

f :=

⌈
kp + 1

Γ1/kp
p − 1

⌉
and h :=

⌈
1 +

kp

Γ1/kp
p ln Γp

⌉
.

In the following, we present lemmas which establish all
the necessary details to analyze Algorithm 1.

The goal of the outer ep-loop is to reduce the
maximum “weighted primal degree” γi. This is reflected
by the following lemma.

Lemma 4.1. For each primal node v
(p)
i , at all times

during Algorithm 1, γi ≤ Γ(ep+2)/kp
p .

One complete run (kd iterations) of the innermost
ed-loop can be seen as one parallel greedy step. Primal
nodes with large γi increase their xi such that the
corresponding increases y+

i of the dual variables are
almost feasible.

Lemma 4.2. Each time a dual node enters in-
crease duals() in Algorithm 1,

(4.2) y+
i ≤ ri · wi

Γep/kp
p

and y+
i ≤ ri · Γ1/kd

d + 1

Γep/kp
p

.

As shown in Lemma 4.4, all the increases of the dual
variables together render the dual constraints feasible
up to a small factor times (kp + f + 1). We first need
the following helper lemma.

Lemma 4.3. Let v
(p)
i be a primal node and let Yi :=∑

j ajiyj be the weighted sum of the y-values of its
dual neighbors. Further, let Y +

i be the increase of Yi

and γ−i be the decrease of γi during an execution of
increase duals(). We have

Y +
i ≤ Γ3/kp

p ·max{Γ1/kp
p , Γ1/kd

d }
γi(Γ

1/kp
p − 1)

· ci

cmax
· γ−i .

Proof. We prove the lemma by showing that the in-
equality holds for every dual neighbor v

(d)
j of v

(p)
i . Let

βj be the increase of yj and let r−j be the decrease of
rj . We show that

(4.3) βj ≤ Γ1/kp
p ·max{Γ1/kp

p ,Γ1/kd

d }
Γep/kp

p (Γ1/kp
p − 1)

· r−j .

The lemma then follows because γi ≤ Γ(ep+2)/kp
p

(Lemma 4.1) and because

Y +
i =

∑

j

ajiβj and γ−i =
cmax

ci

∑

j

ajir
−
j .

To prove Inequality (4.3), we again consider the cases
where wj ≥ 2 and where 1 ≤ wj < 2. If wj ≥ 2,
by Lemma 4.2, βj = y+

j ≤ rj(1 + Γ1/kd

d )/Γep/kp
p . The

requirement rj is divided by at least Γ2/kp
p and therefore

r−j ≥ rj(Γ
2/kp
p − 1)/Γ2/kp

p . Together, we get

βj ≤ 1 + Γ1/kd

d

Γep/kp
p

· Γ2/kp
p

Γ2/kp
p − 1

· r−j

≤

(
1 + Γ1/kp

p

)
Γ1/kp

p max{Γ1/kp
p , Γ1/kd

d }
Γep/kp

p

(
Γ1/kp

p + 1
)(

Γ1/kp
p − 1

) r−j .

For 1 ≤ wj < 2, the proof is along the same lines. Here,
βj ≤ rj max{Γ1/kp

p , Γ1/kd

d }/Γep/kp
p and r−j = rj(Γ

1/kp
p −

1)/Γ1/kp
p . Again, we obtain Inequality (4.3):

βj ≤ max{Γ1/kp
p , Γ1/kd

d }
Γep/kp

p

· Γ1/kp
p

Γ1/kp
p − 1

· r−j .

We do not have to consider the case fj ≥ f explicitly
because the same analysis as for wj ≥ 2 applies in this
case.

Lemma 4.4. Let v
(p)
i be a primal node and Yi =∑

j ajiyj be the weighted sum of the y-values of the dual

neighbors of v
(p)
i . After the main part of the algorithm

(i.e., after the loops at line 20),

Yi ≤ ci

cmax
(kp + f + 1)Γ3/kp

p max
{

Γ1/kp
p , Γ1/kd

d

}
.



Proof. For simplicity, we define

Q :=
1

cmax
Γ3/kp

p max{Γ1/kp
p , Γ1/kd

d }.

Before γi is decreased for the last time, we have γi ≥
1/Γ(f−1)/kp

p because at least one rj in the dual neigh-
borhood of v

(p)
i has to be greater than 0. If we assume

that the last time γi is decreased it is only reduced to
γi = 1/Γ(f+1)/kp

p , Lemma 4.3 still holds. The analysis
is exactly the same as for the case wj ≥ 2 in Lemma
4.3. By Lemma 4.3, Yi is therefore bounded by the
area under the curve ciQ/(Γ1/kp

p −1) ·1/x for x between
1/Γ(f+1)/kp

p and Γp:

Yi ≤ ciQ

Γ1/kp
p − 1

·
∫ Γp

1

Γ
(f+1)/kp
p

1
x

dx

=
ci(kp + f + 1)Q ln

(
Γ1/kp

p

)

Γ1/kp
p − 1

≤ ci(kp + f + 1)Q.

The last inequality follows from ln(1 + t) ≤ t. ¤

At the end of the algorithm, all primal constraints
are satisfied at least f times. Further, the primal and
dual objective functions are the same.

Lemma 4.5. After the loops at line 20, ∀i: ri = 0 and
fi ≥ f and

∑m
i=1 cixi = cmax

∑n
j=1 yj.

Proof. When entering the ep-loop for the last time, by
Lemma 4.1,

Γ(−f+1)/kp
p ≥ γj ≥

∑

i

aijri ≥
∑

i∈N
(p)
j

ri.

γj can only be greater than 0 if there is exactly one ri

in the dual neighborhood of v
(p)
j which is greater than

zero. If ri is still greater than 0 when ed = 0, xj will be
increased by 1 which makes wj ≥ 1 and therefore ri = 0
after the next call to increase duals().

fi counts the number of times the ith constraint of
(PP) is satisfied. It is increased together with wi in line
13 of Algorithm 1. Every time the integer part of wi

is increased, ri is divided by Γbwic/kp
p and wi is set to

wi − bwic. Therefore, ri = 0 implies fi ≥ f .
Let v

(p)
i be a primal node which increases xi by x+

i

(line 8). All dual neighbors v
(d)
j of v

(p)
i increase y+

j by
ajir̃jx

+
i /γ̃i. Hence, the sum of the y+

j -increases over all

dual neighbors of v
(p)
i is

x+
i

γ̃i

∑

j

ajir̃j = x+
i

∑
j ajir̃j

cmax
ci

∑
j ajir̃j

=
ci

cmax
x+

i .

Because fj ≥ f , all y+
j are 0 in the end and thus yj is

equal to the sum of all increases of y+
j . ¤

Combining the above lemmas, we get the following
theorem.

Theorem 4.1. For arbitrary kp, kd ≥ 1, Algorithm 1
approximates (PP) and (DP) by a factor

Γ4/kp
p max

{
Γ1/kp

p ,Γ1/kd

d

}
.

The time complexity of Algorithm 1 is

O

(
kdkp

(
1 +

1

Γ1/kp
p − 1

)(
1 +

kp

Γ1/kp
p log Γp

))
.

For kp ∈ O(log Γp), this simplifies to O(kdkp).

Proof. For the approximation ratio, we have to look
at line 21 of Algorithm 1 where all x and y values
are divided by the largest possible values to keep/make
the primal/dual solution feasible. By Lemma 4.5, each
primal constraint is satisfied at least f times. Therefore,
all primal variables are divided by at least f . Due to
Lemma 4.4, for each primal node, the sum of the y
values of its dual neighbors is at most ci(kp+f +1)Q for
Q as defined in Lemma 4.4. Dividing all dual variables
by (kp + f + 1)Q therefore renders the dual solution
feasible. By Lemma 4.5, the ratio between the objective
functions of the primal and the dual solutions is
∑m

i=1 cixi∑n
j=1 yi

≤ cmax
kp + f + 1

f
Q

≤ cmax

kp + kp+1

Γ
1/kp
p −1

+ 1

kp+1

Γ
1/kp
p −1

Q

= cmaxΓ1/kp
p Q = Γ4/kp

p max
{

Γ1/kp
p , Γ1/kd

d

}
.

Because of the duality theorem for linear programming,
this ratio is an upper bound on the approximation ratio
for (PP) and (DP).

As for the time complexity, note that each iter-
ation of the inner-most loop (ed-loop) requires two
rounds. Hence, the algorithm has time complexity
O(kd(kp + f)h). The claim follows from substituting
the actual values for f and h. For kp ∈ O(log Γp),
Γ1/kp

p −1 is a constant and therefore the time complexity
simplifies to O(kdkp). ¤

Corollary 4.1. For sufficiently small ε, Algorithm 1
computes a (1 + ε)-approximation for (PP) and (DP)
in O

(
log Γp log Γd/ε4

)
rounds. In particular, a con-

stant factor approximation can be achieved in time
O(log Γp log Γd).



Remark: Using methods similar to the ones described
in [2, 14], it is possible to get rid of the dependency
on the coefficients ρ := amax/amin. As a result, the
running time and approximation ratio would depend on
the number of nodes m and n instead of the degrees ∆p

and ∆d.
Distributed Randomized Rounding We can apply
our distributed LP approximation algorithms together
with standard distributed randomized rounding tech-
niques to obtain distributed approximation algorithms
for a number of combinatorial problems. We can prove
that given an α-approximate solution for the LP re-
laxation of problems for which the matrix elements
aij ∈ {0, 1}, we can compute in a constant number
of rounds a O(α log ∆p)-approximation for the corre-
sponding covering IP and a O(α∆d)-approximation for
the packing IP.

5 Unbounded Messages

In [12], Linial and Saks presented a randomized dis-
tributed algorithm to decompose a graph into sub-
graphs of limited diameter. We use their algorithm to
decompose the linear program into sub-programs which
can be solved locally in the LOCAL model. For a gen-
eral graph G = (V, E) with n nodes, the algorithm of
[12] yields a subset S ⊆ V of V such that each node
u ∈ S has a leader `(u) ∈ V and such that the following
properties hold.3

(I) ∀u ∈ S : d(u, `(u)) < k

(II) ∀u, v ∈ S : `(u) 6= `(v) −→ (u, v) 6∈ E .
(III) S can be computed in k rounds.
(IV) ∀u ∈ V : Pr[u ∈ S] ≥ 1

en1/k .

d(u, v) denotes the distance between two nodes u and
v on G. We apply the algorithm of [12] to obtain con-
nected components of G with the following properties.

(I) The components have small diameter.
(II) Different components are far enough from each

other such that we can define a local linear program
for each component in a way in which the LPs of
any two components do not interfere.

(III) Each node belongs to one of the components with
probability at least p, where p depends on the
diameter we allow the components to have.

Because of the limited diameter, the LPs of each com-
ponent can then be computed locally. We apply the de-
composition process in parallel often enough such that
w.h.p. each node has been selected a logarithmic num-
ber of times.

3We use p = 1/n1/k in the algorithm of Section 4 of [12], the
properties then directly follow from Lemma 4.1 of [12].

For the decomposition of (PP) and (DP), we need
the following lemma.

Lemma 5.1. Let {y′1, . . . , y′m′} be a subset of the dual
variables of DP and let x′1, . . . , x

′
n′ be the primal vari-

ables which are adjacent to the given subset of the dual
variables. Further let PP ′ and DP ′ be LPs where the
matrix A′ consists only of the columns and rows corre-
sponding to the variables in x′ and y′. Every feasible so-
lution for PP ′ makes the corresponding primal inequal-
ities in PP feasible and every feasible solution for DP ′

is feasible for DP (variables not occurring in PP ′ and
DP ′ are set to 0). Further, the values of the objective
functions for the optimal solutions of PP ′ and DP ′ are
upper bounded by the optimal values for PP and DP .

We call PP ′ and DP ′ the sub-LPs induced by the subset
{y′1, . . . , y′m′} of dual variables. We apply the graph
decomposition algorithm of [12] to obtain PP ′ and DP ′

(as in Lemma 5.1) which can be solved locally.
For the decomposition of the linear program, we

define G such that the node set V is the set of dual
nodes of the graph G and the edge set E is

E :=
{
(u, v)

∣∣ u, v ∈ V ∧ dG(u, v) ≤ 4
}

.

By this, we can guarantee that non-adjacent nodes in
G do not have neighboring primal nodes in G whose
variables occur in the same constraint of (PP). Further,
a message over an edge of G can be sent in 4 rounds
on the network graph G. The basic algorithm for a
dual node v to approximate PP and DP then works as
follows:
1: Run graph decomposition of [12] on G;
2: if v ∈ S then
3: send IDs of primal neighbors to `(v).
4: fi;
5: if v = `(u) for some u ∈ S then
6: compute local PLP/DLP (cf. Lemma 5.1)

of variables of u ∈ S for which v = `(u).
7: send resulting values to nodes holding the

respective variables.
8: fi

The primal nodes only forward messages in steps 1,
3, and 7 and receive the values for their variables in
step 7. We now have a closer look at the locally
computed LPs in line 6. By Property (II) of the graph
decomposition algorithm, dual variables belonging to
different local LPs cannot occur in the same dual
constraint (otherwise, the according dual nodes had to
be neighbors in G). The analogous fact holds for primal
variables since dual nodes belonging to different local
LPs have distance at least 6 on G and thus primal
nodes belonging to different local LPs have distance



at least 4 on G. Therefore, the local LPs do not
interfere and together they form the sub-LPs induced
by S (cf. Lemma 5.1).

The complete LP approximation algorithm now
consists of N independent parallel executions of the
described basic algorithm. The variables of the N
sub-LPs are added up and in the end, primal/dual
nodes divide their variables by the maximum/minimum
possible value to keep/make all constraints they occur
in feasible.4 Finally, N can be chosen to optimize the
approximation ratio.

Theorem 5.1. Let N = αen1/k ln n for α ≈ 4.51.
Executing the basic algorithm N times, summing up
the variables of the N execution and dividing these
sums as described, yields an αen1/k approximation of
(PP)/(DP) w.h.p. The algorithm requires O(k) rounds.

Corollary 5.1. Using the network decomposition al-
gorithm of [12], in only O(k) rounds, PP and DP
can be approximated by a factor O(n1/k) w.h.p. For
k ∈ Θ(log n), this gives a constant factor approxima-
tion in O(log n) rounds.

6 Lower Bound

We derive time lower bounds for distributed approxima-
bility of packing problems, even in the LOCAL model.
More precisely, we prove lower bounds for the most ba-
sic packing problems, the fractional maximum match-
ing problem (FMM). Our general approach follows [9]
in which similar results are obtained for minimum ver-
tex cover which is a covering problem. Specifically, our
packing lower bound graph is structurally similar (al-
though with subtle differences) to the one used in [9].

Let Ei denote the set of edges incident to node vi.
FMM is the natural LP relaxation of MM and defined
as max

∑
ej∈E yj , subject to

∑
vj∈Ei

yj ≤ 1, ∀vi ∈ V
and yj ≥ 0, ∀ej ∈ E. The outcome of an edge’s decision
(yj) in a k-local computation is entirely based on the
information gathered within its k-neighborhood. The
idea for the lower bound is to construct a graph family
Gk = (V,E) in which, after k rounds of communication,
two adjacent edges see exactly the same graph topology.
Informally speaking, both of them are equally qualified
to join the matching. However, in Gk, taking the wrong
decision will be ruinous and yields a suboptimal global
approximation. The construction of Gk is a two step
process. First, the general structure of Gk is defined
using the concept of a cluster-graph CGk. Secondly,
we construct an instance of Gk obeying the properties
imposed by CGk.

4The primal and dual variables xi and yj are divided by
minj∈Ni

1
bj

P
` aj`x` and maxi∈Nj

1
ci

P
` a`iy`, respectively.

6.1 The Cluster Graph The nodes v ∈ V in Gk are
grouped into disjoint sets which are linked to each other
as bipartite graphs. The structural properties of Gk are
described using a directed cluster graph CGk = (C,A)
with doubly labeled arcs ` : A → N × N. A node
C ∈ C represents a cluster, i.e., one of the disjoint
sets of nodes in Gk. An arc a = (C, D) ∈ A with
`(a) = (δc, δd) denotes that the clusters C and D are
linked as a bipartite graph in which each node u ∈ C
has degree δc and each node v ∈ D has degree δd. It
follows that |C| · δc = |D| · δd.

The cluster graph consists of two equal subgraphs,
so-called cluster-trees CTk as defined in [9]. In CGk, we
additionally add an arc `(Ci, C

′
i) := (1, 1) between two

corresponding nodes of the two cluster trees. Formally,
CTk and CGk are defined as follows. We call clusters
adjacent to exactly one other cluster leaf-clusters, and
all other clusters inner-clusters.

Definition 6.1. [9] For a given δ and a positive inte-
ger k, the cluster tree CTk is recursively defined as
follows:

CT1 := (C1,A1), C1 := {C0, C1, C2, C3}
A1 := {(C0, C1), (C0, C2), (C1, C3)}

`(C0, C1) := (δ, δ2), `(C0, C2) := (δ2, δ3),
`(C1, C3) := (δ, δ2)

Given CTk−1, CTk is obtained in two steps: For
each inner-cluster Ci, add a new leaf-cluster C ′i with
`(Ci, C

′
i) := (δk+1, δk+2). For each leaf-cluster Ci with

(Cp, Ci) ∈ A and `(Cp, Ci) = (δp, δp+1), add new
leaf-clusters C ′j with `(Ci, C

′
j) := (δj , δj+1) for j =

1 . . . k + 1, j 6= p + 1.

Definition 6.2. Let Tk and T ′k be two instances of
CTk. Further, let Ci and C ′i be corresponding clusters in
Tk and T ′k, respectively. We obtain the cluster graph
CGk by adding an arc `(Ci, C

′
i) := (1, 1) for all clusters

Ci ∈ CTk. Further, we define n0 := |C0 ∪ C ′0|. This
uniquely defines the size of all clusters.

Figure 1 shows CT2 and CG2. The shaded sub-
graphs correspond to CT1 and CG1, respectively, the
dashed lines represent the links `(Ci, C

′
i) := (1, 1). Note

that neither CTk nor CGk define the adjacency on the
level of nodes. They merely prescribe for each node
the number of neighbors in each cluster. We define
S0 := C0 ∪ C ′0 and S1 := C1 ∪ C ′1. The layer of a
cluster is the distance to C0 in the cluster tree. Tk and
T ′k denote the two cluster trees constituting CGk.

6.2 The Lower Bound Graph Gk Having defined
the cluster graph CGk, it is now our goal to obtain
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Figure 1: Cluster-Tree CT2 and Cluster-Graph CG2.

a realization of Gk which has the structure imposed by
CGk and features the additional property that there are
no short cycles. As we must prove that the topologies
seen by nodes in S0 and S1 are identical, the absence
of short cycles is of great help. Particularly, if there are
no cycles of length 2k + 1 and less, all nodes see a tree
locally. The girth of a graph G, denoted by g(G), is the
length of the shortest cycle in G. Lemma 6.1 states that
it is indeed possible to construct Gk as described above.

Lemma 6.1. If k+1 ≤ δ/2, Gk can be constructed such
that the following conditions hold:
(I) Gk follows the structure of CGk.

(II) The girth of Gk is at least g(Gk) ≥ 2k + 1.
(III) Gk has n ≤ 42kδ4k2

nodes.
Next we show that all nodes in S0 and S1 have the

same view and consequently, all edges in E′ see the same
topology. Using the following result from [9] facilitates
this task.

Lemma 6.2. [9] Let Gk be an instance of a cluster tree
CTk with girth g(Gk) ≥ 2k + 1. The views of all nodes
in clusters C0 and C1 are identical up to distance k.

Because Gk has girth at least 2k +1 by Lemma 6.1, the
two cluster-trees Tk and T ′k constituting Gk must have
girth 2k + 1 as well. It follows from Lemma 6.2 that
the desired equality of views holds for both Tk and T ′k.
Based on this fact, it is now easy to show that equality
of views holds in Gk, too.

Lemma 6.3. Let Gk be an instance of a cluster graph
CGk with girth g(Gk) ≥ 2k + 1. The views of all nodes
in clusters S0 and S1 are identical up to distance k.

6.3 Analysis We now derive the lower bounds on the
approximation ratio for k-local FMM algorithms. Let
OPT be the optimal solution for FMM and let ALG be
the solution computed by any algorithm. All nodes in
S0 and S1 have the same view and therefore, every edge
in E′ sees the same topology Ve,k.

Lemma 6.4. When applied to Gk = (V, E) as con-
structed in Subsection 6.2, any distributed, possibly ran-
domized algorithm which runs for at most k rounds com-
putes, in expectation, a solution of at most ALG ≤
|S0|/(2δ2) + (|V | − |S0|).
Proof. The fractional value assigned to ei = (u, v) by
an algorithm is denoted by yi. The decision of which
value yi is assigned to edge ei depends only on the
view the topologies Tu,k and Tv,k and the labelings
L(Tu,k) and L(Tv,k), which ei can collect during the k
communication rounds. Assuming that the labeling of
Gk is chosen uniformly at random, the labeling L(Tu,k)
for any node u is also chosen uniformly at random.

All edges connecting nodes in S0 and S1 see the
same topology. If the labels are chosen uniformly at
random, it follows that the distribution of the views
and therefore the distribution of the yi is the same for
all those edges. We call the random variables describing
the distribution of the yi, Yi. Let u ∈ S1 be a node of
S1. The node u has δ2 neighbors in S0. Therefore,
for edges ei between nodes in S0 and S1, by linearity
of expectation, E [Yi] ≤ 1/δ2 because otherwise there
exist labelings for which the calculated solution is not
feasible. By Lemma 6.3, edges ej with both end-points
in S0 have the same view as edges between S0 and S1.
Hence, also for the value yj of ej , E [Yj ] ≤ 1/δ2 must
hold. There are |S0|/2 such edges and therefore the
expected total value contributed by edges between two
nodes in S0 is at most |S0|/(2δ2).

All edges which do not connect two nodes in S0,
have one end-point in V \ S0. In order to get a feasible
solution, the total value of all edges adjacent to a set of
nodes V ′, can be at most |V ′|. This can for example be
seen by looking at the dual problem, a kind of minimum
vertex cover where some edges only have one end node.
Taking all nodes of V ′ (assigning 1 to the respective
variables) yields a feasible solution for this vertex cover
problem. The claim now follows by applying Yao’s
minimax principle.

We now derive the lower bound. Lemma 6.4 gives an
upper bound on the number of nodes chosen by any k-
local FMM algorithm. Choosing all edges within S0 is
feasible, hence, |OPT | ≥ |S0|/2. In order to establish
a relationship between n, |S0|, δ, and k, we bound n
as n ≤ |S0|(1 + k+1

δ−(k+1) ) using a geometric series. The
second lower bound then follows easily from ∆ = δk+2.



Theorem 6.1. For all pairs (n, k) and (∆, k), there
are graphs G and a constant c ≥ 1/4, such that in k
communication rounds, every distributed algorithm for
FMM on G has approximation ratios at least Ω(nc/k2

/k)
and Ω

(
∆1/k/k

)
, respectively.

By setting k = β
√

log n/ log log n and k =
β log ∆/ log log ∆, respectively, for a constant β > 0,
we obtain the following corollary.

Corollary 6.1. In order to obtain a polylogarithmic
or constant approximation ratio, every distributed al-
gorithm for FMM requires at least Ω(

√
log n/ log log n)

and Ω(log ∆/ log log ∆) communication rounds. The
same lower bounds hold for the construction of maxi-
mal matchings and maximal independent sets.

Remark: The algorithm in Section 5 achieves a poly-
logarithmic approximation in O(log ∆/ log log ∆) com-
munication rounds. Therefore, for polylogarithmic ap-
proximations, our lower bound for FMM is tight.

7 Conclusions

It is interesting to view local computation in a wider
context of computational models. Approximation algo-
rithms and online algorithms try to bound the degra-
dation of a globally optimal solution caused by limited
computational resources and knowledge about the fu-
ture, respectively. More recently, the “price of anar-
chy,” has been proposed to measure the suboptimal-
ity resulting from selfish individuals [20]. In a similar
spirit, our paper sheds light on the price of locality, i.e.,
the degradation of a globally optimal solution if each
individual’s knowledge is restricted to its neighborhood
or local environment. Specifically, the upper and lower
bounds presented in this paper characterize the achiev-
able trade-off between local information and the quality
of a global solution of covering and packing problems.
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