
Reproducible Experiments for Internet Systems
Frank Cangialosi
Akshay Narayan

MIT CSAIL
USA

Abstract
We relate our experience and recommendations from the authors’
perspective in the artifact evaluation (AE) process, which is becom-
ing increasingly common in systems venues.

CCS Concepts
• Networks→Middle boxes / network appliances; • General and
reference→ Evaluation.

Keywords
Reproducibility, Internet Systems

ACMReference Format:
Frank Cangialosi and Akshay Narayan. 2022. Reproducible Experiments
for Internet Systems. In Proceedings of the 5th International Workshop on
Practical Reproducible Evaluation of Computer Systems (P-RECS ’22), June
30, 2022, Minneapolis, MN, USA. ACM, New York, NY, USA, 4 pages. https:
//doi.org/10.1145/3526062.3536355

1 Introduction
In recent years, the concept of an (optional) artifact evaluation (AE)
process has gained traction in the systems community (e.g., SOSP,
OSDI, and EuroSys [1]). Authors of accepted conference papers may
submit an artifact associatedwith their paper anda teamof reviewers
then evaluates the availability and reproducibility of the artifact. The
results of this process are stamped onto the official conference PDF.

However,whilemostwould agree that the ability to reproduce the
results in a research paper is nice in theory, the reality is that many
authors donot go through this process inpractice. In 2021, 177papers
were published at EuroSys, OSDI, and SOSP; of these, only 68%
submitted an artifact, and only 48% (of those submissions) received
the “Results Reproducible” badge (the highest of three awarded)
from the artifact evaluation process. One reason for this may be that
the artifact evaluation deadline is often on the order of a few days
(e.g. for EuroSys 2021, it was 3 days) after the notification of paper
acceptance. Packaging an artifact within this short time window is
a challenge. Thus, waiting until paper acceptance to start packaging
is probably too late. If the starting point is a haphazard collection
of scripts (or, as we all have performed from time to time, a search
through shell history), submitting a good artifact will be challenging.

Packaging artifacts is hard because a project’s code and ex-
periments are often not easily portable—in systems projects, the
experiment environments are complex, there are fewer abstractions

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike International 4.0 License.

P-RECS ’22, June 30, 2022, Minneapolis, MN, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9313-3/22/06.
https://doi.org/10.1145/3526062.3536355

one can rely on, and everything from details in the kernel implemen-
tation to the randomness of running experiments on the Internet
can ultimately impact results. Incorporating reproducibility in the
project from the beginning can amortize this cost. More importantly,
reproducibility can improve the quality of a research project and its
usefulness to the broader community:

• During the research process, we generate insights and
evolve our systems based on the results of experiments.
Unintentionally running the system slightly differently each
time could yield inconsistent results and incorrect insights.

• One way to measure a project’s reproducibility is to consider
how many future support emails others trying to use your
system send, and more importantly how long it takes to
help them. For example, once, a colleague who wanted to
evaluate some prior work in a new setting spent several
weeks going back and forth with authors just to properly
tune the parameters and recreate the graphs.

• A key to impactful work is whether or not it helps spur
further research. If no one can run your artifact, it will be
difficult to build on or even compare against it as a baseline.
Further, future users may not be willing to spend as much
time as the artifact evaluation committee,whohave dedicated
time to try their best to get your artifact to work. This may
be months or years after the initial system development, in
which case the environment and dependencies may have
changed significantly. If this is not well documented, it may
be impossible to reproduce the configuration.

• Experiments can serve as documentation of interesting
ways to use the system; future users can branch off from the
artifact’s experiments for their use cases.

In this paper, we discuss1 how to incorporate reproducibility
in the process of systems and networking research. In particular,
we recount our experience thinking about reproducibility for our
EuroSys ‘21 paper, Bundler [5], and share some of the components
we used that we hope will be relevant for other projects.

2 Principles and Getting Started
Our primary recommendation is that your exported “artifact” and
personal research platform should be one and the same. Using
one-off shell commands and later trying to package them up for
publishing will yield many untested code paths and invariably
bugs that can only be found through actual use. Another tempting
approach might be to provide opaque and high-level scripts solely
for the purpose of artifact evaluation, which allow reviewers to run a
simple command (e.g., “./run.sh”) and viewfigureswithout further
input. While it is tempting to use this approach to ease the burden

1We previously discussed this topic in a post on the SIGOPS blog [4].

https://doi.org/10.1145/3526062.3536355
https://doi.org/10.1145/3526062.3536355
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://doi.org/10.1145/3526062.3536355


on artifact reviewers, we argue that there is value in intermediate re-
sults, which help not just artifact reviewers but also systemusers and
the authors themselves gain insights into the system’s functionality.

Indeed, publishing the scripts already in use for the project
makes them more likely to work for someone else. Of course,
given the nature of research, it’s not desirable to over-engineer
the infrastructure and experimentation scripts. Especially as a
graduate student focusing on a single project, it is easy to fill
time with infrastructure tasks that feel productive but are not
actually advancing your research. While there is no one-size-fits-all
approach, a balance between the two is desirable.

For Bundler, we initially wrote special-purpose one-off scripts
(with, for example, hard-coded machine IPs and no attempt to
manage dependencies) to quickly pull together an initial paper
submission.When the paper was initially rejected, we knew from
the reviews that the ideas had some promise, but therewas still some
work to be done in terms of improving the system and designing
new experiments, so we created an experiment platform based on
knowledge of the types of experiments we would want to run and
what the iteration process would look like. We also had fresh in
our mind a lot of the mistakes and shortcomings from the initial
iteration of the project and recent projects. Incorporating all of this
made it much easier to design a clean and robust platform than if
we had tried to do it right from the beginning.

Given our experience, we would recommend starting the process
of thinking about an experimentation platform before the first
submission. At the very beginning of a project, we suggest starting
with quick iteration, not overthinking organization or scripting,
but taking detailed notes about environment setup. Once the
project begins to mature, we suggest investing time in creating an
experiment platform. This process should not be a burden; a little bit
of intentionality will go a long way, and it is not necessary to instru-
ment everything from the beginning. Themost important thing is to
design it to be easily extensible so that it can growwith the project.

3 Designing Reproducible Experiments

The Bundler [5] system is a middlebox which uses congestion
control to “shift” traffic bottlenecks from the middle of the network,
where congestion occurs, to a domain with better knowledge of
the right scheduling policy. For example, Bundler can ensure that,
even in the presence of downstream congestion, latency-sensitive
applications will not be delayed by bulk long-lived traffic which
keeps network buffers full.

When creating an experimental artifact (or, indeed, evaluation
experiments) for either Bundler or any system that depends on
congestion control behavior, it’s tempting to jump straight into
experiments “in the wild”. These experiments can demonstrate
practical deployability and usefulness: two properties any systems
researcher strives to achieve. As a result, program committees tend
to especially focus on such experiments.

However, such a “real-world-first” approach has major draw-
backs. Firstly, in the Internet, the ground truth conditions are
fundamentally unknowable. This makes it hard to reason about a
system’s performance: did the application perform well because the
system worked, or because “Internet weather” cooperated during
the experiment? For this reason, “real-Internet” experiments are

hard to reproduce and draw useful conclusions from except at truly
massive scale (and even then difficult [7]).

Instead, we chose to base our Bundler experimental artifact
primarily on experiments in emulated testbed environments,
where we controlled both Bundler’s behavior as well as that of
other network flows. In this environment, we could gather and
report ground-truth instrumentation to more deeply demonstrate
Bundler’s behavior. An example is Figure 10 from our EuroSys
paper [5], which would have been impossible to generate outside an
emulation testbed. Further, these experiments benefit reproducibil-
ity since it is straightforward for the public to run them, unlike a
large-scale Internet measurement study would be.

Of course, some “real-Internet” experiments are still necessary,
but their role should be to validate the model of the world the
emulated environment implements. If a system behaves the same
way in an uncontrolled setting as it does in the testbed, this is an
indication that the model is useful.

4 Important Components of Bundler Artifact

Nowwe’ll describe four componentsof theartifactwe released [2] for
Bunler that help illustrate some of the principles we’ve described so
far. These components were highlighted by the EuroSys’21 AE com-
mittee as helpful, but were also crucial to our own research process.

As an overview, we structured our evaluation process as a single
evaluation script that takes as input a single configuration file
specifying both the system setup and the set of things to do in the
experiment. It runs everything, places output files in a specific
directory structure, and finally generates an experiment dashboard
webpage (details in §4.3). The webpage is the primary point for
interacting with the results, but the directory structure makes it
easy to go and find specific files for manual inspection as necessary.

The important thing to note is that none of this requires that
much work; it is just a small restructuring of the work we had to
do in the process of research anyway.

4.1 Monolithic Configuration Files

A hallmark of networking and distributed systems experiments
is the complexity of the environment. The results might not just
be impacted by code but additionally by any number of small
configuration parameters or networking settings on any of the
host machines. Thus, ensuring a consistent environment is critical
for robustness. Although this is inherent to systems research and
cannot be avoided entirely, a little bit of effort goes a long way
towards mitigating many common problems.

A commonmethod of configuring experiments is to use command
line arguments. While this can work, it encourages specifying a
minimum number of parameters, leaving the rest to fall back to
default values which can later cause problems. Further, shell history
might not include versioning information, so it’s unclear which
version was run. Finally, carefully specifying all parameters for each
invocation quickly becomes annoying and unwieldy.

Instead, our primary recommendation is to represent experiments
with a single, verbose configuration file (we use TOML files to
help with human-readability) that is explicit about everything. For
example, there are some common things that will be important for
many projects:



• Platform (GCP, AWS, laptop) and machine type (e.g.,
t2-medium) or hardware details if local

• Exact OS image and kernel version
• Git hash of all relevant repositories (we use a “parent” git
repository which includes all experiment dependencies as
submodules)

• Sysctls (e.g., setting TCP socket buffer sizes, a problem we
had early on)

• OS package dependencies (anything ‘apt-get install‘’d)
• Compiler and hardware driver versions

Tips.A common use case, especially for a graph in a paper, is to do
a parameter sweep with the same experiment setting while varying
one or a few parameters. This is easily encoded in a configuration
file by allowing any values to be either constant OR a list. Then, the
experiment script can generate a cross product of all configurations.
This makes it easy to, e.g. run all of the experiments necessary for
an entire graph in the paper with just one configuration file. See
this function2 in our code for a concrete example.
4.2 Run Experiments with a Single Centralized Script

Especially when working with multiple machines, we recommend
a single centralized script that takes this configuration file as input
and controls all of the machines, rather than “run script X on
machine A, then script Y on machine B” which we have seen as
artifact reviewers. This has a few important benefits:

• It easily scales to more machines as you scale up your
experiments.

• Building on the configuration files above, the centralized
script can be a point of reference to make sure that all
machines have the same consistent environment before
running. For example, for our artifactwe needed a copy of our
github repo (which itself had submodules) on each of several
machines. At first, we kept running into some variant of the
following problem: we would push an update to our repo,
then forget to pull it (or forget to update submodules) on one
of the machines. The experiment’s behavior was wrong, but
it did not break completely and was thus hard to debug.

• It can be easier to generalize to different backend platforms.
For example, we ran most of our experiments on a local
cluster, but by simply changing a few lines in our config
experiment files, we could run on Cloudlab.

Specifying everything in a configuration file is only half the
battle. For example, in our centralized script, we first check all of
the configuration parameters on all of the machines. If anything
does not match the config file, the script aborts.
Tips.

• As your script runs experiments, it should first check if a
result file already exists where it’s expecting to place one. If
so, it should stop and ask the user before continuing. This
saved us more than once from overwriting some results we
were in the middle of investigating that would have been
difficult to replicate.

• Add a “dry-run” mode to your script, which simply prints
out each command it’s going to run without actually running

2
enumerate_experiments, at Line 133 of config.py in [2]

it. We used this constantly for debugging throughout the
process of writing our experiment script.

4.3 Experiment Dashboards

While actually working on a project, experiments are often ad hoc
as you quickly iterate and explore different ideas. If you’re not
careful, it’s easy to end up with a mess of a directory structure. It
doesn’t take long before you forget what’s the difference between
exp3/v2/tmp/plot4.png and exp3/plot4.jpg, or where to
find the data and script that generated that plot (was it plot.py
or. . .plot2.py? or exp3/tmp/plot.py? Hint: probably none of the

Figure 1: Sample webpage dashboard for single experiment.



above!). In order to avoid this mess and keep track of everything,
we used experiment dashboards.

Figure 1 contains an example of the dashboard for a single
experiment (the configuration file at the bottom was the input to
our evaluation script that generated this report). A computational
notebook (e.g. jupyter) can also serve as a dashboard.

• Each dashboard is a web page hosted by one of our servers
where all team members can easily access it from their
browser. This makes it very easy to share plots and data
(no sending different versions of plots back and forth across
email or slack and having trouble finding them later) and it
ensures that everyone has a consistent view of the data.

• Adashboard includes all the plots relevant for the experiment
in one place. It also specifies the exact path where the data
used to generate the plot is located, so that it’s easy to go back
and inspect itmanually to trace downan issuewith the results.

• It also includes the full configuration file used to generate the
experiment so that there’s no questioning which parameters
were used or even which version of the code was used to
generate these specific plots. This helps narrow down differ-
ences from two experiments that seem otherwise the same
(e.g., maybe one piece of code was using a different git hash!)

From the perspective of an artifact reviewer (or a fellow
researcher who wants to build on or compare against your system),
these dashboards also provide more details than just the figures that
made it into the paper, so they can “dig deeper” into the intuition
behind the results. This gives them visibility into the intermediate
steps rather than the opaque pipeline of running a single script and
getting a single static plot at the end.

Details. We generated the interactive plots using plot.ly’s R
bindings and arranged everything into a webpage using knitr with
R-markdown.

4.4 Direct Link Between Experiment Data and Paper

The traditional paper-writing pipeline, where scripts produce a
graph which is copied into the paper repository has two problems:
(1) it is hard to keep track of how to produce each figure in the paper,
and (2) there is no link between the data and in-text reports of results,
so when updating a figure it’s easy to forget to update sentences
such as “In Figure X, our system improves median FCT by Y%”.

To avoid these issues, our repository doesn’t contain any pre-built
graphs, and our paper text doesn’t include any hardcoded result
numbers. Instead, our Makefile depends upon raw experiment
data files. It handles generating figures, parsing important results
from those figures, and then defining them as LaTeX variables.
This makes it easy to plug in new results and have all dependencies
within the paper update automatically. Further, it makes it easy for
artifact reviewers (and others) to trace the lineage of a paper figure
back to the experiment configuration file that generated it.

Recently, Kassig and Singla have proposed CodeBind [6] to
further strengthen the ties beyond knitr’s capabilities: in their
system, not just the plotting, but the system configuration itself
is tied to the paper. This has the potential to combine the benefits
of the experiment dashboards we used with the benefits of tying
experiment data to the paper.

Details. Similarly to our dashboards, we used knitr to bridge the
gap between R (for plotting) and LaTeX. For an example of how this
is done, see the references to ‘graphs/%.Rnw‘ in the Makefile of our
paper repository[3].Note thatwehadsomeissueswithbothOverleaf
and GitHub not liking large data files, so we hosted them separately.

5 Conclusion
We don’t claim to have the answer to the perfect artifact implemen-
tation, but we would certainly like to see artifacts improve. Further,
we would like to see artifact evaluation become a larger part of the
paper review process. Although it would increase the complexity
of the review process, it would offer compelling benefits:

• It is a great opportunity for students to get early exposure
to the review process and get integrated into the broader
research community (similar to shadow PCs).

• We should continue to shift more burden onto the authors
to make their artifacts easily reproducible and minimize
the amount of work necessary for artifact reviewers. As
explained in this post, it can provide a huge benefit to the
authors independent of the AE process.

References
[1] 2021. Reproducible Experiments for Useful Internet Systems. https :

//sysartifacts.github.io/.
[2] Frank Cangialosi and Akshay Narayan. 2021. Bundler EuroSys Artifact.

https://github.com/bundler-project/evaluation/.
[3] Frank Cangialosi and Akshay Narayan. 2021. Bundler EuroSys LaTeX Source.

https://github.com/bundler-project/writing/.
[4] Frank Cangialosi and Akshay Narayan. 2021. Reproducible Experiments for Useful

Internet Systems. https://www.sigops.org/2021/reproducible-experiments-for-
useful-internet-systems/.

[5] FrankCangialosi, AkshayNarayan, PrateeshGoyal, RadhikaMittal,MohammadAl-
izadeh, andHariBalakrishnan. 2021. Site-to-Site InternetTrafficControl. InEuroSys.

[6] Simon Kassig and Ankit Singla. 2021. CodeBind: Tying Networking Papers to Their
Experiment Code. https://github.com/snkas/codebind-paper.

[7] Bruce Spang, Veronica Hannan, Shravya Kunamalla, Te-Yuan Huang, Nick
McKeown, and Ramesh Johari. 2021. Unbiased Experiments in Congested
Networks. In IMC.

https://sysartifacts.github.io/
https://sysartifacts.github.io/
https://github.com/bundler-project/evaluation/
https://github.com/bundler-project/writing/
https://www.sigops.org/2021/reproducible-experiments-for-useful-internet-systems/
https://www.sigops.org/2021/reproducible-experiments-for-useful-internet-systems/
https://github.com/snkas/codebind-paper

	Abstract
	1 Introduction
	2 Principles and Getting Started
	3 Designing Reproducible Experiments
	4 Important Components of Bundler Artifact
	4.1 Monolithic Configuration Files
	4.2 Run Experiments with a Single Centralized Script
	4.3 Experiment Dashboards
	4.4 Direct Link Between Experiment Data and Paper

	5 Conclusion
	References

