The Art and Science of Depiction

Vision Solves Problems

Fredo Durand
MIT- Lab for Computer Science

Plan

- Vision as an cognitive process
- Computational theory of vision
- Constancy, invariants

Distal vs. proximal stimulus

- Distal stimulus: reality
- Proximal stimulus: retinal image

Vision as an inverse problem

- The distal stimulus is projected into a proximal stimulus

Unconscious inference (Helmholtz)

- Our vision system solves a problem
- Under-constrained problem
 - A visible point A' can correspond to an infinity of 3D points (A_1, A_2, A, A_3, \ldots)
Unconscious inference (Helmholtz)
- Our vision system solves a problem
- Under-constrained problem
- Assumptions on the scene

The Ames room
- Invalid assumption
- Wrong conclusions

Ames chair
- Different scenes
- Same projection
- We assume it is a chair

Patrick Hughes
- Perspective painting on the inverse geometry

The paradox of vision
- Available information: proximal stimulus
- Conscious information: distal stimulus

The paradox of Pictures
- Distal vs. proximal
- Available information: proximal stimulus
- Conscious information: distal stimulus
Pictures and inverse problem

- Can
 - Simplify analysis
 - Be a puzzle

Plan

- Vision as a cognitive process
- Computational theory of vision
- Constancy, invariants

Vision as information processing

- Input: retinal image
- Output: 3D layout, object recognition, etc.

Computational theory of vision

- Marr’s stages (extended by Palmer et al.)
- Human and Computer Vision
- Classification of different kinds of processes
- Has proved fruitful in art studies

Retinal image

- Intensity
Retinal image

- Intensity: hard to comprehend

Image-based (primary sketch)

- Contrast, edge detection

Surface-based

- Visible surfaces, organization
- Distance, orientation

Retinal image

- Intensity
Surface-based

- Visible surfaces, organization
- Distance, orientation

Local orientation

Object-based

- 3D properties, structure
- Nature of the description highly discussed

Feedback

- Bottom-up and top-bottom

Category-based

- Recognition, category, function

Cup
Scope of the theory

- Computer Vision
- Human Vision
- No direct correspondence in the brain
- Has proved fruitful conceptual tool

Relation to children drawing

- First children draw what they know
 - Object-centered
- Then, what they see
 - View-centered

Evolution of children’s drawings

- Asked to draw a table

What about adults?

- Reproduce two drawing with similar angles
- Wheel:
 - Accuracy ~5°
- Street:
 - Error: 32°

Drawing reproduction

- From Drawing on the right side of the brain
- Reproduction of Picasso’s portrait of Stravinsky

Relation to pictures

- How we see pictures
- Different classes of pictures for different stages
Relation to pictures

- Different classes of pictures for different stages
- Not a strict classification

View-centered
- Extrinsic

Object-centered
- Intrinsic

Relation to pictures

- Chinese painting refuse extrinsic, only essential
- No shadow

View-centered
- Extrinsic

Object-centered
- Intrinsic

Retinal image

- Impressionism

Retinal image

- Impressionism
- Photography

Image-based

- Line Drawing

Intermediate

- View-based
- Cues for surface-based feature extraction are enhanced
 - Depth cues
 - Orientation cues
- No subjective feature (e.g. lighting)
Intermediate

- View-based
- Cues for surface-based feature extraction are enhanced
 - Depth cues
 - Orientation cues
- More subjective feature (lighting)

Higher level

- Primitive art
- Cubism
- Schema
- “What I know”

Higher level

- Primitive art
- Cubism
- Schema
- “What I know”

Higher level

- Primitive art
- Cubism
- Schema
- “What I know”
- Not limited to picture

Expressionism

- “What I feel”
Relation with 2D/3D qualities

- Almost the opposite!
- 3D quality correspond to retinal image
- 2D quality arises from higher-level pictures
- Because of vision paradox
 - Distal is seen when proximal is shown

Relation with 2D/3D qualities

- 3D quality but Retinal image

Relation with 2D/3D qualities

- 2D quality but
 - Higher level

Further reading

Plan

- Vision as an cognitive process
- Computational theory of vision
- Constancy, invariants

Constancy & Invariants

- We see intrinsic properties of objects
- They are “invariant” or “constant”
- Ecological advantage
Visual angle vs. size

- We see cylinders with same size
- Valid most of the time

Visual angle vs. size

- Mirror experiment:
 - Draw your face on a mirror
 - Measure: the drawing is ½ your face
 - However, you see “full size”

Visual angle vs. size

- How do we do that?
 - Distance
 - Familiarity
 - Assumptions
- Here
 - Perspective
 - Position on ground plane
 - Similarity

Brightness vs. lightness

- Brightness: subjective amount of light
- Lightness: how “white”

The white cells in shadow are as dark as the black illuminated cells

Lightness constancy

- Sargent
- White in light and in shadow
Color constancy

- Chromaticity of light sources vary
- Chromatic adaptation
 - Similar to white balance on camcoder
 - Different films, filters

| Objective colors under neon lighting | With chromatic adaptation |

Constancy

- Size
- Lightness
- Color
- Position
- Orientation
- Shape

Degree of constancy

- Not always perfect
- Sometimes too much

Degree of size constancy

- The Moon illusion
 - The Moon appears bigger on the horizon
 - Because it looks farther (Emmert’s law)
 - Because references

Degree of color constancy

- Incandescent light looks warmer
- Sodium lighting looks yellowish
- Depends on intensity

Constancy & Pictures

- Estimate size of depicted objects
- Different virtual viewpoints
Constancy & Pictures
- Estimate slant of depicted objects
- Different real viewing angles

Importance of frame
- Estimate slant of depicted objects
- Different real viewing angles, invisible frame

Constancy & Pictures
- Hybrid constancy with respect to
 - Picture object
 - Depicted scene

Constancy & Pictures
- Hybrid constancy
- Problem
- Richness

Degree of constancy
- Vermeer *Soldier and a Laughing Girl*
- Too good to be true: use of camera obscura

Size constancy failure
Size constancy failure

- Middle-age
- Size = social importance

Breaking size constancy for symbol

- Surrealism (Magritte)

Color constancy and pictures

- Chromatic adaptation with respect to picture object, not with respect to dictated scene

Constancy & architecture

- Palazzo Spada in Rome (by Boromini)
- Short corridor
- Column size decreases
- Appears longer
Intro to Visual Perception

Next session

- Gestalt and picture organization
- Gaze movement and focal point

Assignments

- Piranesi
 - Tutorial 1 to 4
- Reading
 - Art and Illusion, Gombrich
 - Summary 1 to 2 pages
 - 2 Discussion issues
- Feedback, 1 picture

Discussion

- *The Man Who Mistook his Wife for a Hat*
- *The Colorblind Painter*
- Oliver Sacks