The Art and Science of Depiction

Frédé Durand
MIT
Lab for Computer Science

From geometry and rendering
- Visibility
- Realistic rendering
- Real-time rendering

... to make-up and swimming-suits

Motivations: Post-PhD blues...
- Why do our images lack aesthetic?
- What’s our goal?
- Where Do We Come From? What Are We? Where Are We Going?

Motivations
- What is “Realism”? “Photorealism”?
- Are photographs realistic?
- Are photographs photorealistic?
- What is Non-Photorealistic Rendering?
Computer Graphics Imagery
- Rendering is efficient
- Hardware is fast
- 3D content creation becomes the bottleneck
- Most CG images are still not very compelling

Non-Photorealistic Rendering
- A variety of awesome techniques and solutions
- But what are the issues?
- Difficulty of classification
- Each paper deals with several problems
- Lack of inter-operability

Why make images?
- Educational
- Tell story
- Simulation
- Design
- Sign
- Guide task
- Visualization
- Search
- Analysis
- Create shape
- Expression
- Beauty
- Shock
- Humor
- Faith
- Prevention
- Etc.
- Not one single class of images
- Thus, there may be many ways to make images
- CG focuses too much on one of them

Non-reality vs. realism
- Non-reality is MORE than degraded realism
 - E.g. clarity, selection, abstraction, etc.

Dodging and Burning
- Ansel Adams
- *Clearing Winter Storm*
Generic pictorial issues

- A lot of issues are universal
- E.g. oil painting / photograph

The Art and Science of Depiction

- Graduate class at MIT (but 2 undergrads as well)
- Multidisciplinary
- Students from Architecture, Computer Science, Cognitive Sciences, Media Art & Science

Vision as an inverse problem

- The distal stimulus is projected into a proximal stimulus
- How can we inverse this projection?

The paradox of vision

- Available information: proximal stimulus
- Conscious information: distal stimulus

Plan

- Pictures and vision
- Limitations of medium: compensation and accentuation
- Perspective & drawing
- 2D/3D, stuff
Face in mirror

- When you look at yourself in a mirror, the size of your image is half your real size.

Brightness vs. lightness

- Brightness: subjective amount of light
- Lightness: how “white”

The white cells in shadow are as dark as the black illuminated cells.

Brightness vs. lightness

- Brightness: subjective amount of light
- Lightness: how “white”

The white cells in shadow are as dark as the black illuminated cells.

Shading and highlighting

The paradox of Pictures

- Distal vs. proximal
- Available information: proximal stimulus
- Conscious information: distal stimulus

Proximal stimulus (2D) vs. Distal stimulus (2D/3D)
Computational theory of vision

- Marr’s stages (extended by Palmer et al.)
- Human and Computer Vision
- Classification of different kinds of processes
- Has proved fruitful in art studies

View-centered to object-centered

- Bottom-up and top-bottom

Evolution of children’s drawings

- First draw what they know (object-based)
- Then what they see (towards retinal)
- Asked to draw a table

Relation to pictures

- Different classes of pictures for different stages
- Not a strict classification, not a cultural judgment

Relation to pictures

- Chinese painting refuse extrinsic, only essential
- No shadow

Retinal image

- Impressionism
- Photography
Turner: “My business is to paint not what I know, but what I see.”

Impressionism: Not so simply classified

Line Drawing

Primitive art
Cubism
Schema
“What I know”

“I do not paint what I see, I paint what I know”

Expressionism: “What I feel”

Other mode
Intermediate

- View-based
- Cues for surface-based feature extraction are enhanced
 - Depth cues
 - Orientation cues
- No accidental lighting

Making pictures: inverse of inverse

- Previsualization (Adams)
 - Solving the direct problem is a good start, but…

Plan

- Pictures and vision
- Limitations of medium: compensation and accentuation
 - Perspective & drawing
 - 2D/3D, stuff

Limitations of the medium

- Flatness
- Finite size, frame
- Unique viewpoint
- Static
- Contrast and gamut
 - Can be eliminated
 - Can be compensated
 - Can be accentuated

Elimination: stereo

Enhancing depth through contrast
Accentuating flatness
- Monet
- Occlusion boundaries are barely visible
- Retinal stage rather than surface

Accentuating – dissonance
- Magritte
- Occlusions are reversed

Occlusion
- No filter
- Blue filter
- Red filter

Aerial perspective
- Constable

Accommodation
- Blurriness
- But no proprioceptive information
- Related to aerial perspective
- Related to occlusion enhancement
- Fun gaze attraction

Planes of light
- Goya
- Darker colors usually recede
- Makes picture dynamic
Planes of light

- Lighting

The contrast is limited

- Real world: 10^{-6} to 10^{6}
- Picture: 1 to 50, 1 to 300 at best

![Graph showing high dynamic range and low contrast]

Low contrast is also an advantage

- W. Eugene Smith photo of Albert Schweitzer
- 5 days to print!
- Things can be related because the intensity is more similar
- Balance, composition

Lighting

- Painting with light

Red Filter

- The sky is too bright
 - Gradient filter for the top of the photo
- The house is too dark
 - Gradient filter for the bottom of the photo

Gradient Filter

- The sky is too bright
 - Gradient filter for the top of the photo
- The house is too dark
 - Gradient filter for the bottom of the photo
Flare, halo

- Image of a building with a flare effect.

The limit of illusion

- Bruneleschi’s experiment
 - Used a mirror for the sky

Tone mapping [Durand et al.]

- Photo of a scene with variations in tone mapping.

Representing night scenes

- Pissaro, Montmartre

Representing night scenes

- James Abbott McNeil Whistler
 - *Nocturne in Blue And Silver The Lagoon Venice*
 - 1879-1880
Plan

- Pictures and vision
- Limitations of medium: compensation and accentuation
- Perspective & drawing
- 2D/3D, stuff

Primary/secondary geometry

- Primary geometry
 - Description in 3D object-space
- Secondary geometry
 - Description in 2D image-space

Primary/secondary geometry

- Primary geometry
 - Description in 3D object-space
- Secondary geometry
 - Description in 2D image-space

 - Permits the description of more drawing systems
 - Often better corresponds to the drawing approach

Computer Graphics

- Primary geometry
 - Orthographic
 - Perspective

Willats's classification

- Secondary geometry

Naïve perspective

- Attempt to depict scene 3 dimensionally
- Often lack of skill
- More or less formal secondary geometry rules
Naïve perspective

- Giotto

Orthogonal

- **Direction**
 - Perpendicular to image plane
 - Along one principal direction
- True shape for objects parallel to image plane

Fold-out oblique

- Horizontal oblique
- Vertical oblique
- **Direction**
 - 45°, parallel to one principal face (top or side)
- Can be stretched for fold-out
- True shape for 2 directions
- Mainly interesting for secondary geometry
Vertical oblique
- Soriguerola, 13th

Linear perspective
- Foreshortening
- The spectator is “immersed”
- Potential distortions
 - One point
 - Two points
 - Three points

1-point perspective
- Central focus
- Preserves horizontals and verticals

2-point perspective
- Central focus
- Preserves horizontals and verticals
 - Can mean that the optical center is not the center of the image
 - View-camera
2-point perspective

- Objects stand out of the picture
- Preserves verticals
- Can mean that the optical center is not the center of the image
 - Architecture lens

Correction of perspective

- Before: 3-point perspective

Correction of perspective

- After: 2-point perspective

3-point perspective

- Dramatic 3D effect
- The generic case, nothing preserved
- seldom used through art history

Locally linear

- Linear for objects or parts of the scene
- Choose the best system for each part
- Allows different scales, provide context
- In practice, this is the most common system!
Locally linear

- Folk

Locally linear

- Egyptian
- Best view for each object

Locally linear

- Raphael, The School of Athens

Perspective in secondary space

Secondary space
Projection: Topological

- Beck’s map of London underground, 1931

Projection: Topographical

- London underground

Plan

- Pictures and vision
- Limitations of medium: compensation and accentuation
- Perspective & drawing
- 2D/3D, stuff

2D/3D dualism

- Image as projection of a 3D world
- Pictures compatible with an hypothetical 3D world
- Primary space
 - World space
- Secondary space
 - Picture space
- Crucial for understanding mental processes

2D/3D dualism

- 3D: architectural visualization
- 2D: scientific figure

2D

- E.g. trenching
- Placing people for photographs
- Pose
- View-dependent models
- Non-physical reflection
3D and 2D attributes

- Show a die to children (~6-7)
- They usually draw a rectangle
- The rectangle could stand for one face

3D and 2D attributes

- Show coloured or numbered die to children (6-7)
- They still draw a rectangle
- But different colours or many points
- The rectangle stands for the whole dice
- The notion of 3D object with corners is translated as a 2D object with corners

Perspective distortion

- The sphere is projected as an ellipse

Perspective distortion

- The sphere is projected as an ellipse

Convex/concave/saddle

- Convex: positive curvature
 - Egg
- Concave: negative curvature
 - Interior of cup
- Saddle: mix of positive and negative curvature
 - Saddle (surprising, isn’t it?)

Convex/concave/saddle

- Convex: positive curvature
 - Egg
- Convex contour
- Concave: negative curvature
 - Interior of cup
 - Hidden contour
- Saddle: mix of positive and negative curvature
 - Saddle (surprising, isn’t it?)
 - Concave contour
A second look

- Cup
- Table

Denotation: volume

Primary/secondary space

- Shading
 - BRDF
 - Image-space shading and chiaroscuro
- Line drawing
 - Silhouette, singularities
 - Formal rules for junctions

Primary/secondary space

- Shading
 - BRDF
 - Image-space shading and chiaroscuro

Lighting with image goals

The one-way pipeline

- Rendering pipeline, rendering equation
- From 3D model to image
- No feedback

3D geometry
Material attributes
Light sources
Viewpoint
Light simulation
Projection
Rasterization, etc.
Image
Feedback and Darwinian selection

- Picture production is a trial and error process
- The artist tries pictorial techniques, constantly judges the current state of the picture and reacts accordingly

What can we do?

- Optimization approaches
 - Perception/artistic-based “metric”?
- Bypass the feedback
 - What are the pictorial issues/techniques?
 - Hopefully inverse the problem
- Simplify user’s life
 - Better controls (in pictorial space)
 - Relevant degrees of freedom
 - Tools to explore parameter space

What and whom for?

- Trained image makers
 - Understand what they need
 - Provide more relevant tool
- Image-dummies
 - Automatic and semi-automatic
 - E.g. “gorgeous image” for CAD
 - E.g. “digital photo beautifier”
- Computers (100% automatic)
 - E.g. can we transfer the art and craft of cinema into games?

Personal agenda

- Pictorial tools
 - Contrast management (tone mapping, dodging & burning)
 - Gaze control
 - Flatness compensation
 - Image editing in alternative domains
- Pictures for dummies
 - Digital photography beautification
 - Cinematographic lighting, shading
- User interface
 - Pictorial space interface
 - Linearization of parameter space
- Notion of style
 - Versatile Non-Photorealistic Rendering system
 - Parameterization
 - Assessment for various picture purposes
 - Capture (vision, machine learning)
 - Back to art history
Thanks

Conclusions

- Different purposes, different pictures
- Picture generation is the inverse of the inverse
- Ambiguity 2D/3D, extrinsic/intrinsic, viewer-centered/object-centered
- Limitations of the medium
 - Elimination, compensation, accentuation