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• define cumulative histogram 
• work on hist eq proof

• rearrange Fourier order
• discuss complex exponentials with 

eigenfunctions
•
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Warning 

• Think about final projects
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Class morph
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Image processing

• Filtering, Convolution, and our friend 
Joseph Fourier
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What is an image?
• We can think of an image as a function, f,
• from R2 to R:

– f( x, y ) gives the intensity at position ( x, y ) 
– Realistically, we expect the image only to be 

defined over a rectangle, with a finite range:
• f: [a,b]x[c,d]  [0,1]

• A color image is just three functions pasted 
together.  We can write this as a “vector-
valued” function: 
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Images as functions
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Image Processing

• image filtering: change range of image
• g(x) = h(f(x))f

x

h
f

x

f

x

h
f

x

• image warping: change domain of image

• g(x) = f(h(x))
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Image Processing

• image filtering: change range of image
• g(x) = h(f(x))

h

h

• image warping: change domain of image

• g(x) = f(h(x))
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Point Processing

• The simplest kind of range transformations 
are these independent of position x,y:

• g = t(f)
• This is called point processing.

• Important: every pixel for himself – spatial 
information completely ignored!
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Negative
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Contrast Stretching
input

output
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Image Histograms

Cumulative Histograms

histogram H(f) = # or % pixels with value f
(implies binning of the values)

cumulative histogram:
C(f) = ∑f’≤f H(f)

= # or % of pixels with value ≤f
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Histogram Equalization

• point transformation:
g(x)=t(f(x))

• uniform across image
(t does not depend on x)

• monotonic (preserve 
intensity ordering)

• so that histogram of
g is uniform
– perfect uniform only 

possible with continuous histogram
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Qualitative Histogram equalization

• Qualitative
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Derivation

• Normalized cumulative histogram C: 
there are  C(f)% pixels equal or darker 
than f

• In an image in [0 1] with a flat histogram, 
what is the greyscale value g so that C(f)% 
pixels are equal or darker than f?
– C(f) of course!

• Therefore, histogram equalization: 
– g(x)=C(f(x))
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Extension: histogram matching

• Transform image f to match histogram of f’

17

f

f’

result
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Extension: histogram matching

• Transform image f to match histogram of f’
• g(x)=Cf’-1(Cf(f(x)))

– cumulative histogram Cf  of f to get the flat 
case

– inverse cumulative histogram Cf’-1of f’ to 
match that histogram

• equalization: case where f’ has flat 
histogram and Cf’-1 is identity
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Questions?
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Filtering

• So far we have looked at range-only and 
domain-only transformation

• But other transforms need to change the 
range according to the spatial 
neighborhood
– Linear shift-invariant filtering in particular
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Linear shift-invariant filtering

• Replace each pixel by a linear combination 
of its neighbors.
– only depends on relative position of neighbors

• The prescription for the linear combination 
is called the “convolution kernel”.
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0 00

Local image data kernel

7

Modified image data
(shown at one pixel)
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Example of linear 
NON-shift invariant transformation?
• e.g. neutral-density graduated filter 

(darken high y, preserve small y)
J(x,y)=I(x,y)*(1-y/ymax)

• Formally, what does linear mean?
– For two scalars a & b and two inputs x & y:

F(ax+by)=aF(x)+bF(y)
• What does shift invariant mean?

– For a translation T:
F(T(x))=T(F(x))

– If I blur a translated image, I get a translated 
blurred image

22
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More formally: Convolution

I
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Convolution (warm-up slide)

original
0

Pixel offset

co
ef

fic
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1.0 ?
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Convolution (warm-up slide)

original
0

Pixel offset

co
ef

fic
ie

nt
1.0

Filtered
(no change)
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Convolution

0
Pixel offset

co
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shift
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Convolution
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Blurring
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Blurred (filter
applied in both 
dimensions).
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Blur examples
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Blur examples
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Questions?
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Convolution (warm-up slide)

original

0

2.0

?
0

1.0
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Convolution (no change)

original

0

2.0

0

1.0

Filtered
(no change)
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Convolution

original

0

2.0

0

0.33 ?
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(remember blurring)

0
Pixel offset

co
ef

fic
ie

nt

original

0.3

Blurred (filter
applied in both 
dimensions).
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Sharpening 

original

0

2.0

0

0.33

Sharpened 
original

Thursday, October 29, 2009



Sharpening example

co
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-0.3
original
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Sharpened
(differences are

accentuated;  constant
areas are left untouched).
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Sharpening

before after
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Gabor filters at different
scales and spatial frequencies

top row shows anti-symmetric 
(or odd) filters, bottom row the
symmetric (or even) filters.

Oriented filters
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Reprinted from “Shiftable MultiScale Transforms,” by Simoncelli et al., IEEE Transactions
on Information Theory, 1992, copyright 1992, IEEE

Filtered images
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Questions?
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Studying convolutions

• Convolution is complicated
– But at least it’s linear

(f+kg)­ h = f­h +k (g­h) 
• We want to find a better expression

– Let’s study functions whose behavior is simple 
under convolution
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Blurring: convolution

Input Kernel
Convolution

sign

Same shape, just reduced contrast!!!

This is an eigenvector 
(output is the input multiplied by a 

constant)
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Big Motivation for Fourier analysis

• Sine waves are eigenvectors of the 
convolution operator
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Other motivation for Fourier 
analysis: sampling

• The sampling grid is a periodic structure
– Fourier is pretty good at handling that
– We saw that a sine wave has serious problems with sampling

• Sampling is a linear process 
– but not shift-invariant
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Sampling Density

• If we’re lucky, sampling density is enough

Input Reconstructed
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Sampling Density

• If we insufficiently sample the signal, it may be 
mistaken for something simpler during 
reconstruction (that's aliasing!)
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Recap: motivation for sine waves

• Blurring sine waves is simple
– You get the same sine wave, just scaled down
– The sine functions are the eigenvectors of the 

convolution operator
• Sampling sine waves is interesting

– Get another sine wave
– Not necessarily the same one! (aliasing)

If we represent functions (or images) with a sum of 
sine waves, convolution and sampling are easy 
to study

Thursday, October 29, 2009



Questions?
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Fourier as change of basis
• Shuffle the data to reveal other information
• E.g., take average & difference: matrix

1

3

Signal Pseudo-
Fourier

0

2

Geometric
interpretation

Basis 
function 1

Basis 
function 2

1

3

0

2

After rotation

Basis 
function 1

Basis 
function 2
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Fourier as change of basis

• Same thing with infinite-dimensional 
vectors

Signal Pseudo-
Fourier

Geometric
interpretation After rotation

Basis 
function 1

Basis 
function 2

Basis 
function 1

Basis 
function 2
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Question?
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Fourier as a change of basis

• Discrete Fourier Transform: just a big 
matrix

• But a smart matrix!

http://www.reindeergraphics.com
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To get some sense of what 
basis elements look like, we 
plot a basis element --- or 
rather, its real part ---
as a function of x,y for some 
fixed u, v. We get a function 
that is constant when (ux+vy) 
is constant. The magnitude of 
the vector (u, v) gives a 
frequency, and its direction 
gives an orientation. The 
function is a sinusoid with 
this frequency along the 
direction, and constant 
perpendicular to the 
direction. 

u

v
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Here u and v 
are larger than 
in the previous 
slide.

u

v
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And larger still...

u

v
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Question?
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Other presentations of Fourier

• Start with Fourier series with periodic 
signal

• Heat equation
– more or less special case of convolution
– iterate -> exponential on eignevalues

59
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Motivations

• Insights & mathematical beauty 
• Sampling rate and filtering bandwidth
• Computation bases

– FFT: faster convolution 
– E.g. finite elements, fast filtering, heat 

equation, vibration modes
• Optics: wave nature of light & diffraction 
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Questions?
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The Fourier Transform

• Defined for infinite, aperiodic signals
• Derived from the Fourier series by “extending the period 

of the signal to infinity”
• The Fourier transform is defined as

• X(ω) is called the spectrum of x(t)
• It contains the magnitude and phase of each complex 

exponential of frequency ω in x(t) 
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The Fourier Transform

• The inverse Fourier transform is defined as

• Fourier transform pair

• x(t) is called the spatial domain representation
• X(ω) is called the frequency domain 

representation
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Beware of differences

• Different definitions of Fourier transform
• We use

• Other people might exclude normalization 
or include 2π in the frequency

• X might take ω or jω as argument
• Physicist use j, mathematicians use i
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Phase
• Don’t forget the phase! Fourier transform results 

in complex numbers

• Can be seen as sum of sines and cosines

• Or modulus/phase
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Phase is important!
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Phase is important!
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Questions?
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Duality
Up to details (such as factors of 2π or signs):  
if function a is the Fourier transform of b, then b is the Fourier transform of a
For example, the Fourier transform of a box is a sinc, 
and the Fourier transform of a sinc is a box. 
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Duality
Any theorem that involves the primal and Fourier domains 
is also true when  swapping the two domains. 
e.g. shift theorem: 

f(x+a) e-2πiaωF(ω)
Primal Fourier

F(ω+a)e-2πiaxf(x)
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Duality
Any theorem that involves the primal and Fourier domains 
is also true when  swapping the two domains. 
e.g. scaling theorem: 

f(ax) 1/a F(x/a)
Primal Fourier

F(ωa)1/a f(x/a)

Thursday, October 29, 2009



Convolution/Modulation

f⊗g FG
Primal Fourier

F⊗Gfg

A convolution in one domain is a multiplication in the other one

Recall that Fourier bases are eigenvectors of the convolution
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Questions?
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Low pass http://www.reindeergraphics.com

black means 1, 
white means 0
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High pass http://www.reindeergraphics.com
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Filtering in Fourier domain
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Analysis of our simple filters

original
0Pixel offset

co
ef

fic
ie

nt

1.0

Filtered
(no change)

0

1.0 constant

spectrum: F(ω)=1
(yes, I am now using the definition 
without 1/sqrt(2pi)
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Analysis of our simple filters
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original

1.0

shifted

0

Constant 
magnitude, 
linearly shifted 
phase

spectrum: 

F (ω) = e−2πjωδ
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Analysis of our simple filters

0Pixel offset
co

ef
fic

ie
nt

original

0.3

blurred

Low-pass 
filter

0

1.0
spectrum: 
F(ω)=sinc(ω)

=sin(ω)/ω
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Analysis of our simple filters

original
0

2.0

0

0.33

sharpened 

high-pass filter

0

1.0

2.3

spectrum: 
F(ω)=2-sinc(ω)
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Convolution versus FFT

• 1-d FFT:  O(NlogN) computation time, 
where N is number of samples.

• 2-d FFT: 2N(NlogN), where N is number of 
pixels on a side

• Convolution: K N2, where K is number of 
samples in kernel

• Say N=210, K=100.  2-d FFT: 20 220, while 
convolution gives 100 220
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Words of wisdom

• Careful with the FFT: 
it assumes a cyclic signal

• Oftentimes, the answer you get mostly 
shows wraparound artifacts

• Proper windowing might be needed to 
analyze the frequency content of an image
– e.g. multiply function by a  smooth function 

that falls off away from the center so that the 
boundary is zero 

82
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Questions?
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Sampling and aliasing
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MIT EECS 6.839 – SMA 5507, Durand and Popović

In photos too
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More on Samples
• In signal processing, the process of mapping a 

continuous function to a discrete one is called sampling
• The process of mapping a continuous variable to a 

discrete one is called quantization
• To represent or render an image using a computer, 

we must both sample and quantize 
– Now we focus on the effects of sampling and how to fight them

discrete position

discrete
value
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Sampling in the Frequency Domain

(convolution)(multiplication)

original
signal

sampling
grid

sampled
signal

Fourier 
Transform

Fourier 
Transform

Fourier 
Transform
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Reconstruction

• If we can extract a copy of the original 
signal from the frequency domain of the 
sampled signal, we can reconstruct the 
original signal!

• But there may be 
overlap between 
the copies.
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Guaranteeing Proper 
Reconstruction

• Separate by removing high 
frequencies from the original 
signal (low pass pre-filtering)

• Separate by increasing the sampling density

• If we can't separate the copies, we will have overlapping  
frequency spectrum during reconstruction → aliasing.
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Sampling Theorem

• When sampling a signal at discrete 
intervals, the sampling frequency must be 
greater than twice the highest frequency of 
the input signal in order to be able to 
reconstruct the original perfectly from the 
sampled version (Shannon, Nyquist, 
Whittaker, Kotelnikov, Küpfmüller)
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Final project 
brainstorming

F r e d o  D u r a n d
M I T  E E C S  6 . 8 1 5 / 6 . 8 6 5
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Final project

Groups of 1 or 2

Proposal due soon (with last pset)

Deliverables: report + small presentation
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Your ideas?
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Some ideas

Use CHDK to provide new features to Canon compact cameras
Use flickr API to do something creative
Explore different types of gradient reconstructions
Improve time lapse
Handle small parallax in panoramas
Exploit flash/no-flash pairs
Editing with images+depth (e.g. from stereo)
Smart color to greyscale
Face-aware image processing
Sharpening out-of-focus images using other pictures from the 
sequences
Application of morphing/warping
Motion without movements  and automatic illusions
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