The Art and Science of Depiction

Color

Fredo Durand

MIT-Lab for Computer Science

Talks

- Abstract
- Issues

Color Vision

Plan

- Color blindness
- Color Opponents, Hue-Saturation Value
- Perceptual color effects
- Color categories and culture

Color Vision

Color Vision

Why color is complex

- 3 dimensional
- Difference spectrum-color
- Additive-subtractive
- LMS-opponents-Hue Saturation Value
- Color constancy
- Color appearance effects
- Cultural
- Preferred colors, memory

Color Visio

Plan Color blindness Color Opponents, Hue-Saturation Value Perceptual color effects Color categories and culture

Goethe after a color-blind

Color blindness & Painting • Restricted to blue-yellow

Meryon, Le Vaisseau Fantôme Color Vision

Color blindness & Painting

• Restricted to blue-yellow

Color blindness & Painting

- Image reproduction (after Gauguin)
- · Different strategies

Color blind Normal color vision

(perceived)

Color blind (confusion)

Color vision variability

- Color blindness
- Mutations
- · Gender, racial
- Cultural differences

Preferred colors

- Caucasian skin
 - More tanned
- Grass
 - Greener
- Sky
 - Bluer

Plan

- Color blindness
- Color Opponents, Hue-Saturation Value
- · Perceptual color effects
- Color categories and culture

Color Vision

Color Opponents

- Hering
- A color can be "blue-green", "yellow-red", "yellow-green", etc
- But never "yellow-blue" or "red-green"
- Suspected two opponents:
 - Blue-yellow axis
 - Red-Green axis

Color Vision

Color reparameterization

- The input is LMS
- The output has a different parameterization:
 - Light-dark
 - Blue-yellow
 - Red-green

Color opponents wiring

- Sums for brightness
- · Differences for color opponents

Double center surround opponents

- Center-surround
- · Color opponents

Opponents and image compression

- JPG, MPG
- Color opponents instead of RGB
- Compress color more than luminance

Color Vision

5

- Often used to depict night
- (S cones share properties with rods...)
- Van Gogh Café at Night

Red-green opponent and painting

• Jawlensky

Color Vision

Opponent and painting

• Degas

Color Vision

Color reparameterization

- The input is LMS
- The output has a different parameterization:
 - Light-dark
 - Blue-yellow
 - Red-green
- A later stage may reparameterize:
 - Brightness or Luminance or Value
 - Hue
 - Saturation

Color Vision

Hue Saturation Value

Hue Saturation Value

- One interpretation in spectrum space
- Not the only one because of metamerism

Color Visio

Munsell book of colors

· Perceptually uniform

History of color theories

- Aristotle & followers
- Scale from black to white
 - Blue, red, yellow
 - Position of green varies
- Nicolas Poussin Ecstasy of Saint Paul 1650

Color Vision

Plan

- Color blindness
- Color Opponents, Hue-Saturation Value
- Perceptual color effects
- Color categories and culture

Color Vision

Color appearance effects

- ..
- Goethe, 19th century
 - Importance of subjective experience
- Chevreul, 19th century
 - Law of simultaneous contrast, optical mix
- Modern theories
 - Measured effects

Color Vision

40

• Chevreul • In color opponent direction

Hunt and Stevens effect

- · Stevens effect
 - Contrast increases with luminance
- Bartleson-Breneman effect
 - Image contrast changes with surround
 - A dark surround decreases contrast (make the black of the image look less deep)
- Hunt effect
 - Colorfulness increases with luminance
- · Hence the need for gamma correction

Color Vision

Bezold-Brücke Hue Shift

- Monochromatic stimulus
- Perceived hue changes when luminance varies

Wavelength shift necessary to keep the same hue when luminance is decreased by a factor of 10

Color Vision

Abney Effect

• Hue changes with the addition of pure white

Color appearance models

- Predict the appearance of a color depending on
 - Objective stimulus
 - Surrounding, context

Color Vision

Plan

- Color blindness
- Color Opponents, Hue-Saturation Value
- Perceptual color effects
- Color categories and culture

Color Vision

Color categories

- Prototypes
- · Harder to classify colors at boundaries

Color and culture

- · Ancient Greeks
 - Same term for blue-green-dark
- Berinmo

Lexical study of basic color terms

- Berlin and Kay 1969-78
- 20+78 languages
- Monolexemic
 - Not compound, e.g. not "blue-green"
- · Primary chromatic reference
 - Not material, e.g. not "gold"
 - But allow "orange"
- General purpose
 - No specific field, e.g. not "blond", "roan"
- · High frequency
 - E.g. not "mauve", "taupe", "puce"

Color Vision

68

Lexical study of basic color terms

- 20+78 languages
- 16 basic color terms
 - 11 in English
 - Red, green, blue, yellow, black, white, gray, orange, purple, brown, pink
 - light-blue
 - -4 that encompass more than one color
 - Warm, cool, light-warm, dark-cool

Color Vision

Lexical study of basic color terms

- Common pattern
- There are exceptions

Visual Perception

- Very complex
- · Different stages
- Different pathways for different elements
- Can explain some pictorial techniques/styles
- Can be helped of challenged

Color Vision

Discussion

• Piranesi

Color Vision

Discussion

- · Perception and images
- Does it help the analysis
- Does it dazzle?
- Does it refrain creativity?

Color terms (Fairchild 1998

- Color
- Hue
- Brightness vs. lightness
- · Colorfulness and Chroma
- Saturation
- · Unrelated and related colors

Color Vision

Color

- chromatic and achromatic content. This attribute can be described by chromatic color names such as yellow, orange, brown, red, pink, green, blue, purple, etc., or by achromatic color names such as white, gray, black, etc., and qualified by bright, dim, light, dark, etc., or by combinations of such names.
- Note: Perceived color depends on the spectral distribution of the color stimulus, on the size, shape, structure, and surround of the stimulus area, on the state of adaptation of the observer's visual system, and on the observer's experience of the prevailing and similar situations of observations.

Related and Unrelated Colors

- · Unrelated Color
 - Color perceived to belong to an area or object seen in isolation from other colors.
- Related Color
 - Color perceived to belong to an area or object seen in relation to other colors.

Hue

- Hue
 - Attribute of a visual sensation according to which an area appears be similar to one of the perceived colors: red, yellow, green, and blue, or to a combination of two of them.
- · Achromatic Color
 - Perceived color devoid of hue.
- Chromatic Color
 - Perceived color possessing a hue.

Brightness vs. Lightness

- Brightness
 - Attribute of a visual sensation according to which an area appears to emit more or less light.
- · Lightness:
 - The brightness of an area judged relative to the brightness of a similarly illuminated area that appears to be white or highly transmitting.

Colorfulness & Chroma

• Colorfulness

 Attribute of a visual sensation according to which the perceived color of an area appears to be more or less chromatic.

• Chroma:

 Colorfulness of an area judged as a proportion of the brightness of a similarly illuminated area that appears white or highly transmitting.

Color Vision

Saturation

 Colorfulness of an area judged in proportion to its brightness.

Color Vision 80