The Art and Science of Depiction Vision Solves Problems

Fredo Durand MIT- Lab for Computer Science

Plan

- Vision as an cognitive process
- Computational theory of vision
- Constancy, invariants

Distal vs. proximal stimulus

- Distal stimulus: reality
- Proximal stimulus: retinal image

proximal stimulus (2D)

Distal stimulus (3D)

Vision as an inverse problem

• The distal stimulus is projected into a proximal stimulus

Vision as an inverse problem

- The distal stimulus is projected into a proximal stimulus
- How can we inverse this projection?

Distal stimulus (3D)

Unconscious inference (Helmholtz)

- Our vision system solves a problem
- Under-constrained problem
 - A visible point A' can correspond to an infinity of 3D points (A1, A2, A, A3...)

Unconscious inference (Helmholtz)

- Our vision system solves a problem
- Under-constrained problem
- Assumptions on the scene

The Ames room

- Invalid assumption
- Wrong conclusions

real place and size of "smallest" man
apparent place and size of "smallest" man
real place and size of "medium" man
apparent place and size of "medium" man

"largest" man

Ames chair

- Different scenes
- Same projection
- We assume it is a chair

Patrick Hughes

• Perspective painting on the inverse geometry

The paradox of vision

- Available information: proximal stimulus
- Conscious information: distal stimulus

The paradox of Pictures

- Distal vs. proximal
- Available information: proximal stimulus
- Conscious information: distal stimulus

proximal stimulus (2D)

Pictures and inverse problem

- Can
 - Simplify analysis
 - Be a puzzle

Plan

- Vision as an cognitive process
- Computational theory of vision
- Constancy, invariants

Vision as information processing

- Input: retinal image
- Output: 3D layout, object recognition, etc.

Computational theory of vision

- Marr's stages (extended by Palmer et al.)
- Human and Computer Vision
- Classification of different kinds of processes
- Has proved fruitful in art studies

Computational theory of vision

- Marr's stages (extended by Palmer et al.)
- Human and Computer Vision
- Classification of different kinds of processes
- Has proved fruitful in art studies

Retinal image

• Intensity

Retinal image

• Intensity: hard to comprehend

							Image	Imaga	Betinal														
					· · · · · · · · · · · · · · · · · · ·									11日本没的形式									
в																							
04	04	04	04	04	04	04	04	04	04	04	09	18	04	04	04	04	04	04	04	04	04	04	04
04	04	04	04	10	04	04	04	04	04	04	07	17	04	04	04	04	04	04	04	04	04	04	04
04	04	04	04	04	04	04	04	04	04	04	07	16	05	04	04	04	04	04	04	04	04	04	04
04 (04 (04 0	04 0	04 (04 (04 0	04 (04 (04 (04 (07 0	15 1	09 1	04 0	04 (04 (04 (04 0	04 0	04 (04 0	04 (04 (
04 04	04 04	04 04	04 04	04 04	04 04	04 05	04 05	04 05	04 04	04 05	07 07	15 14	12 15	04 04	04 04	04 04	04 04	04 04	04 04	04 04	04 04	04 04	04 04
4 04	1 04	1 04	1 05	1 05	1 04	5 05	5 06	5 06	4 05	5 05	7 07	4 12	5 16	1 04	1 04	1 04	1 04	1 04	1 04	1 04	1 04	1 04	1 04
4 04	4 05	4 05	5 07	5 07	4 05	5 05	6 07	6 07	5 07	5 05	7 07	2 14	6 17	4 04	4 04	4 04	4 04	4 04	4 04	4 04	4 04	4 04	4 04
06	07	07	08	08	06	08	08	08	08	08	09	13	18	04	04	04	04	04	04	04	04	04	04
07	07	08	08	08	08	08	08	09	08	08	09	13	17	04	04	04	04	04	04	04	04	04	04
08	08	08	10	09	08	09	10	10	10	09	10	13	17	04	04	04	04	04	04	04	04	04	04
09	09	10	10	10	10	10	11	11	11	09	10	13	17	05	04	04	04	04	04	04	04	04	04
10	11	11	11	11	11	11	11	11	11	10	11	13	17	08	04	04	04	04	04	04	04	04	04
11	11	11	11	12	12	12	12	12	13	12	13	14	16	09	04	04	04	04	04	04	04	04	04
12	12	12	13	12	12	12	12	13	13	13	13	14	16	11	04	04	04	04	04	04	04	04	04
12	13	13	13	13	13	13	13	13	13	13	13	14	17	13	04	04	04	04	04	04	04	04	04
13	13	13	13	13	13	13	13	13	13	13	13	14	16	15	04	04	04	04	04	04	04	04	04

Retinal image

• Intensity

Image-based (primary sketch)

• Contrast, edge detection

Image-based (primary sketch)

- Contrast, edge detection
- Not so easy

Raw edge detection

Image-based (primary sketch)

• Contrast, edge detection

- Visible surfaces, organization
- Distance, orientation В to t t Surface-Image-Retinal t based based Image Processing Processing Ф 0 Ф 999999999

Local orientation

0

0

5

0

0

to

000

664

60

1

0

- Visible surfaces, organization
- Distance, orientation

Local orientation

- Visible surfaces, organization
- Distance, orientation

- Visible surfaces, organization
- Distance, orientation

Local orientation

Object-based

- 3D properties, structure
- Nature of the description highly discussed

Category-based

• Recognition, category, function

Feedback

• Bottom-up and top-bottom

Scope of the theory

- Computer Vision
- Human Vision
- No direct correspondence in the brain
- Has proved fruitful conceptual tool

Relation to children drawing

- First children draw what they know
 - Object-centered
- Then, what they see
 View-centered

Age 9 (gifted!)

Evolution of children's drawings

What about adults?

- Reproduce two drawing with similar angles
- Wheel:
 - Accuracy $\sim 5^{\circ}$
- Street:
 - Error: 32 °

Drawing reproduction

- From Drawing on the right side of the brain
- Reproduction of Picasso's portrait of Stravinsky

Relation to pictures

- How we see pictures
- Different classes of pictures for different stages

Relation to pictures

- Different classes of pictures for different stages
- Not a strict classification

Relation to pictures

- Chinese painting refuse extrinsic, only essential
- No shadow

View-centered Extrinsic Object-centered Intrinsic

Retinal image

Impressionism

Retinal image

- Impressionism
- Photography

Image-based

• Line Drawing

Intermediate

- View-based
- Cues for surface-based feature extraction are enhanced
 - Depth cues
 - Orientation cues
- No subjective feature (e.g. lighting)

Intermediate

- View-based
- Cues for surface-based feature extraction are enhanced
 - Depth cues
 - Orientation cues
- More subjective feature (lighting)

- Primitive art
- Cubism
- Schema
- "What I know"

- Primitive art
- Cubism
- Schema
- "What I know"

- Primitive art
- Cubism
- Schema
- "What I know"

Surface-

based

Processing

Object-

based

Processing

based

Image-

based

Processing

Retinal

Image

- Primitive art
- Cubism
- Schema
- "What I know"
- Not limited to picture

Expressionism

• "What I feel"

Relation with 2D/3D qualities

- Almost the opposite!
- 3D quality correspond to retinal image
- 2D quality arises from higher-level pictures
- Because of vision paradox

- Distal is seen when proximal is shown

Relation with 2D/3D qualities

• 3D quality but Retinal image

Relation with 2D/3D qualities

• 2D quality but Higher level

Plan

- Vision as an cognitive process
- Computational theory of vision
- Constancy, invariants

Constancy & Invariants

- We see intrinsic properties of objects
- They are "invariant" or "constant"
- Ecological advantage

Visual angle vs. size

- We see cylinders with same size
- Valid most of the time

Visual angle vs. size

- Mirror experiment:
 - Draw your face on a mirror
 - Measure: the drawing is 1/2 your face
 - However, you see "full size"

Visual angle vs. size

- How do we do that?
 - Distance
 - Familiarity
 - Assumptions
- Here
 - Perspective
 - Position on ground plane
 - Similarity

Brightness vs. lightness

- Brightness: subjective amount of light
- Lightness: how "white"

The white cells in shadow are as dark as the black illuminated cells

Lightness constancy

Lightness constancy

- Sargent
- White in light and in shadow

Color constancy

- Chromaticity of light sources vary
- Chromatic adaptation
 - Similar to white balance on camcoder
 - Different films, filters

Objective colors under neon lighting

With chromatic adaptation

Constancy

- Size
- Lightness
- Color
- Position
- Orientation
- Shape

Degree of constancy

- Not always perfect
- Sometimes too much

Degree of size constancy

- The Moon illusion
 - The Moon appears bigger on the horizon
 - Because it looks farther (Emmert's law)

Degree of color constancy

- Incandescent light looks warmer
- Sodium lighting looks yellowish
- Depends on intensity

Constancy & Pictures

- Estimate size of depicted objects
- Different virtual viewpoints

Constancy & Pictures

- Estimate slant of depicted objects
- Different real viewing angles

Importance of frame

- Estimate slant of depicted objects
- Different real viewing angles, invisible frame

Constancy & Pictures

- Hybrid constancy with respect to
 - Picture object
 - Depicted scene

Constancy & Pictures

- Hybrid constancy
- Problem
- Richness

Degree of constancy

- Vermeer Soldier and a Laughing Girl
- Too good to be true: use of camera obscura

Size constancy failure

Size constancy failure

Size constancy failure

Breaking size constancy for symbol

- Middle-age
- Size = social importance

Size constancy dissonance

• Surrealism (Magritte)

Color constancy and pictures

• Chromatic adaptation with respect to picture object, not with respect to dicted scene

Constancy & architecture

- Palazzo Spada in Rome (by Boromini)
- Short corridor
- Column size
 decreases
- Appears longer

Constancy & Make Up

Intro to Visual Perception

Constancy & Lighting

Intro to Visual Perception

Next session

- Gestalt and picture organization
- Gaze movement and focal point

Assignments

- Piranesi
 - Tutorial 1 to 4
- Reading
 - Art and Illusion, Gombrich
 - Summary 1 to 2 pages
 - 2 Discussion issues
- Feedback, 1 picture

Discussion

- The Man Who Mistook his Wife for a Hat
- The Colorblind Painter
- Oliver Sacks

Intro to Visual Perception