
Bringing the HPC Programmer’s IDE
into the 21st Century through Refactoring

Fredrik Berg Kjolstad Danny Dig Marc Snir
University of Illinois at Urbana-Champaign

{kjolsta1,dig,snir}@illinois.edu

Abstract
Programming tools for High Performance Computing are
lagging behind the tools that have improved the productivity
of desktop programmers. The increasing complexity of HPC
codes, the growing number of cores that they must utilize,
their long life-span, and the plethora of desirable source code
optimizations and hardware platforms make HPC codes hard
to maintain. Refactoring tools can enable HPC programmers
to explore the space of performance optimizations and par-
allel constructs safely and efficiently.

This position paper presents our view on how HPC pro-
gramming tools should evolve, a growing catalog of refactor-
ings for HPC programmers, and reports on our initial effort
to automate some of these refactorings.

Keywords Parallelism, Refactoring, Performance, HPC

1. Introduction
In the last ten years great strides have been made in increas-
ing the productivity of the desktop application programmer.
Powerful IDEs such as Eclipse, Microsoft Visual Studio,
NetBeans, and IntelliJ IDEA have become the norm and pro-
grammers expect automated support for code refactoring.

Before refactoring tools appeared, programmers often
over-designed, because it was expensive and error-prone to
change the design of large systems once they were imple-
mented. Refactoring tools allow programmers to continu-
ously explore the design space of multi-million line code-
bases, without the fear of introducing unintended behavioral
changes. Modern IDEs incorporate refactoring in their top
menu, and often compete on the basis of refactoring support.

So far, automated refactoring support in mainstream IDEs
has mainly been geared towards improving code design and

[Copyright notice will appear here once ’preprint’ option is removed.]

readability. However, refactoring is the process of chang-
ing source code without changing its semantics, in order to
improve some non-functional aspect. Aside from readabil-
ity and maintainability, there are many such aspects that can
benefit from refactoring technology.

Recently we have used refactoring to retrofit sequential
Java applications to use parallelism for performance [3, 4, 9].
The goal is to decrease the running time of an application, or
to increase the amount of data that can be processed in the
same amount of time, without changing the functionality. It
is therefore a good fit for refactoring technology.

The HPC (High Performance Computing) programmer is,
of course, concerned with getting the most performance he
can from the available hardware. However, there are other
concerns that are equally, and often more, important and that
conflict with this goal. Examples include numerical stability,
scalability, maintainability, and portability [1]. Codes must
be correct and they typically have a life-span of decades. The
latter implies that they must be maintained for a long time
and that they will run on machines that are wildly different,
and that may have orders of magnitudes more processor
cores than the machine they were originally designed for.

The HPC programmer must carefully balance all of these
concerns and has very little effective development tool sup-
port to do so. While the domain of application program-
ming is ripe with powerful IDEs, HPC programming typi-
cally involves a programmer with VIM, or an X-forwarded
text browser, and a command line shell. While HPC pro-
grammers have created many great codes using these trusted
tools, we believe it is time to bring their tool support into the
21st Century through a powerful IDE with support for the
kinds of refactorings that they need.

One promising effort at providing an IDE for parallel and
HPC programmers is the Eclipse PTP project [14]. PTP is a
set of plugins that extend Eclipse with tools to develop par-
allel software for remote machines and clusters. It simulates
a local development environment even though the code may
be run on, and even located at, a remote cluster. Furthermore,
it provides an integrated environment in which to interact
with the plethora of debuggers, profilers, and job launchers
that exist for these systems.

1 2010/10/13



PTP is built on top of CDT, which is a set of Eclipse plu-
gins for C and C++ development. It therefore provides some
refactorings such as Rename and Extract Method. However,
PTP does not provide the other kinds of refactorings we be-
lieve HPC programmers need in order to achieve higher pro-
ductivity in the face of increasing complexity and a plethora
of parallel programming models.

2. Towards A Refactoring Catalog for the
21st Century HPC Programmer

In this section we begin a catalog of refactorings for the HPC
programmer. The catalogue is incomplete and we expect it
to grow and mature over time. Some of the refactorings in
the catalog introduce parallelism, others prepare the code
for parallelism, while others still improve the performance
of already parallel code.

As the number of cores per processor continues to in-
crease, more cores are contending for the same shared mem-
ory resources. It is therefore increasingly important to man-
age memory resources so that they do not become bottle-
necks that limit an application’s performance and prevent
it from scaling. Consider for example an application where
threads frequently update memory on the same cache line.
The threads have to get ownership of this cache line before
writing to it, thus forcing them to write to it one at a time.

Furthermore, a parallel application consists of several
units of execution that sequentially manipulate a chunk of
data or execute a flow of control. As such, a parallel appli-
cation can be viewed as an array of cooperating sequential
components. If the sequential components suffer from poor
performance then the parallel application will too. Also,
due to the effect demonstrated by Amdahl’s law, the inher-
ently sequential parts of an application will dominate when
the number of parallel execution units becomes sufficiently
large. The HPC programmer must therefore not only extract
enough parallelism to keep available cores busy, but must
also ensure that the sequential parts perform adequately.

We therefore also include refactorings that are intended to
help the HPC programmer speed up the sequential compo-
nents of the parallel application. Since structured program-
ming is still dominant in the HPC community [1], the se-
quential refactorings we propose are for the C language.

2.1 Parallel MPI Refactorings
Make Communication Asynchronous This refactoring re-
places a synchronous MPI Send or MPI Recv with an asyn-
chronous MPI Isend or MPI Irecv and an MPI Wait. It then
attempts to move the MPI Wait as far apart from the send as
possible with the constraint that it is not moved past code
that writes to memory areas that are being sent, or reads
from memory areas that are being received. This allows use-
ful computation to be performed while messages are sent,
which decreases running time and makes the application less
sensitive to communication jitter.

Split Computation Into Communication Dependent and
Independent Parts This refactoring finds the subset of the
iterations of a loop that compute results that are subsequently
sent to another process, and peals these off from the rest of
the loop. This enables the programmer to overlap commu-
nication with computation by asynchronously transferring
communication-dependent results while the rest are com-
puted. Many iterative algorithms follow the pattern of re-
peatedly updating chunks of a data structure on different
nodes and then having each node exchange the borders of its
chunk with those of its neighbors. Iterative structured grid
computations are examples of this, where an n-dimensional
grid is split into chunks and divided amongst the compute
nodes. Since only the borders of the chunks are exchanged
between each iteration it is useful to compute this part first
so that the exchange can be overlapped with the computation
of the interior [10].

Remove Superfluous Barriers This refactoring analyzes
an application and attempts to remove superfluous barriers.
That is, if it can detect that other MPI functions provide suffi-
cient synchronization then it can remove redundant barriers.

Replace Barrier with Local Synchronization This refac-
toring attempts to replace an MPI Barrier with synchronous
calls to the MPI Ssend and MPI Recv functions, so that only
some processes are synchronized in cases where this is safe.
This can be useful to relax synchronization in MPI programs
where a barrier is used to force all processes to synchronize,
when in reality only some of the processes need to wait for
each other.

Gather Data This refactoring helps the programmer create
communication code to retrieve the whole or parts of a
shared data structure maintained on a master process. This
can be useful when porting a sequential or shared-memory
parallel program that uses a shared data structure to MPI. As
a first step it is reasonable to maintain this data structure on
a master process, before considering whether to distribute it
between the processes.

Create MPI Datatype from Struct This refactoring creates
an MPI Datatype for a C struct or an array of structs. Previ-
ous work on marshaling data structures as MPI Types in-
clude Tansey and Tilevich’s MPI Serializer [13].

Replace Flattening Loop with MPI Datatype This refac-
toring replaces a flattening loop with the construction of an
MPI Datatype that describes the mapping between the local
data structures and a message. A flattening loop is a loop
that copies the parts of the local data structures that should
be sent to another process into a buffer. This buffer is then
sent using a simple MPI datatype. Flattening loops are very
common in MPI applications and replacing them with the
use of MPI datatypes yields code that is simpler to under-
stand, and faster if a copy pass can be avoided [6].

2 2010/10/13



2.2 Sequential C Refactorings
Restrict Pointer The ISO C99 standard added support for
a new type qualifier, called restrict, that “[...] allows pro-
grams to be written so that translators can produce signif-
icantly faster executables” [7]. Intuitively, restrict, when
applied to a pointer p, specifies that the object pointed to
by p will not be accessed through another pointer in a block
where it is updated through p. The Restrict Pointer refactor-
ing performs a whole-program analysis of the source code
and restricts a given pointer if it is safe. If there are de-
pendencies preventing the pointer from being restricted the
refactoring provides information about the dependency to
the programmer so that he can break it.

Split Struct into Hot and Cold Fields It is common for
some fields in a struct to be accessed more often than others.
An example is a linked data structure where the key and
next fields are frequently accessed when searching for a key,
while the value fields are only accessed when the key is
found [5]. Furthermore, some data structures such as heaps
and k-d trees are often stored in an array. This refactoring
splits a struct in two, where one part contains the fields that
are accessed often and the other contains the fields that are
accessed less often. The structs are then stored in different
arrays so that the hot array can be traversed quickly in cache.

Organize Block as Load/Compute/Store This refactoring
organizes a code block so that all input data are read into
local variables at the beginning, and the results stored back
at the end. This can improve the compiler’s ability to analyze
dependencies, optimize code and schedule code and can be
useful in kernels that need heavy optimization.

Split Loop This refactoring finds independent code blocks
in a loop and lets the programmer decide which code blocks
to split of into new loops. This serves as an enabling step
when the programmer wants to incrementally parallelize a
large loop using OpenMP or CUDA. It is also helpful when
he wants to split of parts of a loop that does not contain loop
carried dependencies and that can therefore be parallelized.

Unroll Loop This refactoring checks whether it is safe to
unroll a loop and then unrolls (or re-rolls) it by a given fac-
tor. Unrolling can be useful to reduce branch overhead and
to improve the compiler’s ability to schedule code, but ex-
cessive unrolling can end up causing ICache misses (and
even hurt scheduling). This refactoring allows the program-
mer to quickly test different unroll degrees to find the one
that yields the best performance. See Section 3 for a discus-
sion on how to maintain readability when expressing perfor-
mance transformations like Unroll Loop in the source code.

Block Loop This refactoring establishes whether it is safe
to convert a linear loop to a blocked/tiled loop and then, with
input from the programmer, performs the transformations.
This can drastically improve the cache hit ratio since the
program only operates on a small block of data at a time.

3. Annotations and Views
We realize that some of the loop-related refactorings in the
previous section, such as Unroll Loop and Block Loop, are
traditionally performed by optimizing compilers. However,
the compilers knowledge about the performance of the final
code is very limited, due to its static nature and the com-
plexity of modern hardware. The former means that it can
not know which paths the program will take at runtime. The
latter means that even if it could, it would need a full model
of the hardware to predict the performance. It is therefore
forced to make educated guesses and it often guesses wrong.

The programmer, on the other hand, does not need to
guess. He can use a profiler, or manually instrument the
code with timers, and then explore the space of optimizations
effectively using his intuition. For this reason, performance
programmers still manually implement these optimizations
when they need near-optimal performance. The refactorings
in the previous section help them do this safely.

Furthermore, compilers often cannot perform loop trans-
formations due to dependencies that break transformation
preconditions. Sometimes these dependencies are real, but
in many cases they are artifacts of the conservative nature of
compiler analysis. In fact, compilers are forced to be overly
conservative, due to their static nature, the NP-Completeness
of the dependency testing problem, and the tradeoff between
compile time and powerful pointer analysis.

With the programmer in the loop more transformations
are possible, as demonstrated by the Parascope project [2, 8].
The programmer can tell the refactoring engine to ignore
dependencies he knows to be incorrect, or rewrite the code
once the refactoring environment has pointed them out.

However, it would be better if the performance program-
mer had the best of both worlds. He keeps his source code
readable and can take control of loop optimization when
needed. The programmer decides when he should be in the
driver seat and has the tools to help him drive fast and safe.

To aid readability, we therefore propose that refactoring
engines insert source annotations instead of transforming
loops directly. The refactoring engines will also analyze the
code to determine that transformations are safe. By keeping
the source code free of performance constructs that are unre-
lated to the algorithm the programmer wants to express, he
can more easily focus on solving the problem at hand.

To further tune performance, the programmer can expand
the annotations in a performance view to understand the per-
formance characteristics of the code, and use this under-
standing to improve the annotations.

The expanded source code lets the programmer reason
about the performance of the code, while the original source
code allows him to reason about its meaning. For example,
when profiling he would want to use the performance view,
while the normal view would be more suitable for debug-
ging. Finally, the IDE tracks the annotations and indicates
an error if the programmer later changes the source in a way

3 2010/10/13



Project Target Lang. Impl. Lang. Features

Cetus C Java AST, CFG, Callgraph, Inter-Procedural Pointer
Analysis (Steensgaard), Loop Dependence Analysis

clang/LLVM C, C++,
Objective-C

C++ AST, CFG, Incremental Compilation, SSA IR, Call-
graph, Inter-Procedural Pointer Analysis (DSA, An-
derson, Steensgaard), Loop Dependence Analysis

Elsa/Pork/
Dehydra/Treehydra

C, C++, C AST, Scriptable AST Analysis

LLNL Rose C, C++, Fortran,
OpenMP, UPC

C++ AST, CFG, Callgraph, Inter-Procedural Pointer
Analysis (Steensgaard), Loop Dependence Analysis

Table 1. Candidates for a Refactoring Analysis Backend

that is inconsistent with the annotation preconditions.
When the programmer wants to build a project, the IDE

first passes the code to an internal source-to-source annota-
tion compiler. This compiler expands annotations before it
passes the code to the target compiler. The annotation com-
piler is also available as a command line application for pro-
grammers who need to build the project outside of the IDE.

The annotations are in the form of pragma directives that
are ignored by C preprocessors. Therefore, the program will
still work without the annotation compiler.

4. A Framework for Advanced Refactoring
Users have come to expect certain features from a modern
refactoring framework. This includes invoking refactorings
directly from the editor, previewing changes before they are
applied, and the ability to undo and redo changes. Eclipse
provides a rich infrastructure that has these features, in addi-
tion to an AST program representation, visitors, and rewrite
capability. CDT and PTP extend Eclipse with support for C,
C++ and MPI. Moreover, PTP provides numerous other use-
ful features for HPC programmers. We therefore believe the
best option is to base the performance refactoring infrastruc-
ture we envision on Eclipse with CDT and PTP.

However, the refactorings we discussed in the previ-
ous section require more sophisticated analysis than tradi-
tional refactorings. It is therefore necessary to augment the
Eclipse infrastructure with a powerful analysis framework.
To demonstrate this we discuss two refactorings and the
analyses that are necessary to implement them.

Consider the Restrict Pointer refactoring. To safely add
the restrict qualifier to a pointer the refactoring must verify
that no other pointers accessed in the same block refer to any
of the memory areas that are modified through the restricted
pointer. This requires inter-procedural alias analysis to check
for aliases and array disambiguation to find out if array
accesses through pointers refer to the same parts of an array.

Now consider the Split Computation Into Communica-
tion Dependent and Independent Parts refactoring. It re-
quires dataflow analysis, array disambiguation and possibly
shape analysis to find out which parts of a data structure
are sent to other processes. It must also do loop dependence
analysis and pointer analysis to find if there are loop carried
dependencies that prevent it from peeling of loop iterations.

Table 1 contains four analysis framework candidates
that we surveyed. Given the need for a mature framework
with powerful analysis data structures we believe LLNL
Rose [12] and clang/LLVM [11] are the most promising

candidates. In order to investigate their suitability we have
created an Eclipse plugin that allows refactoring plugins
to access the Rose compiler APIs. We have also started to
implement the Restrict Pointer refactoring on top of this plu-
gin. When this has been completed, we are planning to do
the same using clang/LLVM.

5. Conclusions
Not long ago, refactoring to improve the design of code was
impractical and only done by a select group of hero program-
mers. Refactoring tools empowered the average programmer
to explore the design space like a pro.

A similar situation exists today for performance refactor-
ing. However, these require more in-depth analysis than de-
sign refactorings, which means that they can be even more
useful to automate. In the next decade, performance refac-
torings can become as transformative as design refactorings.

Acknowledgments
This work was funded by the Universal Parallel Computing
Research Center at the University of Illinois at Urbana-
Champaign. The Center is sponsored by Intel Corporation
and Microsoft Corporation.

References
[1] V. R. Basili, et. al. Understanding the High-Performance-

Computing Community: A Software Engineer’s Perspective.
IEEE Software, July/August 2008.

[2] Cooper, K.D., et. al. The ParaScope parallel programming
environment. Proceedings of the IEEE, Vol. 81, 1993.

[3] D. Dig, et. al. Refactoring sequential Java code for concurrency
via concurrent libraries. ICSE, 2009.

[4] D. Dig, et. al. ReLooper: Refactoring for Loop Parallelism.
OOPSLA, 2009.

[5] C. Ericson. Real-time Collision Detection. Elsevier, 2005.

[6] T. Hoefler and S. Gottlieb. Parallel Zero-Copy Algorithms for
Fast Fourier Transform and Conjugate Gradient using MPI
Datatypes. EuroMPI, 2010.

[7] ISO JTC 1 Working Group. Rationale for International
Standard — Programming Languages — C. 2003.

[8] K. Kennedy and K. S. McKinley and C. W. Tseng. Interactive
Parallel Programming using the ParaScope Editor. IEEE
Transactions on Parallel and Distributed Systems, Vol. 2, 1991.

[9] F. Kjolstad, et. al. Refactoring for Immutability. UIUC
TechReport, 2010, www.ideals.illinois.edu/handle/2142/16399

[10] F. Kjolstad and M. Snir. Ghost Cell Pattern. ParaPLoP, 2010.

[11] C. Lattner and V. Adve. LLVM: A Compilation Framework
for Lifelong Program Analysis & Transformation. CGO, 2004.

[12] D. Quinlan. ROSE: Compiler Support for Object-Oriented
Frameworks. CPC, 2000.

[13] W. Tansey and E. Tilevich. Efficient Automated Marshaling of
C++ Data Structures for MPI Applications. IPDPS, 2008.

[14] G. Watson. The Parallel Tools Platform: A Development En-
vironment For High Performance Computing. EclipseCon’10.

4 2010/10/13


	Introduction
	Towards A Refactoring Catalog for the 21st Century HPC Programmer
	Parallel MPI Refactorings
	Sequential C Refactorings

	Annotations and Views
	A Framework for Advanced Refactoring
	Conclusions

