The Art and Science of Depiction Introduction to Visual Perception

Fredo Durand and Julie Dorsey MIT- Lab for Computer Science

Vision is not straightforward

- The complexity of the problem was completely overlooked because
 - The problem is so difficult
 - The human visual system is so efficient

Vision and pictures

- Explain
- Inspire
- Malfunction & art
- Technical simplification
 - Cinema, Color, JPG
- Pictures can challenge or simplify perception
- Emphasize or eliminate cues or channels
 Time, color

Beware of the El-Greco Fallacy

- El-Greco, elongated characters
- Were supposed due to astigmatism
- However, pictures and real people would have been stretched equally
- Almost as fallacious as assuming painting should be inverted because our eyes invert what we see

However...

- Monet had a cataract operation
- Cataract makes vision blurry and yellowish

Before operation Intro to Visual Perception After operation

Textbooks

VISION SCIENCE Photons to Phenomenology

Stephen E. Palmer

BRIAN A. WANDELI

FOUNDATIONS of VISION VISUAL PERCEPTION Physiology, Psychology, and Ecology 3RD EDITION

> Vicki Bruce Patrick R. Green Mark A. Georgeson

Plan

- Eye
- Low-level processing
- Different pathways
- Organization
- High-level
- Focus, attention
- Color

Eye: optics

- Image is inverted (mainly by cornea)
- Lens makes the focus

Eye: visual angle

- Corresponds to size of the projection on retina
- Depends on real size and distance

Retina

Photoreceptors

- Rod: night vision
- Cone: bright, color vision

Optic nerve

Retina

Photoreceptors

- 100M rods
- 5M cones
- Variable density
- Fovea: most acuity, cone only

Field of view

• Fovea=2-5 degrees

Field of view

• Fovea=2 degrees

Summary

- Light is transformed into 100M neural signals
- But... optic nerve has only 1M nerve fibers

Overview of pathway

- Input from both eyes is dispatched
- Left brain : right part of visual field

Visual processing

• First step in the retina itself

- We are sensitive to contrast, not to absolute luminance
- Useful because contrast is more invariant (it depends less on illumination)

- Receptors are wired to other neurons
- Center-surround organization

- Receptors are wired to other neurons
- Center-surround organization

Light

- Receptors are wired to other neurons
- Center-surround organization

- Receptors are wired to other neurons
- Center-surround organization

Florida Election Recount

Count and total black dots for Al Gore and white dots for George Bush. Recount to confirm

Vasarely, Supernovae

Mach Bands

• Contrast is enhanced at region boundaries

Relation with photo and painting

- Low contrast is not that much a problem
- A photo can be brighter/lighter than the original

Visual processing

- First step in the retina itself
- • •
- Next step: visual cortex area V1

Edge detection

- Similar to center-surround
- Measured using micro-electrodes

Edge detection: Multi-resolution

Edge of different sizes **Edge Detectors** + + + + + + + Line Detectors

Edge detection: not so simple

- Edges are only a special case
- Patterns

Retinotopic

- Close optical stimulus map to close parts of V1
- A monkey is shown A
- Radioactive tracer
- His V1 area is shown in B

Retinotopic

- Close optical stimulus map to close parts of V1
- But not complete correspondence

Relation with line drawing

- The information is ~ the same
- Drawing simplifies edge detection
- Some neurologist believe that line drawing nicely excites areas of the brain

Optical art

 Op' Art directly exploits low-level vision

Higher-level visual processing

- More complex
- Less understood or "measured"
- Different pathways

Dorsal vs. Ventral pathways

- Ventral pathway: What?
 - Object recognition
- Dorsal Pathway: Where?
 - Location
- Study on monkeys with damaged brain

Different visual channels

Different visual channels

- Quite complex interactions
- Not sequential
- Not one-way
- Not strictly separate

Some interconnections in the Monkey brain

Relation to visual arts

- Same elements:
 - Color
 - Form
 - Layout
 - Texture

Relation to visual arts

- Same elements:
 - Color
 - Form
 - Layout
 - Texture
- Selective treatment
 - Focus in brain
- Orchestra metaphor

Relation to visual arts

- Same elements:
 - Color
 - Form
 - Layout
 - Texture
- Selective treatment

 Focus in brain

Form and color

Absence of color, contrast

Duet: shape and texture

Symphony

Plan of the few next sessions

- Stepping back
- Organization, Gestalt
- Perceiving shape and objects
- Focus, attention
- Color vision

Assignments

- Feedback
- Image
- Reading
- Piranesi

Reading

• Do not forget Gombrich...

Assignment

- Piranesi tutorial
 - Demo version on the class web page
 - Non-photorealistic rendering
 - Tutorial 1 to 3
 - Skip 2.4

Talk

- Decision next week
- Either come with a subject
- Or look on the class web page for suggestions