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Beneficial Applications

Source: PSU TREC

Urban planning, smart cities,  
business analysis, public health

Privacy Concerns

Increasingly feasible to track objects 
across network of cameras
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Problem: How to tradeoff privacy & utility?

Don’t release video at all

“Best” Privacy “Best” Utility

Release video publicly
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Problem: How to tradeoff privacy & utility?

Don’t release video at all

“Best” Privacy “Best” Utility

Release video publicly?
Can we extract useful information from video  

without giving up privacy?
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Threat Model

Video Owner (VO)Individuals
(Organizational Entity)(Citizens)

Analysts
(Employees OR 3rd parties)

Malicious Query:  
“When did Frank  
pass this camera?”

😈

Benevolent Query:  
“Count people per hour”😇

Do not trustProtect privacy
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Obfuscation

(contains private information)

Original Video
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Obfuscation

(contains private information)

Original Video “Safe” Video

Obfuscation AnalysisRelease

(potentially malicious)
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Obfuscation 1 2Find all “private” information Remove it
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Obfuscation 1 2Find all “private” information Remove it

Can’t guarantee privacy
If missed, can be tracked! Removing precludes 

queries that don’t identify
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Obfuscation Obfuscation Analysis Result
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Obfuscation Obfuscation Analysis Result

Statistic Raw 
Result Add Noise

Safe (DP) 
ResultDifferential Privacy
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Name Balance
…

Alice x1
Bob x2

Charlie x3
David x4
Eve x5

Frank x6
Greg x7

…

Differential Privacy: Motivating Example
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Name Balance
…

Alice x1
Bob x2

Charlie x3
David x4
Eve x5

Frank x6
Greg x7

…

mean(balance) Unsafe!
what if analyst knows 
all balances

except Frank’s?

Differential Privacy: Motivating Example

SELECT mean(balance) FROM bank;
SELECT mean(balance) FROM bank WHERE name!=“Frank”;
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Differential Privacy: Intuition
GOAL: Regardless of prior information, analyst cannot identify anyone in dataset

A(D’) V’
(Any) one individual removed from D

D’

D A(D) V

Algorithm, e.g. mean

Analyst shouldn’t  
be able to differentiate
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Differential Privacy: Just add noise!

D A(D)
V

A(D’)
V’

(Any) one individual removed from D

D’

Algorithm, e.g. mean

GOAL: Regardless of prior information, analyst cannot identify anyone in dataset

+ noise

+ noise

Centered at true value
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Differential Privacy: Just add noise!

D A(D)
V

A(D’)
V’

(Any) one individual removed from D

D’

Algorithm, e.g. mean

GOAL: Regardless of prior information, analyst cannot identify anyone in dataset

+ noise

+ noise

Centered at true value

Analyst observes one query result  
(sample from distribution)

Sample equally likely to be from V or V’



18

Differential Privacy: how much noise…?
GOAL: Regardless of prior information, analyst cannot identify anyone in dataset

A(D’) V’D’

D A(D) V
Sensitivity: max difference between  
V and V’ for any (D,D’)
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Differential Privacy: how much noise…?

D A(D)
V

A(D’)
V’

D’

GOAL: Regardless of prior information, analyst cannot identify anyone in dataset

+ noise

+ noise

Centered at true value

Add noise proportional to sensitivity
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Differential Privacy: Sensitivity Example

Name Balance
…

Alice x1
Bob x2

Charlie x3
David x4
Eve x5

Frank x6
Greg x7

…

10,000 total customers

Balance  [$0, $1000]∈

mean = 
sum of balances
num customers

Δ(mean(balance)) ≤
|1000 − 0 |

10,000
≤ 0.1

Could change by at most $1,000



21

Challenge: how to satisfy DP over arbitrary NNs?

Classic DP Setting

Input Algorithm

μ

Standard statistics 
(“white box”)

Satisfy DP

Manually 
derive bound

🧐
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?
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How can we bound the amount 
[someone’s appearance] could contribute 

to the [output of a black box]?

Challenge: how to satisfy DP over arbitrary NNs?
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Motivating Observation

Source: YouTube, Auburn University (speed 30x)
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Motivating Observation

Source: YouTube, Auburn University (speed 30x)

Average Car:  

~5s
Average Person:  

~60s
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Motivating Observation

Source: Newark, NJ Citizen Virtual Patrol (speed 30x)
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Motivating Observation

Source: Newark, NJ Citizen Virtual Patrol (speed 30x)

Average Car:  

~3s
Average Person:  

~40s*
*ignoring parked cars, 
will come back to this 
at the end of the talk! 
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Motivating Observation

Objects tend to be visible for short duration

relative to granularity of many useful queries

seconds

hours or days
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Key Insight: implicit structure of query

Output

“Count people per hour”😇
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Key Insight: implicit structure of query
“Count people per hour”😇
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Key Insight: implicit structure of query
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Output

3
output

output

output

output

output

output

2
2
2

2😈

∑

0

1hr

“Black box” model per-frame 
(Analyst flexibility)

“White box” aggregation 
(Connect to Differential Privacy)

Key Insight: implicit structure of query
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Our Contributions

New definition:1

2

(  )-Event-Duration Privacyρ

System that satisfies definition: Privid

Does not require locating all individuals to protect them

Analysts provide their own (untrusted) video processing code
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(  )-Event-Duration Privacyρ

(e.g., 30 seconds)

Classic DP:       “analyst cannot detect presence of any one person”


Our Definition: “analyst cannot detect anything visible for  seconds” ≤ ρ

1 Simple and expressive interface 


Gracefully handles CV imperfections


Enables safe aggregation queries


Predictable impact on utility


2

3

4

Formally:  possible videos   
                 that differ by  seconds,  
                 and all output subsets S, 




∀ (V, V′￼)
≤ ρ

Pr[Q(V) ∈ S]
Pr[Q(V′￼) ∈ S]

≤ eϵ

🥱

(Small constant)
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Privid: Overview

Registration

Analytics

PrividVO
cam1: =30s, cam2: …ρ

Choose per-camera guarantee

Analyst Privid
NN + Query

Result
Guarantee: satisfies  
-event-duration privacy(ρ)
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Privid: Query Interface

SPLIT PROCESS SELECT
into chunks using NN, output rows aggregation over table



36

Privid: Query Interface

SPLIT PROCESS SELECT
into chunks using NN, output rows aggregation over table
0

1hr



36

Privid: Query Interface

SPLIT PROCESS SELECT
into chunks using NN, output rows aggregation over table

3

2

2

…

…

2

A B C
0

1hr



36

Privid: Query Interface

SPLIT PROCESS SELECT
into chunks using NN, output rows aggregation over table

3

2

2

…

…

2

A B C
0

1hr

∑ sum(A)



37

Privid: Query Interface

SPLIT PROCESS SELECT
into chunks using NN, output rows aggregation over table

3

2

2

…

…

2

A B C
0

1hr

∑ sum(A)



37

Privid: Query Interface

SPLIT PROCESS SELECT
into chunks using NN, output rows aggregation over table
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1hr
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Privid: Query Interface

SPLIT PROCESS SELECT
into chunks using NN, output rows aggregation over table

Restricted Output Range2

[0,10]

3

2

2

…

…

2

A B C

1 Confined ML Execution

0

1hr

∑ sum(A)



SPLIT PROCESS SELECT
10s chunks count: [0,10] SUM(count)

(Query intent unknown)🤔

3

2

2

…

…

2

0

1hr

∑

count

0

max:  
3600



SPLIT PROCESS SELECT
10s chunks count: [0,10] SUM(count)

3

2

2

…

…

2

0

1hr

∑

count

0

max:  
3600=20sρ

 3 chunks≤

(Query intent unknown)🤔
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∑

0

1hr

10

10

10

…

…

0

count

SPLIT PROCESS SELECT
10s chunks count: [0,10] SUM(count)

0

max:  
3600=20sρ

 3 chunks≤

(Query intent unknown)🤔
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∑

0

1hr

10

10

10

…

…

0

count

SPLIT PROCESS SELECT
10s chunks count: [0,10] SUM(count)

0

max:  
3600=20sρ

 3 chunks≤

Sensitivity  
3 chunks x 

| [0,10] |

= 30

≤

+ 
noise

(Query intent unknown)🤔
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∑

0

1hr

10

10

10

…

…

0

count

SPLIT PROCESS SELECT
10s chunks count: [0,10] SUM(count)

0

max:  
3600=20sρ

 3 chunks≤

Sensitivity  
3 chunks x 

| [0,10] |

= 30

≤

+ 
noise

Equally likely!

👿

Could be result of 

presence OR noise

“When did Frank pass this camera?”😈
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∑

0

1hr

3

2

2

6

8

2

count

SPLIT PROCESS SELECT
10s chunks count: [0,10] SUM(count)

0

max:  
3600=20sρ

 3 chunks≤

Sensitivity  
3 chunks x 

| [0,10] |

= 30

≤

+ 
noise

“Count people per hour”😇
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∑

0

1hr

3

2

2

6

8

2

count

SPLIT PROCESS SELECT
10s chunks count: [0,10] SUM(count)

0

max:  
3600=20sρ

 3 chunks≤

Sensitivity  
3 chunks x 

| [0,10] |

= 30

≤

+ 
noise

😇

+ [-30,30]

“Count people per hour”😇
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Concrete Example (Q4)
“Average working hours of  

taxis in Porto during 2013-2014?”

Taxi Trajectory Data: EKML/PKDD 2015 

Location of 127 Cameras across Porto, Portugal

(error: 13 mins with 99.9% confidence)
 5.87 hours
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Sensitivity Calculation (Q4)

If we scale distribution by 0.012, noise sample will be <=13 with 99.9% probability

• Cam10: (p=45, K=1), Cam27: (p=195s,K=1) 


• SPLIT 15s chunks, max 3 rows per chunk  
 

           
 




• UNION t10 and t27: 



• ASSUMPTIONS: max 24-hour day, 300 total taxis


• AVERAGE  

Δ(t10) = maxrows × K × (1 + ⌈
ρ
c

⌉)

= 3 × 1 × (⌈
45
15

⌉ + 1) = 12

Δ(t27) = . . . = 3 × 1 × (⌈
195
15

⌉ + 1) = 42

Δ(t10 ∪ t27) = 12 + 42 = 54

ΔAVG =
rows impacted × impact per row

total rows in table
=

Δ( ∪ ) × range
taxis × days

=
54 × 24

300plates × 365days
= 0.012

(Minutes!)
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Privid Sensitivity Rules
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Practical Considerations

• What if some individuals are visible for longer than ?


• What if  is very large? 

• How should I choose query parameters?


• How many queries can I execute? At what granularity?

ρ

ρ

Video Owner (VO)

Analysts
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Privacy degrades gracefully
But what if… I’m visible for longer than ?ρ

Output was large, 
very unlikely to be noise

Output was small, 
could just be noise
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Privacy degrades gracefully

Privacy is roughly the same just beyond  ρ

> 4x ρ

Must be visible for many multiples of  
to be detected…  
but details still protected

ρ

But what if… I’m visible for longer than ?ρ

Output was large, 
very unlikely to be noise

Output was small, 
could just be noise
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But what if… longest duration is too long?

Add static frame mask
Remove areas where people linger,  
reducing maximum duration

Minimal impact on query accuracy

Duration (seconds)
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But what if… longest duration is too long?

Add static frame mask
Remove areas where people linger,  
reducing maximum duration

Minimal impact on query accuracy

4.99x Reduction

Duration (seconds)
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General privacy policies with masks
Analyst chooses mask at query time, gets corresponding threshold

No Mask

… …

ρ = 250s Baseline

Mask 1: 
Center

Mask 2: 
Walkways

ρ = 50s

ρ = 30s

5X lower noise

8X lower noise
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Analyst’s Budget-Granularity Tradeoff
• Analyst has 2 utility knobs: query budget and temporal granularity


• Budget is inversely proportional to granularity and error bound

(# queries over same video) (count… per hour? per day?)
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Takeaways
• Surveillance cameras could provide a lot of useful analytics, but are 

currently untapped due to privacy concerns


• Key technical challenge: satisfying DP over arbitrary analyst-provided NNs 


• Our solution: event-duration privacy definition, implemented via Privid


• Privid prevents tracking, while still allowing many useful aggregation queries
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Guarantee Across Multiple Cameras
• Suppose I walk past 20 cameras on my way to work each day (250 days) 

and each of my appearances is bound by per-camera   

• Can learn:  
- was Frank somewhere in Boston today? (Coarse location, duration: 20x ) 
- did Frank pass 5th street this year?          (Coarse time, duration: 250x )


• Can’t learn:  
- did Frank pass 5th street today?                (Fine-grained time and location)

ρ

ρ
ρ

Can learn some common trends, but can’t track me
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Privacy Budget ϵ
• Analyst picks privacy budget for each camera (standard DP parameter ), 

budget is distributed per-frame, and is public knowledge


• Each Privid query consumes budget from all frames in query window


• Once budget is depleted for a frame, it can no longer be queried

ϵ

1 2 3 4 5 6 7 8
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• Analyst picks privacy budget for each camera (standard DP parameter ), 

budget is distributed per-frame, and is public knowledge


• Each Privid query consumes budget from all frames in query window


• Once budget is depleted for a frame, it can no longer be queried

ϵ

Initial Budget ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ
Query t=[2,4] using e/2

Query t=[3,5] using e

1 2 3 4 5 6 7 8

Query t=[6,7] using e

ϵ ϵ/2 ϵ ϵ ϵ ϵϵ/2 ϵ/2
REJECTED insufficient budget in [3,4]
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Privacy Budget ϵ
• Analyst picks privacy budget for each camera (standard DP parameter ), 

budget is distributed per-frame, and is public knowledge


• Each Privid query consumes budget from all frames in query window


• Once budget is depleted for a frame, it can no longer be queried

ϵ

Initial Budget ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ
Query t=[2,4] using e/2

Query t=[3,5] using e

1 2 3 4 5 6 7 8

Query t=[6,7] using e

ϵ ϵ/2 ϵ ϵ ϵ ϵϵ/2 ϵ/2

ϵ ϵ 0 0 ϵϵ/2 ϵ/2 ϵ/2
REJECTED insufficient budget in [3,4]


