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Last Tuesday: optimization
• Relied on a smoothness term 

– values are assumed to be smooth across image
• User provided boundary condition
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Last Thursday: Bayesian Matting
• Separation of foreground & background

– Partial coverage with fractional alpha
– User provides a trimap
– Bayesian approach

• Model color distribution in F & B
• Alternatively solve for α, then F&B

• Solve for each pixel independently
– using a “data term” 
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More foreground background
• Today, we want to exploit both data and smoothness
• Smoothness

– The alpha value of a pixel is likely to be similar to 
that of its neighbors

– Unless the neighbors have a very different color
• Data

– Color distribution of foreground and background
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Multiple options
• Keep using continuous optimization 

– See e.g. Chuang’s dissertation, Levin et al. 2006
– Pros: Good treatment of partial coverage
– Cons: requires the energy/probabilities to be well 

behaved to be solvable
• Quantize the values of alpha & use discrete 

optimization
– Pros: allows for flexible energy term, efficient 

solution
– Cons: harder to handle fractional alpha
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Today’s overview
• Interactive image segmentation using graph cut
• Binary label: foreground vs. background
• User labels some pixels 

– similar to trimap, usually sparser
• Exploit

– Statistics of known Fg & Bg
– Smoothness of label

• Turn into discrete graph optimization
– Graph cut (min cut / max flow)
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Images from 
European Conference on Computer Vision 2006 : “Graph Cuts vs. Level Sets”, 
Y. Boykov (UWO), D. Cremers (U. of Bonn), V. Kolmogorov (UCL)
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Refs 
• Combination of 

• Yuri Boykov, Marie-Pierre Jolly
Interactive Graph Cuts for Optimal Boundary & 
Region Segmentation of Objects in N-D Images
In International Conference on Computer Vision 
(ICCV), vol. I, pp. 105-112, 2001

• C. Rother, V. Kolmogorov, A. Blake.  GrabCut: 
Interactive Foreground Extraction using Iterated 
Graph Cuts. ACM Transactions on Graphics 
(SIGGRAPH'04), 2004
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Cool motivation
• The rectangle is the only user input
• [Rother et al.’s grabcut 2004]
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Graph cut is a very general tool
• Stereo depth reconstruction
• Texture synthesis
• Video synthesis
• Image denoising
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Questions?
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Energy function
• Labeling: one value per pixel, F or B
• Energy(labeling) = data + smoothness

– Very general situation
– Will be minimized

• Data: for each pixel
– Probability that this color belongs to F (resp. B)
– Similar in spirit to Bayesian matting

• Smoothness (aka regularization): 
per neighboring pixel pair
– Penalty for having different label
– Penalty is downweighted if the two 

pixel colors are very different
– Similar in spirit to bilateral filter
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Data term
• A.k.a regional term 

(because integrated over full region)
• D(L)=Σi -log h[Li](Ci)
• Where i is a pixel 

Li is the label at i (F or B), 
Ci is the pixel value
h[Li] is the histogram of the observed Fg 
(resp Bg)

• Note the minus sign
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Data term
• A.k.a regional term 

(because integrated over full region)

• D(L)=Σi -log h[Li](Ci)
• Where i is a pixel 

L
i
 is the label at i (F or B), 

C
i
 is the pixel value

h[Li] is the histogram of the observed Fg 
(resp Bg)

• Here we use the histogram while in Bayesian 
matting we used a Gaussian model. 
This is partially because discrete optimization has fewer 
computational constraints. No need for linear least square
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Histograms
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Hard constraints
• The user has provided some labels
• The quick and dirty way to include 

constraints into optimization is to replace the data 
term by a huge penalty K if not respected. 

• D(Li)=0 if respected
• D(Li) = K if not respected

– e.g. K= -  #pixels
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Smoothness term
• a.k.a boundary term, a.k.a. regularization
• S(L)=Σ{j, i}2 N B(Ci,Cj) δ(Li-Lj) 
• Where i,j are neighbors 

– e.g. 8-neighborhood 
(but I show 4 for simplicity)

•  δ(Li-Lj) is 0 if Li=Lj, 1 otherwise
• B(Ci,Cj) is high when Ci and Cj are similar, low if 

there is a discontinuity between those two pixels
– e.g. exp(-||Ci-Cj||2/2σ2)
– where σ can be a constant 

or the local variance
• Note positive sign
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Recap: Energy function
• Labeling: one value Li per pixel, F or B
• Energy(labeling) = Data + Smoothness
• Data: for each pixel

– Probability that this color 
belongs to F (resp. B)

– Using histogram
– D(L)=Σi -log h[Li](Ci)

• Smoothness (aka regularization): 
per neighboring pixel pair
– Penalty for having different label
– Penalty is downweighted if the two 

pixel colors are very different
– S(L)=Σ{j, i}2 N B(Ci,Cj) δ(Li-Lj) 

•
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Optimization
• E(L)=D(L)+λ S(L)
•  λ is a black-magic constant
• Find the labeling that minimizes E
• In this case, how many possibilities?

– 29 (512)
– We can try them all!
– What about megapixel images?
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• DISCUSS AREA VS PERIMTER SCALING 
• and how it affects lambda
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Questions?
• Recap: 

– Labeling F or B
– Energy(Labeling) = Data+Smoothness 
– Need efficient way to find labeling with lowest energy
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Labeling as a graph problem
• Each pixel = node
• Add two label nodes F & B
• Labeling: link each pixel to either F or B
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Idea
• Start with a graph with too many edges

– Represents all possible labeling
– Strength of edges depends on data and smoothness 

terms
• solve as min cut
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Data term
• Put one edge between each pixel and both F & G
• Weight of edge = minus data term

– Don’t forget huge weight for hard constraints
– Careful with sign
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Smoothness term
• Add an edge between each neighbor pair
• Weight = smoothness term 
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Min cut
• Energy optimization equivalent to graph min cut
• Cut: remove edges to disconnect F from B
• Minimum: minimize sum of cut edge weight
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Min cut
• Graph with one source & one sink node
• Edge = bridge
• Edge label = cost to cut bridge
• What is the min-cost cut that separates source from 

sink

sinksource cut
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Min cut <=> labeling
• In order to be a cut:

– For each pixel, either the F or G edge has to be cut
• In order to be minimal

– Only one edge label 
per pixel can be cut 
(otherwise could 
be added)
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Min cut <=> optimal labeling
• Energy = - Σ weight of remaining links to F & B

 + Σ weight cut neighbor links
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Min cut <=> optimal labeling
• Energy = - Σ all weights to F & B

 + Σ weight of cut links to F & B
 +Σ weight cut neighbor links

• Minimized when last 2 
terms are minimized
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Questions?
• Recap: We have turned our pixel labeling problem 

into a graph min cut
– nodes = pixels + 2 labels
– edges from pixel to label = data term
– edges between pixels = smoothness

• Now we need to solve the min cut problem
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Min cut
• Graph with one source & one sink node
• Edge = bridge; Edge label = cost to cut bridge
• Find the min-cost cut that separates source from sink

– Turns out it’s easier to see it as a flow problem
– Hence source and sink

sinksource cut
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Max flow
• Directed graph with one source & one sink node
• Directed edge = pipe
• Edge label = capacity
• What is the max flow from source to sink?
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Max flow
• Graph with one source & one sink node
• Edge = pipe
• Edge label = capacity
• What is the max flow from source to sink?
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Max flow
• What is the max flow from source to sink?
• Look at residual graph 

– remove saturated edges (green here)
– min cut is at boundary between 2 connected 

components 
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Max flow
• What is the max flow from source to sink?
• Look at residual graph 

– remove saturated edges (gone here)
– min cut is at boundary between 2 connected 

components 

Source Sink

10/10
2/10

9/12
1/12

9/9

0/8

8/8 8/8

8/9 8/8

2/4

1/5

9/9
2/2

1/2

5/5
2/2

1/6

0/1

0/1

2/7

0/6

3/3

7/10

4/4

5/5

0/1

0/1

3/3

0/93/9

min cut

Thursday, October 29, 2009



Equivalence of min cut / max flow
The three following statements are equivalent
• The maximum flow is f
• The minimum cut has weight f
• The residual graph for flow f contains no directed 

path from source to sink
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Questions?
• Recap:

– We have reduced labeling to a graph min cut
• vertices for pixels and labels
• edges to labels (data) and neighbors (smoothness)

– We have reduced min cut to max flow

– Now how do we solve max flow???
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Max flow algorithm
• We will study a strategy where we keep augmenting 

paths (Ford-Fulkerson, Dinic)
• Keep pushing water along non-saturated paths

– Use residual graph to find such paths 
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Max flow algorithm
Set flow to zero everywhere

Big loop

compute residual graph

Find path from source to sink in residual

If path exist add corresponding flow
Else 

Min cut = {vertices reachable from source; 
other vertices}

terminate

Animation at 
http://www.cse.yorku.ca/~aaw/Wang/MaxFlowStart.htm
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Shortest path anyone?
• e.g. Dijkstra, A*
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Efficiency concerns
• The search for a shortest path becomes prohibitive for the 

large graphs generated by images
• For practical vision/image applications, better (yet related) 

approaches exist 
 An Experimental Comparison of Min-Cut/Max-Flow 

Algorithms for Energy Minimization in Vision. Yuri Boykov, 
Vladimir Kolmogorov In IEEE Transactions on Pattern 
Analysis and Machine Intelligence, vol. 26, no. 9, Sept. 2004.
http://www.csd.uwo.ca/faculty/yuri/Abstracts/pami04-abs.html

• Maintain two trees from sink & source. 
• Augment tree until they connect
• Add flow for connection
• Can require more iterations because not shortest path

But each iteration is cheaper because trees are reused
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Questions?
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•  Graph Cuts and Efficient N-D Image Segmentation
• Yuri Boykov, Gareth Funka-Lea
• In International Journal of Computer Vision (IJCV), vol. 70, no. 2, pp. 

109-131, 2006 (accepted in 2004).
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• Importance of smoothness

From Yuri Boykov, Gareth Funka-Lea
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Data (regional) term
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Questions?
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Grabcut 
• Rother et al. 2004

• Less user input: only rectangle
• Handle color
• Extract matte as post-process 
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Color data term
• Model 3D color histogram with Gaussians

– Because brute force histogram would be sparse
• Although I question this. My advice: go brute force, use a 

volumetric grid in RGB space and blur the histogram
– Gaussian Mixture Model (GMM)
– Just means histogram = sum of Gaussians

• They advise 5 Gaussians
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Getting a GMM
• Getting one Gaussian is easy: mean / covariance
• To get K Gaussians, we cluster the data

– And use mean/covariance of each cluster
• The K-mean clustering algorithm can do this for us

– Idea: define clusters and their center. Points belong to 
the cluster with closest center

Take K random samples as seed centers

Iterate: 

For each sample
Assign to closest cluster

For each cluster
Center = mean of samples in cluster
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Grabcut: Iterative approach
• Initialize 

– Background with rectangle boundary pixels
– Foreground with the interior of rectangle

• Iterate until convergence
– Compute color probabilities (GMM) of each region
– Perform graphcut segmentation

• Apply matting at boundary
• Potentially, user edits to correct mistakes

Thursday, October 29, 2009



  Iterated Graph Cut

User Initialisation

K-means for learning 
 colour distributions 

Graph cuts to 
infer the 

segmentation

?

        GrabCut – Interactive Foreground Extraction      6                    slide: Rother et al.
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1 2 3 4

  Iterated Graph Cuts

        GrabCut – Interactive Foreground Extraction      7                    

Energy after each IterationResult

Guaranteed  to

converge 

slide: Rother et al.
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Border matting
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Results
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  Moderately straightforward 
  examples

… GrabCut completes automatically
        GrabCut – Interactive Foreground Extraction      10                    slide: Rother et al.
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  Difficult Examples

Camouflage & 
Low Contrast No telepathyFine structure

Initial 
Rectangle

Initial
Result

        GrabCut – Interactive Foreground Extraction      11                    slide: Rother et al.
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  Comparison 
GrabCutBoykov and Jolly (2001)

Error Rate: 0.72%Error Rate: 1.87%Error Rate: 1.81%Error Rate: 1.32%Error Rate: 1.25%Error Rate: 0.72%
        GrabCut – Interactive Foreground Extraction      13                    

User 
Input

Result

slide: Rother et al.
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Refs 
• http://www.csd.uwo.ca/faculty/yuri/Abstracts/eccv06-tutorial.html
• Interactive Graph Cuts for Optimal Boundary & Region Segmentation of 

Objects in N-D images.
Yuri Boykov and Marie-Pierre Jolly.
In International Conference on Computer Vision, (ICCV), vol. I, 2001.
http://www.csd.uwo.ca/~yuri/Abstracts/iccv01-abs.html 

• http://www.cse.yorku.ca/~aaw/Wang/MaxFlowStart.htm
• http://research.microsoft.com/en-us/um/cambridge/projects/

visionimagevideoediting/segmentation/grabcut.htm
• http://www.cc.gatech.edu/cpl/projects/graphcuttextures/
• A Comparative Study of Energy Minimization Methods for Markov 

Random Fields. Rick Szeliski, Ramin Zabih, Daniel Scharstein, Olga 
Veksler, Vladimir Kolmogorov, Aseem Agarwala, Marshall Tappen, 
Carsten Rother. ECCV 2006
www.cs.cornell.edu/~rdz/Papers/SZSVKATR.pdf 
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