

Our research 3D rendering Light transport Material appearance Real time rendering, hardware Computational Photography & Video Image enhancement, dynamic range, relighting Data-rich imaging Image decomposition and manipulation

In all cases, it's all about complicated signals

Understanding, manipulating and computing signals

- Discontinuities
 - Where things change
- Gradient
 - Useful for interpolation, criterion
- Frequency content (today's talk)
 - Useful for sampling
 - Useful for inverse problems
 - Sometimes useful as basis function
- Statistics

And all these capture perceptual properties

Bilateral filter

Signal decomposition that characterizes multiscale content and preserves discontinuities

- Tone mapping
- Flash no flash
- Meshes

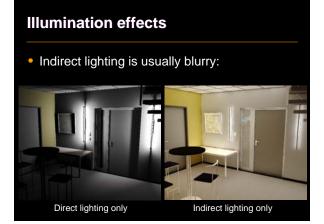
Visibility

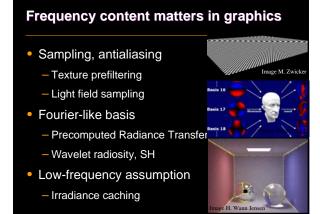
- Singularity approach (discontinuities)
- Fake shadow blurriness (signal characteristics are right, not values)

A Frequency Analysis of Light Transport

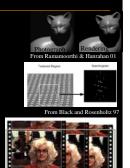
F. Durand, MIT CSAIL N. Holzschuch, C. Soler, ARTIS/GRAVIR-IMAG INRIA E. Chan, MIT CSAIL F. Sillion, ARTIS/GRAVIR-IMAG INRIA

Illumination effects


• Shadow boundaries:


Point light source

Area light source

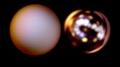

Frequency aspects of light transport

- Blurriness = frequency content
 - Sharp variations: high frequency
 - Smooth variations: low frequency
- All effects are expressed as frequency content:
 - Diffuse shading: low frequency
 - Shadows: introduce high frequencies
 - Indirect lighting: tends to be low frequency

Frequency content matters in vision

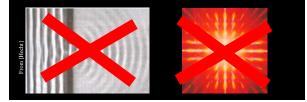
- Inverse lighting
 - And illumination invariants
- Shape from texture
- Shape from (de)focus
 See our Defocus Matting [McGuire et al. Siggraph 2005]

Problem statement


- How does light interaction in a scene explain the frequency content?
- Theoretical framework:
 - Understand the frequency spectrum of the radiance function
 - From the equations of light transport

Unified framework:

 Spatial frequency (e.g. shadows, textures)


 Angular frequency (e.g. blurry highlight)

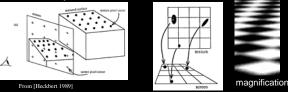
minification

Disclaimer: not Fourier optics

- We do **not** consider wave optics, interference, diffraction
- Only geometrical optics

Overview

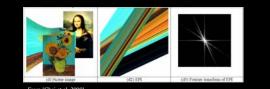
- Previous work
- Our approach:
 - Local light field
 - Transformations on local light field
- Case studies
- Conclusions and future directions


Previous work

- Vast body of literature:
 - Light field sampling
 - Perceptually-based rendering
 - Wavelets for Computer Graphics
 Irradiance caching
 - Photon mapping
 - Frioton map
 -
- We focus on frequency analysis in graphics & vision:
 - Texture antialiasing
 - Light field sampling
 - Reflection as a convolution

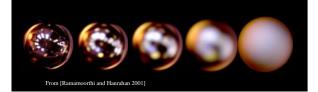
Texture pre-filtering [Heckbert 89]

- Input signal: texture map
- Perspective: transforms signal
- Image: resampling


· Fourier permits the derivation of filters

Light field sampling

[Chai et al. 00, Isaksen et al. 00, Stewart et al. 03]


- Light field spectrum as a function of object distance
- No BRDF, occlusion ignored

Signal processing for reflection

[Ramamoorthi & Hanrahan 01, Basri & Jacobs 03]

- Reflection on a curved surface is a convolution
- Direction only

Overview

- Previous work
- Our approach: - Local light field
- Transformations on local
- Case studies
- Conclusions and future directions

Our approach

- Light sources are input signal
- Interactions are filters/transforms
 - Transport
 - Visibility
 - BRDF
 - Etc.

Our approach

- Light sources are input signal
- Interactions are filters/transforms

Light source signal

- Transport
- Visibility
- BRDF
- Etc.

Our approach

- Light sources are input signal
- Interactions are filters/transforms

Light source signal

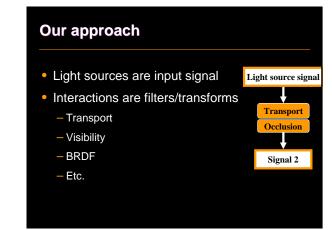
Transport

- Transport
- Visibility
- BRDF
- Etc.

Our approach

- Light sources are input signal
- Interactions are filters/transforms

Light source signal


Ţ

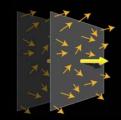
Transport

J,

Signal 1

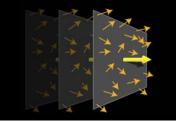
- Transport
- Visibility
- BRDF
- Etc.

Our approach Light sources are input signal Interactions are filters/transforms Transport Visibility BRDF Etc.

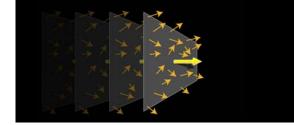

Local light field

• 4D light field, around a central ray

Central ray

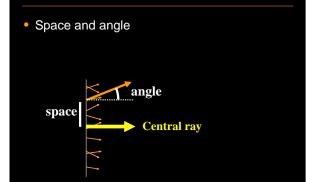

Local light field

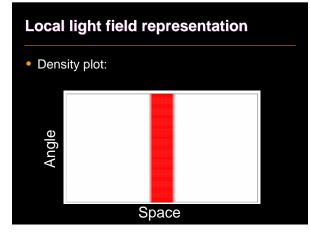
- 4D light field, around a *central ray*
- We study its spectrum during transport


Local light field

- 4D light field, around a central ray
- We study its spectrum during transport

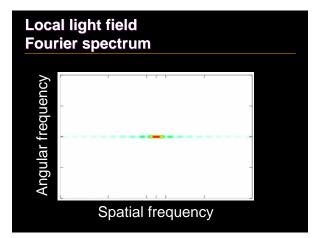
Local light field


- 4D light field, around a central ray
- We study its spectrum during transport



Local light field

- We give explanations in 2D
- Local light field is therefore 2D
- See paper for extension to 3D

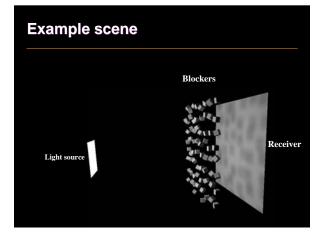

Local light field parameterization

Local light field Fourier spectrum

- We are interested in the Fourier spectrum of the local light field
- Also represented as a density plot

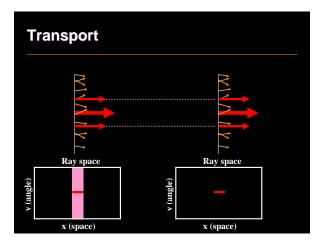
Fourier analysis 101

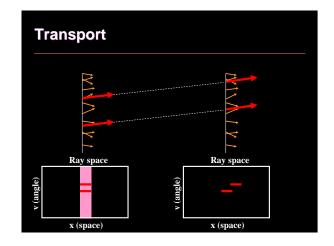
- Spectrum corresponds to blurriness:
 - Sharpest feature has size ~ 1/F_{max}
- Convolution theorem:
 - Multiplication of functions: spectrum is convolved
 - Convolution of functions: spectrum is multiplied
- Classical spectra:
 - $\begin{array}{c} -\operatorname{Box}\leftrightarrow\operatorname{sinc}\\ -\operatorname{Dirac}\leftrightarrow\operatorname{constant}\end{array}$

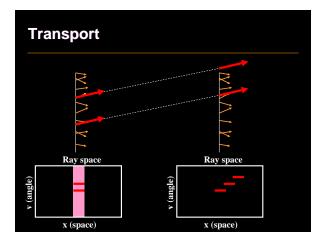

Overview

- Previous work
- Our approach:
 - Local light field
 - Transformations on local light field

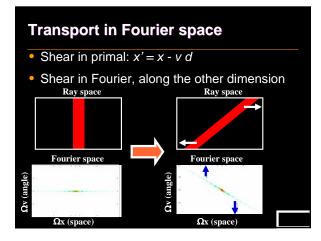
Overview

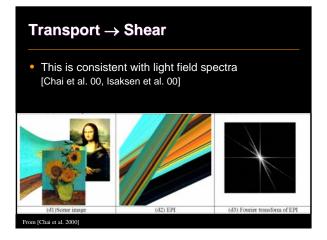

- Previous work
- Our approach:
 - Local light field
 - Transformations on local light field
 Transport
 Occlusion

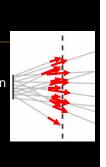

 - BRDFCurvature
 - Other transforms



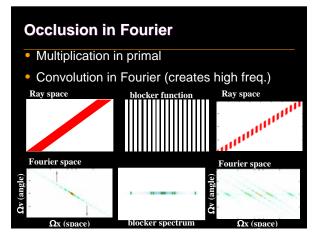
Overview


- Previous work
- Our approach:
 - Local light field
 - Transformations on local light field
 Transport



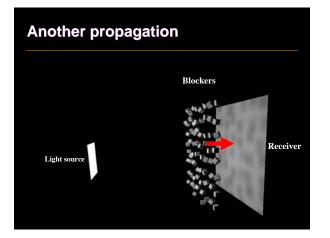


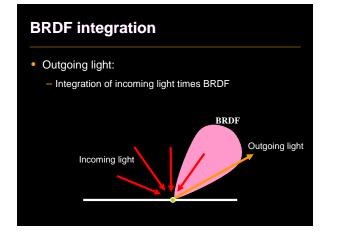
Occlusion: multiplication


- Occlusion is a multiplication in ray space - Convolution in Fourier space
- Creates new spatial frequency content
 - Related to the spectrum of the blockers

Occlusion

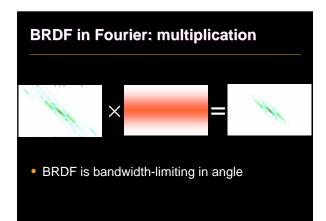
- Consider planar occluder
- Multiplication by binary function
 - Mostly in space

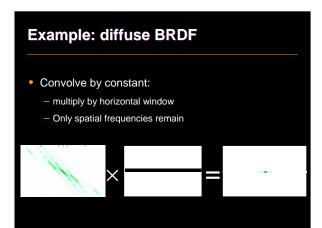

Occlusion • Consider planar occluder Multiplication by binary function - Mostly in space 1000000000 Before occlusion After occlusion blocker function

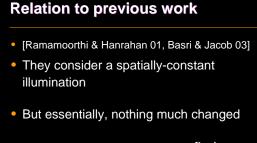

Overview

- Previous work
- Our approach:
 - Local light field
 - Transformations on local light field
 Transport

 - Occlusion




Overview
Previous work
Our approach:
 Local light field
 Transformations on local light field
Transport
Occlusion
• BRDF
Case studies
 Conclusions and future directions



BRDF integration

- Ray-space: *convolution*
 - Outgoing light: convolution of incoming light and BRDF
 - For rotationally-invariant BRDFs
- Fourier domain: *multiplication*
 - Outgoing spectrum: multiplication of incoming spectrum and BRDF spectrum

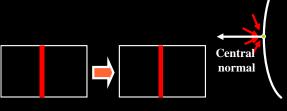
Ray space	Fourier space
	•
	-
	•

Overview Previous work Our approach: Local light field Transformations on local light field Transport Octusion BRDF Curvature Other transforms Case studies

Curvature

- Ray reaches curved surface:
 - Transform it into planar surface
 - "Unroll" curved surface
- Equivalent to changing angular content:
 - Linear effect on angular dimension
 - No effect on spatial dimension
- Shear in the angular dimension

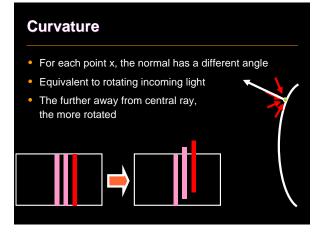
Curvature


- For each point x, the normal has a different angle
- Equivalent to rotating incoming light

Normal 🔨 at x

We will reparameterize the light field

Curvature

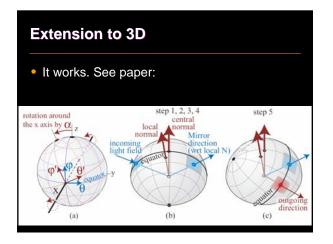

- For each point x, the normal has a different angle
- Equivalent to rotating incoming light
- At center of space, nothing changed

Curvature

- For each point x, the normal has a different angle
- Equivalent to rotating incoming light
- The further away from central ray, the more rotated

11

Curvature


- For each point x, the normal has a different angle
- Equivalent to rotating incoming light
- The further away from central ray, the more rotated
- This is a shear, but vertical

Main transforms: summary

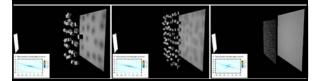
	Radiance/Fourier	Effect
Transport	Shear	
Occlusion	Multiplication/Convolution	Adds spatial frequencies
BRDF	Convolution/Multiplication	Removes angular frequencies
Curvature	Shear	

Overview

- Previous work
- Our approach:
- Local light field
- Transformations on local light field
 - Transport
 - Occlusion
 - BRDF
 - CurvatureOther transforms
- Casa atudiaa
- Conclusions and future direction

Even more effects in paper

- Various technical details
 - Cosine/Fresnel term:
 - Central incidence angle:
- Texture mapping (multiplication/convolution)
- Separable BRDF
- Spatially varying BRDF (semi-convolution)
- ...and full extension to 3D

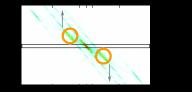


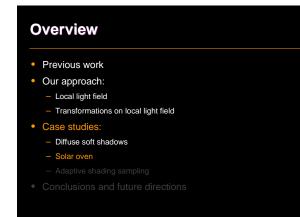
Overview

- Previous work
- Our approach:
 - Local light field
 - Transformations on local light field
- Case studies:
 - Diffuse soft shadows
 - Solar oven
 - Adaptive shading sampling
- Conclusions and future directions

Diffuse soft shadows

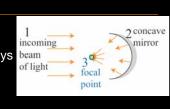
- Decreasing blockers size:
 - First high-frequencies increase
 - Then only low frequency
 - Non-monotonic behavior

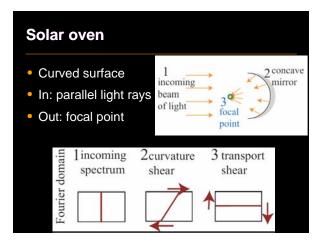

Diffuse soft shadows (2) Occlusion : convolution in Fourier ereates high frequencies Blockers scaled down → spectrum scaled up


Diffuse soft shadows (3)

- Transport after occlusion:
 - Spatial frequencies moved to angular dimension
- Diffuse reflector:
 - Angular frequencies are cancelled

Diffuse soft shadows (3)


- Transport after occlusion:
 - Spatial frequencies moved to angular dimension
- Diffuse reflector:
 - Angular frequencies are cancelled



Solar oven

- Curved surface
- In: parallel light rays
- Out: focal point

Overview

- Previous work
- Our approach:
- Local light field
- Transformations on local light field
- Case studies:
 - Diffuse soft shadows
- Solar oven
- Adaptive shading sampling
- Conclusions and future directions

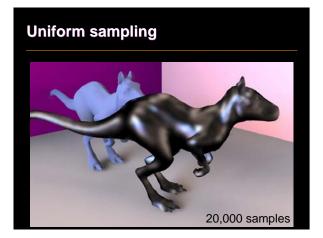
Adaptive shading sampling

- Monte-Carlo ray tracing
- Blurry regions need fewer shading samples

Adaptive shading sampling

- Per-pixel prediction of max. frequency (bandwidth)
 - Based on curvature, BRDF, distance to occluder, etc.
 - No spectrum computed, just estimate max frequency

Per-pixel bandwidth criterion


Adaptive shading sampling

- Per-pixel prediction of max. frequency (bandwidth)
 - Based on curvature, BRDF, distance to occluder, etc.
 - No spectrum computed, just estimate max frequency

Shading sample

Adaptive sampling

Overview

- Previous work
- Our approach:
 - Local light field
 - Transformations on local light field
- Case studies:
 - Diffuse soft shadows
 - Adaptive shading sampling
- Conclusions and future directions

Conclusions


- Unified framework:
 - For frequency analysis of radiance
 - In both space and angle
 - Simple mathematical operators
 - Extends previous analyses
- Explains interesting lighting effects:
 - Soft shadows, caustics
- Proof-of-concept:
 - Adaptive sampling

Future work

- More experimental validation on synthetic scenes
- Extend the theory:
 - Bump mapping, microfacet BRDFs, sub-surface scattering...
 - Participating media
 - Wave optics
- Applications to rendering:
 - Photon mapping, spatial sampling for PRT
 - Revisit traditional techniques
- Vision and shape from shading
- 3D displays aliasing
- Optics and computational photography

Acknowledgments

- Jaakko Lehtinen
- · Reviewers of the MIT and ARTIS graphics groups
- Siggraph reviewers
- This work was supported in part by:
 - NSF CAREER award 0447561 Transient Signal Processing for Realistic Imagery
 - NSF CISE Research Infrastructure Award (EIA9802220)
 - $-\,$ ASEE National Defense Science and Engineering Graduate fellowship
 - INRIA Équipe associée
 - Realreflect EU IST project
 - MIT-France

Why Local Light Field?

- Linearization:
 - $\theta \approx \tan \theta$
 - -Curvature
 - -Extension to 3D
- Local information is what we need:
 - -Local frequency content, for local sampling
 - -Based on local properties of the scene (occluders)

Other bases?

- We're not using Fourier as a function basis
 - Don't recommend it, actually
 - Just used for analysis, understanding, predictions
- Results are useable with any other base:
 - Wavelets, Spherical Harmonics, point sampling, etc
 - Max. frequency translates in sampling rate
- Analysis relies on Fourier properties:
 - Especially the convolution theorem

Reflection on a surface: Full summary

- Angle of incidence
- Curvature
- Cosine/Fresnel term
- Mirror re-parameterization
- BRDF
- Curvature

Reflection on a surface: Full summary

- Angle of incidence: scaling
- Curvature: shear in angle
- Cosine/Fresnel term: multiplication/convolution
- Mirror re-parameterization
- BRDF: convolution/multiplication
- Curvature: shear in angle