The Art and Science of Depiction

Drawing systems

Fredo Durand
MIT - Lab for Computer Science

Assignments for Monday 30.

• Solso Cognition and the Visual Arts
 – Chapter 8 & 9
• Final project
 – Firm subject

Plan

• Drawing and projection
 – Linear perspective & the Renaissance
 – Drawing systems

 Catalogue of “all” drawing systems
 Advantage/disadvantages
 – Distortion and constraints
• Denotation
• Tone & color

Issues

• Place of the spectator
• Intrinsic/extrinsic (essential/accidental)
• Unified space
• Shape representation
• Error/distortion/choice

• Child development
• No cultural judgment!

Context

• Importance of the notion of front/top/side
• Presence of lines and planes or not
• Orthogonals
 – Lines orthogonal to the picture plane
 – I.e. lines that converge in the center of the image in central perspective
• Picture plane/curved picture
Efficient shape representation

- True shape
- 3D layout
- Canonical view
- General/accidental view

Generic vs. accidental viewpoint

- Accidental alignment of trash and sea

Generic vs. accidental viewpoint

- Accidental alignment of trash and sea

Generic vs. accidental viewpoint

- Accidental alignment of trash and sea

Canonical view

- Rate views

Canonical view

- Rate views
- Features must be salient
- General view
- Front view
- ¾ up view
Invariants
- Invariants
 - Alignments
 - Angles
 - Shape
 - Symmetry
- Property mapping
- Each system here assumes a unified space. Can be mixed up though

3D and 2D attributes
- Show a dice to children (~6-7)
- They usually draw a rectangle
- The rectangle can stand for one face

3D and 2D attributes
- Show colored or numbered dice to children (6-7)
- The still draw a rectangle
- But different colors or many points

3D and 2D attributes
- Show colored or numbered dice to children (6-7)
- The still draw a rectangle
- But different colors or many points
- The rectangle stands for the whole dice
- The notion of 3D object with corners is translated as a 2D object with corners

Evolution of children’s drawings
- Asked to draw a table

Primary/secondary geometry
- Primary geometry
 - Description in 3D object-space
- Secondary geometry
 - Description in 2D image-space
Primary/secondary geometry

- **Primary geometry**
 - Description in 3D object-space
- **Secondary geometry**
 - Description in 2D image-space
 - Permits the description of more drawing systems
 - Often better corresponds to the drawing approach

British standard classification

- **Primary geometry**

Willats’s classification

- **Secondary geometry**

Classification of drawing systems

- **Linear**
 - Parallel
 - Linear perspective
 - Divergent perspective
- **Non Linear**
 - Quasi linear
 - Curved projections
 - Topological
 - Split views, fold-out
 - Multiple viewpoints

Linear projections

- Straight lines and alignments are preserved
- Can be expressed in primary geometry
 - Ray-image intersections
 - A matrix
- **Parallel**
- **Linear perspective**
- **Divergent perspective**
Parallel projections

- No foreshortening
- Can represent true shape
- Some are poor shape representations

- Projection direction
 - Orthogonal to image plane or not
 - Along one principal direction or not
- “Stretching” or not

Orthogonal

- Direction
 - Perpendicular to image plane
 - Along one principal direction
- True shape for objects parallel to image plane

Orthogonal

- Direction
 - Perpendicular to image plane
 - Along one principal direction
- True shape for objects parallel to image plane
- Typically engineering

Orthogonal

- Amphora, 6th century BC

Orthogonal

- Bayeux Tapestry 1080
Orthogonal
- Telephoto

As the hijack bargaining goes on under the sweltering sun…

Orthogonal
- Child drawing

Parallel projections
- Orthogonal
- Fold-out oblique
 - Horizontal oblique
 - Vertical oblique
- Non orthogonal
 - Oblique
 - Axonometric
- Orthographic
 - Isometric
 - Others

Fold-out oblique
- Horizontal oblique
- Vertical oblique
- Direction
 - 45°, parallel to one principal face (top or side)
- Can be stretched for fold-out
 - True shape for 2 directions
- Mainly interesting for secondary geometry

Horizontal oblique
- Folk art
Horizontal oblique
- Icons

Horizontal oblique
- Child drawing

Horizontal oblique
- Cézanne Still life with a commode, 1887

Pushing the envelope

Vertical oblique
- Soriguerola, 13th

Vertical oblique
- Soriguerola, 13th
<table>
<thead>
<tr>
<th>Drawing systems</th>
<th>43</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertical oblique</td>
<td>• Juan Gris, Breakfast, 1914</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Drawing systems</th>
<th>44</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertical oblique</td>
<td>• Indian art, 1660</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Drawing systems</th>
<th>45</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertical oblique</td>
<td>• Claude Rogers, The Hornby Train, 1951-53</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Drawing systems</th>
<th>46</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertical oblique</td>
<td>• Andre Kerstesz, Tulipe Melancolique</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Drawing systems</th>
<th>47</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pushing the envelope</td>
<td></td>
</tr>
</tbody>
</table>
Pushing the envelope

- Non-linear
- Locally linear

Parallel projections

- Orthogonal
- Fold-out oblique
 - Horizontal oblique
 - Vertical oblique
- Non orthogonal
 - Oblique
 - Axonometric
- Orthographic
 - Isometric
 - Others

Non orthogonal

- Direction
 - non orthogonal to picture plane
- Oblique
 - Picture plane parallel to front
 - True shape for front face
- Axonometric
 - True shape for top face
 - True distance for up direction
 - Direction 45° of the picture plane

Oblique

- Picture plane parallel to front
- True shape for front face
- Can use true distance for 3rd direction

Oblique

- Henry Lapp, 19th century

Oblique

- Lady Wenji’s Return to China, 12th century
Oblique

- Phoenix and Achilles, 350-340 BC

Axonometric

- Axonometric
 - True shape for top face
 - True distance for up direction
 - Direction 45° of the picture plane

- Le Corbusier was a big fan

Axonometric

- James Stirling, 1953

- Juan Gris, Breakfast, 1914
Parallel projections
- **Orthogonal**
- **Fold-out oblique**
 - Horizontal oblique
 - Vertical oblique
- **Non orthogonal**
 - Oblique
 - Axonometric
- **Orthographic**
 - Isometric
 - Others

Orthographic
- **Direction**
 - Orthogonal to picture plane
 - Along no principal direction
- **Isometric**
 - Direction along the average of the principal directions
 - True distances along 3 directions
- **Others**
 - Generic orthographic

Isometric
- **Brooks-Greaves**
 - *St Paul’s Cathedral*
 - 1928

Isometric vs. Axonometric
- **Isometric**
 - No true shape
 - True distances in 3 directions
 - Little distortion
 - Direction average 2 principal directions
- **Axonometric**
 - True shape for top face
 - True distance for up direction
 - Direction 45° from picture plane

General Orthographic
- **Seldom used!**
Mixed parallel system
- Persian miniature, 1494
- Oblique+vertical oblique

Classification of drawing systems
- Linear
 - Parallel
 - Linear perspective
 - Divergent perspective
- Non Linear
 - Quasi linear
 - Curved projections
 - Topological
 - Split views, fold-out
 - Multiple viewpoints

Linear perspective
- Foreshortening
- The spectator is “immersed”
- Potential distortions
 - One point
 - Two points
 - Three points

1-point perspective
- Central focus
- Preserves horizontals and verticals

1-point perspective
- Jean Vredeman de Vries, 1604
- Central focus
- Preserves horizontals and verticals
- Can mean that the optical center is not the center of the image
 - View-camera
1-point perspective
- Unknown artist Ideal city, 15th

1-point perspective
- *Interior of St Bavo's church at Haarlem*, Pieter Jansz Saenredam, 1648

1-point perspective
- The Avenue Middelharnis, Meindert Obbema 1689

1-point perspective
- Western perspective in a Japanese picture

2-point perspective
- Objects stand out of the picture
- Preserves verticals
- Can mean that the optical center is not the center of the image – Architecture lens
Old assignment

• Before: 3-point perspective

3-point perspective

• Dramatic 3D effect
• The generic case, nothing preserved
• seldom used through art history

Perspective anomaly and expression

• Giorgio de Chirico, Mystery and Melancholy of a Street, 1914

Perspective anomaly and expression

• Giorgio de Chirico Les Muses Inquietantes 1925
Perspective distortion

- Wide angle projection
- Does not preserve subjective size

Perspective distortion

- Wide angle projection
- Does not preserve subjective size

Perspective distortion

- Wide angle projection
- Distorts shape

Perspective distortion

- Wide angle projection
- Portrait: distortion with wide angle

Perspective distortion

- The sphere is projected as an ellipse
- Symmetry is not preserved
- Some perspective manuals claim that the projection of a sphere is a circle

Perspective distortion

- The sphere should be projected as an ellipse
- But a circle is used
Classification of drawing systems

- Linear
 - Parallel
 - Linear perspective
 - Divergent perspective
- Non Linear
 - Quasi linear
 - Curved projections
 - Topological
 - Split views, fold-out
 - Multiple viewpoints

Divergent perspective

- A.k.a. inverted perspective
- Subject of quarrel, hard to include in a theory
- Icons
- Asian
- Cubism
- Children

Divergent perspective: explanations

- Does not exist!
- Lack of skill
- Represents more faces
- Fear of idolatry
- Perceptual over-compensation
- Perceptual effect of field of view and size constancy

Divergent perspective

- The Four Gospels, Luke, 1380, Byzantine

Divergent perspective

- Mark, 15th century, Byzantine

Divergent perspective

- Andrei Rublev, The Holy Trinity, 1408~1425
Divergent perspective
• Hasadera Enji (Japanese)

Divergent perspective
• Georges Braque, *Still Life: The Table, 1928*

Divergent perspective
• David Hockney, *Chair*

Divergent perspective
• Child drawing (Kenyan here)

Evolution of children’s drawings
• Asked to draw a table

Class of drawing & average age

- Child’s view
 - 7.4
 - 11.9
 - 14.3
 - 9.7
 - 13.6
 - 13.7