

A Frequency Analysis of Light Transport

Frédo Durand - MIT CSAIL

With Nicolas Holzschuch, Cyril Soler, Eric Chan & Francois Sillion

Artis Gravir/Imag-Inria & MIT CSAIL

Our research

- 3D rendering
 - Light transport
 - Material appearance
 - Real time rendering, hardware
- Computational Photography & Video
 - Image enhancement, dynamic range, relighting
 - Data-rich imaging
 - Image decomposition and manipulation
- In all cases, it's all about complicated signals

Understanding, manipulating and computing signals

- Discontinuities
 - Where things change
- Gradient
 - Useful for interpolation, criterion
- Frequency content (today's talk)
 - Useful for sampling
 - Useful for inverse problems
 - Sometimes useful as basis function
- Statistics

And all these capture perceptual properties

Bilateral filter

Signal decomposition that characterizes multiscale content and preserves discontinuities

Tone mapping

Flash no flash

Meshes

Visibility

Singularity approach (discontinuities)

 Fake shadow blurriness (signal characteristics are right, not values)

A Frequency Analysis of Light Transport

F. Durand, MIT CSAIL

N. Holzschuch, C. Soler, artis/gravir-imag inria

E. Chan, MIT CSAIL

F. Sillion, ARTIS/GRAVIR-IMAG INRIA

Illumination effects

Blurry reflections:

From [Ramamoorthi and Hanrahan 2001]

Illumination effects

Shadow boundaries:

Area light source

Illumination effects

• Indirect lighting is usually blurry:

Direct lighting only

Indirect lighting only

Frequency aspects of light transport

- Blurriness = frequency content
 - Sharp variations: high frequency
 - Smooth variations: low frequency
- All effects are expressed as frequency content:
 - Diffuse shading: low frequency
 - Shadows: introduce high frequencies
 - Indirect lighting: tends to be low frequency

Frequency content matters in graphics

- Sampling, antialiasing
 - Texture prefiltering
 - Light field sampling
- Fourier-like basis
 - Precomputed Radiance Transfer
 - Wavelet radiosity, SH
- Low-frequency assumption
 - Irradiance caching

Frequency content matters in vision

- Inverse lighting
 - And illumination invariants
- Shape from texture

- Shape from (de)focus
 - See our Defocus Matting
 [McGuire et al. Siggraph 2005]

From Black and Rosenholtz 97

Problem statement

- How does light interaction in a scene explain the frequency content?
- Theoretical framework:
 - Understand the frequency spectrum of the radiance function
 - From the equations of light transport

Unified framework:

 Spatial frequency (e.g. shadows, textures)

Angular frequency (e.g. blurry highlight)

Disclaimer: not Fourier optics

- We do **not** consider wave optics, interference, diffraction
- Only geometrical optics

Overview

- Previous work
- Our approach:
 - Local light field
 - Transformations on local light field
- Case studies
- Conclusions and future directions

Previous work

- Vast body of literature:
 - Light field sampling
 - Perceptually-based rendering
 - Wavelets for Computer Graphics
 - Irradiance caching
 - Photon mapping
 - **–** ...
- We focus on frequency analysis in graphics & vision:
 - Texture antialiasing
 - Light field sampling
 - Reflection as a convolution

Texture pre-filtering [Heckbert 89]

- Input signal: texture map
- Perspective: transforms signal
- Image: resampling
- Fourier permits the derivation of filters

From [Heckbert 1989]

Light field sampling

[Chai et al. 00, Isaksen et al. 00, Stewart et al. 03]

- Light field spectrum as a function of object distance
- No BRDF, occlusion ignored

From [Chai et al. 2000]

Signal processing for reflection

[Ramamoorthi & Hanrahan 01, Basri & Jacobs 03]

- Reflection on a curved surface is a convolution
- Direction only

Overview

- Previous work
- Our approach:
 - Local light field
 - Transformations on local light field
- Case studies
- Conclusions and future directions

- Light sources are input signal
- Interactions are filters/transforms
 - Transport
 - Visibility
 - BRDF
 - Etc.

Light sources are input signal

Light source signal

- Interactions are filters/transforms
 - Transport
 - Visibility
 - BRDF
 - Etc.

- Light sources are input signal
- Interactions are filters/transforms
 - Transport
 - Visibility
 - BRDF
 - Etc.

- Light sources are input signal
- Interactions are filters/transforms
 - Transport
 - Visibility
 - BRDF
 - Etc.

- Light sources are input signal
- Interactions are filters/transforms
 - Transport
 - Visibility
 - BRDF
 - Etc.

- Light sources are input signal
- Interactions are filters/transforms
 - Transport
 - Visibility
 - BRDF
 - Etc.

- Light sources are input signal
- Interactions are filters/transforms
 - Transport
 - Visibility
 - BRDF
 - Etc.

4D light field, around a central ray

- 4D light field, around a central ray
- We study its spectrum during transport

- 4D light field, around a central ray
- We study its spectrum during transport

- 4D light field, around a central ray
- We study its spectrum during transport

- We give explanations in 2D
- Local light field is therefore 2D
- See paper for extension to 3D

Local light field parameterization

Space and angle

Local light field representation

Density plot:

Local light field Fourier spectrum

- We are interested in the Fourier spectrum of the local light field
- Also represented as a density plot

Local light field Fourier spectrum

Angular frequency

Spatial frequency

Fourier analysis 101

- Spectrum corresponds to blurriness:
 - Sharpest feature has size ~ 1/F_{max}
- Convolution theorem:
 - Multiplication of functions: spectrum is convolved
 - Convolution of functions: spectrum is multiplied
- Classical spectra:
 - Box \leftrightarrow sinc
 - Dirac \leftrightarrow constant

- Previous work
- Our approach:
 - Local light field
 - Transformations on local light field
- Case studies
- Conclusions and future directions

- Previous work
- Our approach:
 - Local light field
 - Transformations on local light field
 - Transport
 - Occlusion
 - BRDF
 - Curvature
 - Other transforms
- Case studies
- Conclusions and future directions

Example scene

Blockers

Receiver

- Previous work
- Our approach:
 - Local light field
 - Transformations on local light field
 - Transport
 - Occlusion
 - BRDF
 - Curvature
 - Other transforms
- Case studies
- Conclusions and future directions

• Shear: x' = x - v d

Transport in Fourier space

- Shear in primal: x' = x v d
- Shear in Fourier, along the other dimension

Transport → **Shear**

• This is consistent with light field spectra [Chai et al. 00, Isaksen et al. 00]

- Previous work
- Our approach:
 - Local light field
 - Transformations on local light field
 - Transport
 - Occlusion
 - BRDF
 - Curvature
 - Other transforms
- Case studies
- Conclusions and future directions

Occlusion: multiplication

- Occlusion is a multiplication in ray space
 - Convolution in Fourier space
- Creates new spatial frequency content
 - Related to the spectrum of the blockers

Occlusion

- Consider planar occluder
- Multiplication by binary function
 - Mostly in space

Occlusion

- Consider planar occluder
- Multiplication by binary function
 - Mostly in space

Before occlusion

blocker function

After occlusion

Occlusion in Fourier

- Multiplication in primal
 - Convolution in Fourier (creates high freq.)

- Previous work
- Our approach:
 - Local light field
 - Transformations on local light field
 - Transport
 - Occlusion
 - BRDF
 - Curvature
 - Other transforms
- Case studies
- Conclusions and future directions

Another propagation

Blockers

Receiver

- Previous work
- Our approach:
 - Local light field
 - Transformations on local light field
 - Transport
 - Occlusion
 - BRDF
 - Curvature
 - Other transforms
- Case studies
- Conclusions and future directions

BRDF integration

- Outgoing light:
 - Integration of incoming light times BRDF

BRDF integration

Ray-space: convolution

- Outgoing light:
 convolution of incoming light and BRDF
- For rotationally-invariant BRDFs
- Fourier domain: multiplication
 - Outgoing spectrum: multiplication of incoming spectrum and BRDF spectrum

BRDF in Fourier: multiplication

BRDF is bandwidth-limiting in angle

Example: diffuse BRDF

- Convolve by constant:
 - multiply by horizontal window
 - Only spatial frequencies remain

Relation to previous work

- [Ramamoorthi & Hanrahan 01, Basri & Jacob 03]
- They consider a spatially-constant illumination
- But essentially, nothing much changed

- Previous work
- Our approach:
 - Local light field
 - Transformations on local light field
 - Transport
 - Occlusion
 - BRDF
 - Curvature
 - Other transforms
- Case studies
- Conclusions and future directions

- Ray reaches curved surface:
 - Transform it into planar surface
 - "Unroll" curved surface
- Equivalent to changing angular content:
 - Linear effect on angular dimension
 - No effect on spatial dimension
- Shear in the angular dimension

- For each point x, the normal has a different angle
- Equivalent to rotating incoming light

Normal at x

We will reparameterize the light field

- For each point x, the normal has a different angle
- Equivalent to rotating incoming light
- At center of space, nothing changed

- For each point x, the normal has a different angle
- Equivalent to rotating incoming light
- The further away from central ray, the more rotated

- For each point x, the normal has a different angle
- Equivalent to rotating incoming light
- The further away from central ray, the more rotated

- For each point x, the normal has a different angle
- Equivalent to rotating incoming light
- The further away from central ray, the more rotated

Main transforms: summary

	Radiance/Fourier	Effect
Transport	Shear	
Occlusion	Multiplication/Convolution	Adds spatial frequencies
BRDF	Convolution/Multiplication	Removes angular frequencies
Curvature	Shear	

- Previous work
- Our approach:
 - Local light field
 - Transformations on local light field
 - Transport
 - Occlusion
 - BRDF
 - Curvature
 - Other transforms
- Case studies
- Conclusions and future directions

Extension to 3D

It works. See paper:

Even more effects in paper

- Various technical details
 - Cosine/Fresnel term:
 - Central incidence angle:
- Texture mapping (multiplication/convolution)
- Separable BRDF
- Spatially varying BRDF (semi-convolution)

...and full extension to 3D

- Previous work
- Our approach:
 - Local light field
 - Transformations on local light field
- Case studies:
 - Diffuse soft shadows
 - Solar oven
 - Adaptive shading sampling
- Conclusions and future directions

- Previous work
- Our approach:
 - Local light field
 - Transformations on local light field
- Case studies:
 - Diffuse soft shadows
 - Solar oven
 - Adaptive shading sampling
- Conclusions and future directions

Diffuse soft shadows

- Decreasing blockers size:
 - First high-frequencies increase
 - Then only low frequency
 - Non-monotonic behavior

- Occlusion: convolution in Fourier
 - creates high frequencies
 - Blockers scaled down → spectrum scaled up

Diffuse soft shadows (3)

- Transport after occlusion:
 - Spatial frequencies moved to angular dimension
- Diffuse reflector:
 - Angular frequencies are cancelled

Diffuse soft shadows (3)

- Transport after occlusion:
 - Spatial frequencies moved to angular dimension
- Diffuse reflector:
 - Angular frequencies are cancelled

- Previous work
- Our approach:
 - Local light field
 - Transformations on local light field
- Case studies:
 - Diffuse soft shadows
 - Solar oven
 - Adaptive shading sampling
- Conclusions and future directions

Solar oven

- Curved surface
- In: parallel light rays
- Out: focal point

Solar oven

- Curved surface
- In: parallel light rays
- Out: focal point

- Previous work
- Our approach:
 - Local light field
 - Transformations on local light field
- Case studies:
 - Diffuse soft shadows
 - Solar oven
 - Adaptive shading sampling
- Conclusions and future directions

Adaptive shading sampling

Monte-Carlo ray tracing

Blurry regions need fewer shading

samples

Adaptive shading sampling

- Per-pixel prediction of max. frequency (bandwidth)
 - Based on curvature, BRDF, distance to occluder, etc.
 - No spectrum computed, just estimate max frequency

Per-pixel bandwidth criterion

Adaptive shading sampling

- Per-pixel prediction of max. frequency (bandwidth)
 - Based on curvature, BRDF, distance to occluder, etc.
 - No spectrum computed, just estimate max frequency

Uniform sampling

Adaptive sampling

- Previous work
- Our approach:
 - Local light field
 - Transformations on local light field
- Case studies:
 - Diffuse soft shadows
 - Adaptive shading sampling
- Conclusions and future directions

Conclusions

- Unified framework:
 - For frequency analysis of radiance
 - In both space and angle
 - Simple mathematical operators
 - Extends previous analyses
- Explains interesting lighting effects:
 - Soft shadows, caustics
- Proof-of-concept:
 - Adaptive sampling

Future work

- More experimental validation on synthetic scenes
- Extend the theory:
 - Bump mapping, microfacet BRDFs, sub-surface scattering...
 - Participating media
 - Wave optics
- Applications to rendering:
 - Photon mapping, spatial sampling for PRT
 - Revisit traditional techniques
- Vision and shape from shading
- 3D displays aliasing
- Optics and computational photography

Acknowledgments

- Jaakko Lehtinen
- Reviewers of the MIT and ARTIS graphics groups
- Siggraph reviewers
- This work was supported in part by:
 - NSF CAREER award 0447561 Transient Signal Processing for Realistic Imagery
 - NSF CISE Research Infrastructure Award (EIA9802220)
 - ASEE National Defense Science and Engineering Graduate fellowship
 - INRIA Équipe associée
 - Realreflect EU IST project
 - MIT-France

Why Local Light Field?

- Linearization:
 - $-\theta \approx \tan \theta$
 - Curvature
 - -Extension to 3D
- Local information is what we need:
 - Local frequency content, for local sampling
 - Based on local properties of the scene (occluders)

Other bases?

- We're not using Fourier as a function basis
 - Don't recommend it, actually
 - Just used for analysis, understanding, predictions
- Results are useable with any other base:
 - Wavelets, Spherical Harmonics, point sampling, etc
 - Max. frequency translates in sampling rate
- Analysis relies on Fourier properties:
 - Especially the convolution theorem

Reflection on a surface: Full summary

- Angle of incidence
- Curvature
- Cosine/Fresnel term
- Mirror re-parameterization
- BRDF
- Curvature

Reflection on a surface: Full summary

- Angle of incidence: scaling
- Curvature: shear in angle
- Cosine/Fresnel term: multiplication/convolution
- Mirror re-parameterization
- BRDF: convolution/multiplication
- Curvature: shear in angle