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Two recent trends

@ 'ncreasingly PEVESIVE cameras
a Increasingly_computer vision
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Two recent trends

) Increasingly Pervasive cameras
2 Increasingly_computer vision
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Beneficial Applications

Urban planning, smart cities,
business analysis, public health

Increasingly feasible to track objects
across network of cameras
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Problem: How to tradeoff privacy & utility?

Don’t release video at all Release video publicly

S
“Best” Privacy “Best” Utility



Problem: How to tradeoff privacy & utility?
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Don’t release video at all ? Release video publicly

e
@ “Best” Utility

s

“Best” Privacy

Can we extract useful information from video
without giving up privacy?
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Threat Model

Protect privacy Do not trust
““ . . ..’. “““ I ....’Q
Individuals Video Owner (VO) Analysts
(Citizens) (Organizational Entity) (Employees OR 3rd parties)

ﬁ Benevolent Query:
“Count per hour”

___ Malicious Query:
& “When did
pass this camera?”

NAR



Obfuscation

Original Video

A

(contains private information)



Obfuscation

Original Video “Safe” Video
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(contains private information)



Obfuscation

Original Video “Safe” Video
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Obfuscation

If missed, can be tracked!
Can’t guarantee privacy




Obfuscation

If missed, can be tracked! Removing precludes
Can’t guarantee privacy queries that don’t identify




Obfuscation
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Obfuscation "™ — Anaiysis —» Resul
Differential Privacy | [Rll—{Saisie— 1o, sate (OF)

14



Differential Privacy: Motivating Example

Name Balance

Alice X1
Bob X2
Charlie X3
David x4
Eve
Frank

Greg
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Differential Privacy: Motivating Example

Name Balance

Alice X1
Bob X2

Charlie | x3 — mean(balance) Unsafe!
DEVIle x4

Eve : what If analyst knows
e all balances
reg
except Frank’s?

SELECT mean(balance) FROM bank:

15



Differential Privacy: Motivating Example

Name

Balance

Alice

X1

Bob

X2

Charlie

X3

David

x4

Eve

X5

Frank

X6

Greg

X/

— mean(balance) Unsafe!

what if analyst knows
all balances
except Frank’s?

SELECT mean(balance) FROM bank:
SELECT mean(balance) FROM bank WHERE name!="Frank”:
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Differential Privacy: Intuition

GOAL: Regardless of prior information, analyst cannot identify anyone in dataset
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Differential Privacy: Intuition

GOAL: Regardless of prior information, analyst cannot identify anyone in dataset
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Differential Privacy: Intuition

GOAL: Regardless of prior information, analyst cannot identify anyone in dataset

o[ —
......................... Analyst shouldn’t
be able to differentiate

(Any) one individual removed from D

Algorithm, e.g. mean
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Differential Privacy: Just add noise!

GOAL: Regardless of prior information, analyst cannot identify anyone in dataset

0| |—
D’E—’M+nmse—>l_

(Any) one individual removed from D Centered at true value

Algorithm, e.g. mean

\'/

+ noise —m> Ij‘\
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Differential Privacy: Just add noise!

GOAL: Regardless of prior information, analyst cannot identify anyone in dataset
Analyst observes one query result

o |—
........................ (Sample fI’Om dIStrIbUthn)

Sample equally likely to be from V or V'
D’ — + noise —> I_

(Any) one individual removed from D Centered at true value

Algorithm, e.g. mean

\'/

+ noise —m> Ij‘\
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Differential Privacy: how much noise

GOAL: Regardless of prior information, analyst cannot identify anyone in dataset

Sensitivity: max difference between

V and V’ for any (D,D’)

18



?

Differential Privacy: how much noise

GOAL: Regardless of prior information, analyst cannot identify anyone in dataset

D |:|—>M+noise —\,>|L\
V’
D’ Eﬁm + noise —PIJT\

Centered at true value

Add noise proportional to sensitivity

19



Differential Privacy: Sensitivity Example

Balance € [$0, $1000] Could change by at most $1,000

Name Balance /

sum of balances

Alice X1 mean =

Bob X2 num customers
Charlie X3
David x4
Eve X5
Frank X6 ‘ 1000 = O ‘
Greg X7 A(mean(balance)) < <0.1

10,000

10,000 total customers

20



Challenge: how to satisfy DP over arbitrary NNs?

Input Algorithm Satisfy DP

Standard statistics -
(“white box”) Q

: : Manually
Classic DP Setting I:I -_— derive bound
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Arbitrary NNs
(“black box”)

Video Analytics —_—

?
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Challenge: how to satisfy DP over arbitrary NNs?

Input Algorithm Satisfy DP

Standard statlstlcs =
¢

: : Manually
Classic DP Setting I:I EEE— . derive bound

Arbitrary NNs
(“black box”)

Video Analytics —_—

?

21



Challenge: how to satisfy DP over arbitrary NNs?

How can we bound the amount
[someone’s appearance] could contribute
to the [output of a black box]?




Motivating Observation

-

Source: YouTube, Auburn University (speed 30x)
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Motivating Observation

Average Car:

~9S

Average Person:

~60s

-

Source: YouTube, Auburn University (speed 30x)

23



Motivating Observation

Source: Newark, NJ Citizen Virtual Patrol (speed 30x)
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Motivating Observation

» > > -—‘ ‘ o - ~~‘

Average Car:

~3S

Average Person:

~40s*

“iIgnoring parked cars,
will come back to this
at the end of the talk!

Source: Newark, NJ Citizen Virtual Patrol (speed 30x)

24



Motivating Observation

seconds
7

Objects tend to be visible for Short duration

_ granularity of many useful queries

I————————————————————.—————————————

hours or days




Key Insight: implicit structure of query

9 “Count per hour”
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Key Insight: implicit structure of query

——

per hour”
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Key Insight: implicit structure of query

@ “Count per hour”

-3




Key Insight: implicit structure of query

"

@ “When did pass this camera?”

-3




Key Insight: implicit structure of query

@ When did pass this camera?”

HE EPp,




Key Insight: implicit structure of query

HE EPp,




Key Insight: implicit structure of query

“Black box” model per-frame “White box™ aggregation
(Analyst flexibility) (Connect to Differential Privacy)

output > 2
output > 2
output . 2




Our Contributions

@ New definition: ( p )-Event-Duration Privacy

Does not require locating all individuals to protect them

a System that satisfies definition: Privid

Analysts provide their own (untrusted) video processing code

33



( p )-Event-Duration Privacy

Classic DP: *analyst cannot detect presence of any one person

Our Definition: “analyst cannot detect anything visible for < p :seconds”

R (e.g., 30 seconds)

0 Simple and expressive interface

Formally: V possible videos (V, V')

e Gracefully handles CV imperfections that differ by < p seconds,
5 @ and all output subsets S,

e Enables safe aggregation queries

: Pr[Q(V) € §] <.
a Predictable impact on utility Pr[O(V") € S]  (smali constant
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( p )-Event-Duration Privacy

% Objects
Ground Truth CV Missed

highvay”
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( p )-Event-Duration Privacy

Classic DP: *analyst cannot detect presence of any one person

Our Definition: “analyst cannot detect anything visible for < p :seconds”

R (e.g., 30 seconds)

0 Simple and expressive interface

Formally: V possible videos (V, V')

e Gracefully handles CV imperfections that differ by < p seconds,
5 @ and all output subsets S,

e Enables safe aggregation queries

PrlO(V) € §] <.

a Predictable impact on utility Pr[O(V") € S] " (Small constant)
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Privid: Overview

Registration

Choose per-camera guarantee

VO Privid

cam1: p=30s, cam2: ...

Analytics

—— NN + Query ——

Drivi
Analyst - O rivid

m Guarantee: satisfies
(p)-event-duration privacy

35



Privid: Query Interface

SPLIT PROCESS SELECT

iINto chunks using NN, output rows aggregation over table
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(Query intent unknown)

SPLIT PROCESS SELECT
10s chunks % count: SUM(count)
count
’ max.
3600

1hr EEEEN




SPLIT

10s chunks

1hr

(Query intent unknown)

PROCESS SELECT
count: SUM(count)
count
» max.
3600




(Query intent unknown)

SPLIT PROCESS SELECT
10s chunks % count: SUM(count)

count
@ HE B B B B
maxXx .
HE B B B B 36@@
HE B B B B
TANS
e
¢ Qv g
o
o
° A g
o
H B B B B
>

1hr EEEEEN 40



g (Query intent unknown)
Sensitivity <

SPLIT PROCESS SELECT 3 chunks x
10s chunks iss count: SUM(count) 1[0,10] |
count = 30
max.
3600 g
§ » ;
'

1hr EEEEE 40



-

& “When did pass this camera?”

Sensitivity <
3 chunks x
| [0,10] |

-----------------------------------

Could be result of
OR noise



ﬁ “Count per hour” .
Sensitivity <

SPLIT PROCESS SELECT 3 chunks x
10s chunks st count: SUM(count) 1 10,10] |
count = 30
max.
3600 g

1hr EEEEE 42



@ “Count people per hour”

Sensitivity <
3 chunks x

-----------------------------------




Concrete Example (Q4)

“Average working hours of
taxis in Porto during 2013-20147”

- - Repeat for portoCaml...portoCaml27:

SPLIT portoCaml
BEGIN 0/-01-2013/12:00am END 0/7-01-2014/12:00am
BY TIME 15sec STRIDE 0Osec
INTO chunksl;

-- Repeat for chunksl...chunksl27:

PROCESS chunksl USING porto.py TIMEOUT lsec
PRODUCING 3 ROWS
WITH SCHEMA (plate:STRING="")
INTO tablel;

Sao Mamede
pJ.l’J"- 3
228 Estaco de Infesta
Sao Mamede

S —— —

-- Query 4: Average Taxl Working Hours
SELECT avg(avg_shift) FROM
(SELECT plate,avg(RANGE(shift, [0,16])) FROM
(SELECT plate,day, (max(chunk)-min(chunk) as shift) FROM
tablelO® UNION table27 GROUP BY plate,day(chunk))
GROUP BY plate LIMIT 300)
CONSUMING eps=0.33;

| 5.87 hours
Taxi Trajectory Data: EKML/PKDD 2015 (error: 13 mins with 99.9% confidence)

43



Concrete Example (Q4)

“Average working hours of
taxis in Porto during 2013-20147”

- - Repeat for portoCaml...portoCaml2/:

SPLIT portoCaml
BEGIN 07-01-2013/12:00am END 07-01-2014/12:00am
BY TIME 15sec STRIDE Osec
INTO chunksl;

-- Repeat for chunksl...chunksl27:

PROCESS chunksl USING porto.py TIMEOUT lsec
PRODUCING 3 ROWS
WITH SCHEMA (plate:STRING="")
INTO tablel;

Sao Mamede
pJ.l’J"- 3
228 Estaco de Infesta
Sao Mamede

S —— —

-- Query 4: Average Taxl Working Hours
SELECT avg(avg_shift) FROM
(SELECT plate,avg(RANGE(shift, [0,16])) FROM
(SELECT plate,day, (max(chunk)-min(chunk) as shift) FROM
tablelO® UNION table27 GROUP BY plate,day(chunk))
GROUP BY plate LIMIT 300)
CONSUMING eps=0.33;

| 5.87 hours
Taxi Trajectory Data: EKML/PKDD 2015 (error: 13 mins with 99.9% confidence)

43



Concrete Example (Q4)

“Average working hours of
taxis in Porto during 2013-20147”

- - Repeat for portoCaml...portoCaml27:

SPLIT portoCaml
BEGIN 0/-01-2013/12:00am END 0/-01-2014/12:00am
BY TIME 15sec STRIDE 0Osec
INTO chunksl;

- - Repeat for chunksl...chunksl27:

PROCESS chunksl USING porto.py TIMEOUT lsec
PRODUCING 3 ROWS
WITH SCHEMA (plate:STRING="")
INTO tablel;

Sao Mamede
pJ.l’J"- 3
228 Estaco de Infesta
Sao Mamede

S —— —

-- Query 4: Average Taxl Working Hours
SELECT avg(avg_shift) FROM
(SELECT plate,avg(RANGE(shift, [0,16])) FROM
(SELECT plate,day, (max(chunk)-min(chunk) as shift) FROM
tablelO® UNION table27 GROUP BY plate,day(chunk))
GROUP BY plate LIMIT 300)
CONSUMING eps=0.33;

| 5.87 hours
Taxi Trajectory Data: EKML/PKDD 2015 (error: 13 mins with 99.9% confidence)

43



Concrete Example (Q4)

“Average working hours of
taxis in Porto during 2013-20147”

- - Repeat for portoCaml...portoCaml27:

SPLIT portoCaml
BEGIN 0/-01-2013/12:00am END 0/7-01-2014/12:00am
BY TIME 15sec STRIDE 0Osec
INTO chunksl;

-- Repeat for chunksl...chunksl27:

PROCESS chunksl USING porto.py TIMEOUT lsec
PRODUCING 3 ROWS
WITH SCHEMA (plate:STRING="")
INTO tablel;

Sao Mamede
pJ.l’J"- 3
228 Estaco de Infesta
Sao Mamede

S —— —

-- Query 4: Average Taxl Working Hours
SELECT avg(avg_shift) FROM
(SELECT plate,avg(RANGE(shift, [0,16])) FROM

GROUP BY plate LIMIT 300)
CONSUMING eps=0.33;

| 5.87 hours
Taxi Trajectory Data: EKML/PKDD 2015 (error: 13 mins with 99.9% confidence)

43



Concrete Example (Q4)

“Average working hours of
taxis in Porto during 2013-20147”

- - Repeat for portoCaml...portoCaml27:

SPLIT portoCaml
BEGIN 0/-01-2013/12:00am END 0/7-01-2014/12:00am
BY TIME 15sec STRIDE 0Osec
INTO chunksl;

-- Repeat for chunksl...chunksl27:

PROCESS chunksl USING porto.py TIMEOUT lsec
PRODUCING 3 ROWS
WITH SCHEMA (plate:STRING="")
INTO tablel;

Sao Mamede
pJ.l’J"- 3
228 Estaco de Infesta
Sao Mamede

S —— —

ing Hours
SELECT avg(avg_shift) FROM
(SELECT plate,avg(RANGE(shift, [0,16])) FROM
(SELECT plate,day, (max(chunk)-min(chunk) as shift) FROM
tablelO® UNION table27 GROUP BY plate,day(chunk))
GROUP BY plate LIMIT 300)
CONSUMING eps=0.33;

| 5.87 hours
Taxi Trajectory Data: EKML/PKDD 2015 (error: 13 mins with 99.9% confidence)

43



Cam10: (p=45, K=1), Cam27: (p=195s,K=1)

SPLIT 15s chunks, max 3 rows pleDr chunk
A(t;5) = maxrows X K X (1 + [—])
C

45
=3><1><([E]+1)=12

195
Aty = ... =3x1x([—]+ 1) =42

UNION t10 and t27:

ASSUMPTIONS: max 24-hour day, 300 total taxis

Sensitivity Calculation (Q4)

-- Repeat for portoCaml...portoCaml27:
SPLIT portoCaml

BEGIN 0/-01-2013/12:00am END 07-01-2014/12:00am

BY TIME 15sec STRIDE 0Osec
INTO chunksl;
-- Repeat for chunksl...chunksl27:

PROCESS chunksl USING porto.py TIMEOUT 1lsec

PRODUCING 3 ROWS
WITH SCHEMA (plate:STRING="")
INTO tablel;

-- Query 4: Average Taxi Working Hours
SELECT avg(avg_shift) FROM
(SELECT plate,avg(RANGE(shift, [0,16])) FROM
(SELECT plate,day, (max(chunk)-min(chunk) as shift) FROM
tablelO® UNION table27 GROUP BY plate,day(chunk))
GROUP BY plate LIMIT 300)
CONSUMING eps=0.33;

AVERAGE
AAVG _ rows impacted X impact perrow  A(U) Xrange 54 x 24 0012
; total rows in table . taxis X days a 300plates X 365days e
If we scale distribution by , hoise sample will be with
(Minutes!)

44



Privid Sensitivity Rules

Privacy policy for each camera: { (p, K ). V ¢ € cameras} Function Definition Constraints Sensitivity (A (Q))
Count Q:= Hcount(*)(R) A 1-A(R)

Maximum number of rows in relation R that could differ by the addition
or removal of any ( p, K )-bounded event.

Sum Q::Hsum(a)(R) A,Cp A(R)-Cr(R,a)

A(R)-Cr(R,a)
Cs(R)

Std. Dev Q= ev(a) (R) A(R)-Cr(R,a)/\/Cs(R)

Range constraint: range of attribute a in R

Average =11 R
Size constraint: upper bound on total number of rows in R & < avg(a) (R)

NOTATION

Indicates that a relational operator leaves a constraint unbound. If this
constraint is required for the aggregation, it must be bound by a predecessor.
If it is not required, it can be left unbound. Argmax Q:= Hargmax( a) (R) maXpc K A(oy—k(R))

AGGREGATION FUNCTIONS

Operator Type Definition Cr(R/ ,a;i) Cs (R

Base Case Base Table R mr - . %) %)

Sel(ect)ion Standard selection: rows from R that match WHERE condition R’ .= O WHERE( . . .) (R) Ap(R) Cr(R,a;) Cs(R)
o

Limit: first « rows from R = ormit=a (R) Ap(R) dr(R,ai) Inill(f'?adS(R))

Standard projection: select attributes a ; , . .. from R =1a,, ... Ap(R) Cr(R, a;) Cs(R)

Projection
(I1) Apply (user-provided, but stateless) f to column a ; =11 fla;) Ap(R) %) Cs (R)
i)se--
[l; u;lifa; # 9
Cy (R,a; ) otherwise

Add range constraint to column a ; P= Haie[li’ui]"“ Ap(R) Cs(R)

Cs(R)

= a.- Y .
g;,... lagg(a;),... o :
J 2 Equation 5.2 A(agg(a =
. : = chunk|bin (chunk) d (agg(as)) (bin size)

Group attribute(s) (g ; ) are chunk (or binned chunk) or region

RELATIONAL OPERATORS

GroupBy

(v) Group attribute(s) (gj ) are not chunk or region = Ap(R) %] %]

gj,...PYagg(ai),...

... discrete set of keys provided for each group (constrains size) r= g;€ Kj .. Yagg( a;)s... IT; | K j |
[l uilifa; # O

...aggregationconstrainsrange:agg(az') < [li’ui] ::gj,...’Yagg(ai)e[lz’,ui],... CT(R,CLi)OtherWise

*When immediately preceeded by GroupBy over the same key(s .
yP Y PEY ye) '_gfyagg(a)(Rl Mg...Xg Rp) (GroupBy (GroupBy

... equijoin on g ; (intersectionon g ;) (Rl X, .. Mg Ry) rules) rules)

r._
"= g Vagg(a)

...outer joinon g j (union on g j )




Practical Considerations

Video Owner (VO)

* What if some individuals are visible for longer than p?
 What if p is very large?
Analysts

 How should | choose query parameters?

 How many queries can | execute? At what granularity?

46



But what if... I’m visible for longer than p?

Privacy degrades gracefully

Output was large,

o 1.00
very unlikely to be noise © ‘;‘%
> O
= > 0.75
O O
© <
-g o5 0.50
Q’% 0.25
Q2
= o
Output was small, © 0.0
could just be noise 1
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But what if... I’m visible for longer than p?

Privacy degrades gracefully

Must be visible for many multlples of p

to be detected..

Privacy Is roughly the same just beyond p
| but details still protected

Output was large,
very unlikely to be noise
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ut what if... longest duration is too long?

Add static frame mask

Remove areas where people linger,
reducing maximum duration

N Minimal impact on query accuracy
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But what if... longest duration is too long?

Add static frame mask

Remove areas where people linger,
reducing maximum duration

N Minimal impact on query accuracy

4.99x Reduction
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48 Duration (seconds)



eneral privacy policies with masks

Analyst chooses mask at query time, gets corresponding threshold

No Mask = 250s Baseline
Mask 1: )
Center —10X) 5X lower noise
Mask 2: .

= JUS 8X lower noise

Walkways
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Analyst’s Budget-Granularity Tradeoff

(# queries over same video) (count... per hour? per day?)

* Analyst has 2 utility knobs: query budget and temporal granularity

 Budget is inversely proportional to granularity and error bound
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Takeaways

* Surveillance cameras could provide a lot of useful analytics, but are
currently untapped due to privacy concerns

» Key technical challenge: satisfying DP over arbitrary analyst-provided NNs

* Our solution: event-duration privacy definition, implemented via Privid

. Privid BREERSIAGKIAG) it st alowing many ECTARGGEGRTGHGUSHES
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Guarantee Across Multiple Cameras

 Suppose | walk past 20 cameras on my way to work each day (250 days)
and each of my appearances is bound by per-camera p

» Can learn:
- was Frank somewhere in Boston today? (Coarse location, duration: 20xp)
- did Frank pass 5th street this year? (Coarse time, duration: 250xp)

 Can’tlearn:
- did Frank pass 5th street today? (Fine-grained time and location)

L> Can learn some common trends, but can’t track me
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Privacy Budget ¢

* Analyst picks privacy budget for each camera (standard DP parameter €),
budget is distributed per-frame, and is public knowledge

 Each Privid query consumes budget from all frames in query window

* Once budget is depleted for a frame, it can no longer be queried
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