Assignments for Monday 30.

- Solso Cognition and the Visual Arts
 - Chapter 8 & 9
- Final project
 - Firm subject

Plan

- Drawing and projection
 - Linear perspective & the Renaissance
 - Drawing systems
 - Catalogue of “all” drawing systems
 - Advantage/disadvantages
 - Distortion and constraints
- Denotation
- Tone & color

Issues

- Place of the spectator
- Intrinsic/extrinsic (essential/accidental)
- Unified space
- Shape representation
- Error/distortion/choice
- Child development
- No cultural judgment!

Context

- Importance of the notion of front/top/side
- Presence of lines and planes or not
- Orthogonals
 - Lines orthogonal to the picture plane
 - I.e. lines that converge in the center of the image in central perspective
- Picture plane/curved picture
Efficient shape representation
- True shape
- 3D layout
- Canonical view
- General/accidental view

Generic vs. accidental viewpoint
- Accidental alignment of trash and sea

Canonical view
- Rate views
 - Rate views
 - Features must be salient
 - General view
 - Front view
 - ¾ up view
Invariants

- Invariants
 - Alignments
 - Angles
 - Shape
 - Symmetry
- Property mapping
- Each system here assumes a unified space. Can be mixed up though

3D and 2D attributes

- Show a dice to children (~6-7)
- They usually draw a rectangle
- The rectangle can stand for one face

Evolution of children’s drawings

- Asked to draw a table

Primary/secondary geometry

- Primary geometry
 - Description in 3D object-space
- Secondary geometry
 - Description in 2D image-space

3D and 2D attributes

- Show colored or numbered dice to children (6-7)
- The still draw a rectangle
- But different colors or many points
- The rectangle stands for the whole dice
- The notion of 3D object with corners is translated as a 2D object with corners
Primary/secondary geometry

- **Primary geometry**
 - Description in 3D object-space

- **Secondary geometry**
 - Description in 2D image-space
 - Permits the description of more drawing systems
 - Often better corresponds to the drawing approach

British standard classification

- **Primary geometry**

Willats’s classification

- **Secondary geometry**

Classification of drawing systems

- **Linear**
 - Parallel
 - Linear perspective
 - Divergent perspective

- **Non Linear**
 - Quasi linear
 - Curved projections
 - Topological
 - Split views, fold-out
 - Multiple viewpoints

Linear projections

- Straight lines and alignments are preserved
- Can be expressed in primary geometry
 - Ray-image intersections
 - A matrix

- **Parallel**

- **Linear perspective**

- **Divergent perspective**
Parallel projections

- No foreshortening
- Can represent true shape
- Some are poor shape representations

- Projection direction
 - Orthogonal to image plane or not
 - Along one principal direction or not
- “Stretching” or not

Orthogonal

- Direction
 - Perpendicular to image plane
 - Along one principal direction
- True shape for objects parallel to image plane

Orthogonal

- Direction
 - Perpendicular to image plane
 - Along one principal direction
- True shape for objects parallel to image plane
- Typically engineering

Orthogonal

- Amphora, 6th century BC

Orthogonal

- Bayeux Tapestry 1080
Orthogonal
• Telephoto

As the hijack bargaining goes on under the sweltering sun...

Orthogonal
• Child drawing

Parallel projections
• Orthogonal
• Fold-out oblique
 – Horizontal oblique
 – Vertical oblique
• Non orthogonal
 – Oblique
 – Axonometric
• Orthographic
 – Isometric
 – Others

Fold-out oblique
• Horizontal oblique
• Vertical oblique
• Direction
 – 45º, parallel to one principal face (top or side)
• Can be stretched for fold-out
 – True shape for 2 directions
• Mainly interesting for secondary geometry

Horizontal oblique
• Folk art
Horizontal oblique

- Icons

Horizontal oblique

- Child drawing

Horizontal oblique

- Cézanne Still life with a commode, 1887

Pushing the envelope

Vertical oblique

- Soriguerola, 13th

Vertical oblique

- Soriguerola, 13th
Vertical oblique

- Juan Gris, *Breakfast*, 1914

Vertical oblique

- Indian art, 1660

Vertical oblique

- Claude Rogers, *The Hornby Train*, 1951-53

Vertical oblique

- Andre Kerstesz, *Tulipe Melancolique*

Pushing the envelope
Pushing the envelope

- Non-linear
- Locally linear

Parallel projections

- Orthogonal
- Fold-out oblique
 - Horizontal oblique
 - Vertical oblique
- Non orthogonal
 - Oblique
 - Axonometric
- Orthographic
 - Isometric
 - Others

Non orthogonal

- Direction
 - non orthogonal to picture plane
- Oblique
 - Picture plane parallel to front
 - True shape for front face
- Axonometric
 - True shape for top face
 - True distance for up direction
 - Direction 45º of the picture plane

Oblique

- Picture plane parallel to front
- True shape for front face
- Can use true distance for 3rd direction

Oblique

- Henry Lapp, 19th century

Oblique

- Lady Wenji’s Return to China, 12th century
Oblique
- Phoenix and Achilles, 350-340 BC

Axonometric
- True shape for top face
- True distance for up direction
- Direction 45° of the picture plane
- Le Corbusier was a big fan

Axonometric
- James Stirling, 1953
- Juan Gris, Breakfast, 1914
Parallel projections

- Orthogonal
 - Fold-out oblique
 - Horizontal oblique
 - Vertical oblique
- Non orthogonal
 - Oblique
 - Axonometric
- Orthographic
 - Isometric
 - Others

Orthographic

- Direction
 - Orthogonal to picture plane
 - Along no principal direction
- Isometric
 - Direction along the average of the principal directions
 - True distances along 3 directions
- Others
 - Generic orthographic

Isometric

- Brooks-Greaves
 - St Paul’s Cathedral
 - 1928

Isometric vs. Axonometric

- Isometric
 - No true shape
 - True distances in 3 directions
 - Little distortion
 - Direction average 2 principal directions
- Axonometric
 - True shape for top face
 - True distance for up direction
 - Direction 45° from picture plane

General Orthographic

- Seldom used!
Mixed parallel system
- Persian miniature, 1494
- Oblique+vertical oblique

Classification of drawing systems
- Linear
 - Parallel
 - Linear perspective
 - Divergent perspective
- Non Linear
 - Quasi linear
 - Curved projections
 - Topological
 - Split views, fold-out
 - Multiple viewpoints

Linear perspective
- Foreshortening
- The spectator is “immersed”
- Potential distortions

- One point
- Two points
- Three points

1-point perspective
- Central focus
- Preserves horizontals and verticals

1-point perspective
- Central focus
- Preserves horizontals and verticals
- Can mean that the optical center is not the center of the image
 - View-camera

1-point perspective
- Jean Vredeman de Vries, 1604
1-point perspective
- Unknown artist Ideal city, 15th

1-point
- Interior of St Bavo's church at Haarlem, Pieter Jansz Saenredam, 1648

1-point perspective
The Avenue Middelharnis, Meindert Obbema 1689

1-point perspective
Western perspective in a Japanese picture

2-point perspective
- Objects stand out of the picture
- Preserves verticals
- Can mean that the optical center is not the center of the image
 - Architecture lens
Old assignment

- Before: 3-point perspective

Old assignment

- After: 2-point perspective

3-point perspective

- Dramatic 3D effect
- The generic case, nothing preserved
- seldom used through art history

Perspective anomaly and expression

- Giorgio de Chirico, *Mystery and Melancholy of a Street*, 1914

Perspective anomaly and expression

- Giorgio de Chirico, *Les Muses Inquietantes*, 1925
Perspective distortion

• Wide angle projection
• Does not preserve subjective size

Perspective distortion

• Portrait: distortion with wide angle

Perspective distortion

• The sphere is projected as an ellipse
• Symmetry is not preserved
• Some perspective manuals claim that the projection of a sphere is a circle

Perspective distortion

• The sphere should be projected as an ellipse
• But a circle is used
Classification of drawing systems

- Linear
 - Parallel
 - Linear perspective
 - Divergent perspective
- Non Linear
 - Quasi linear
 - Curved projections
 - Topological
 - Split views, fold-out
 - Multiple viewpoints

Divergent perspective

- A.k.a. inverted perspective
- Subject of quarrel, hard to include in a theory
- Icons
- Asian
- Cubism
- Children

Divergent perspective: explanations

- Does not exist!
- Lack of skill
- Represents more faces
- Fear of idolatry
- Perceptual over-compensation
- Perceptual effect of field of view and size constancy

Divergent perspective

- The Four Gospels, Luke, 1380, Byzantine

Divergent perspective

- Mark, 15th century, Byzantine

Divergent perspective

- Andrei Rublev, The Holy Trinity, 1408-1425
Divergent perspective
- Hasadera Enji (Japanese)

Divergent perspective
- Georges Braque, *Still Life: The Table, 1928*

Divergent perspective
- David Hockney, *Chair*

Divergent perspective
- Child drawing (Kenyan here)

Evolution of children’s drawings
- Asked to draw a table
 - Child’s view
 - Class of drawing & average age:
 - 7.4
 - 9.7
 - 11.9
 - 13.6
 - 14.3
 - 13.7