



### A Frequency Analysis of Light Transport

F. Durand, MIT CSAIL

N. Holzschuch, C. Soler, ARTIS/GRAVIR-IMAG INRIA

E. Chan, MIT CSAIL

F. Sillion, ARTIS/GRAVIR-IMAG INRIA



#### Blurry reflections:

From [Ramamoorthi and Hanrahan 2001]



#### Shadow boundaries:





#### Point light source

Area light source

OIL Accarcon 2005



#### Indirect lighting is usually blurry:



**Complete lighting** 



#### Indirect lighting is usually blurry:



#### Direct lighting only

Indirect lighting only



# Frequency aspects of light transport

- Blurriness = frequency content
  - Sharp variations: high frequency
  - Smooth variations: low frequency
- All effects are expressed as frequency content:
  - Diffuse shading: low frequency
  - Shadows: introduce high frequencies
  - Indirect lighting: tends to be low frequency

#### **Problem statement**



- How does light interaction in a scene explain the frequency content?
- Theoretical framework:
  - Understand the frequency spectrum of the radiance function
  - From equations of light transport



#### **Unified framework:**

 Spatial frequency (e.g. shadows, textures)

 Angular frequency (e.g. blurry highlight)





# Disclaimer: not Fourier optics



- We do **not** consider wave optics, interference, diffraction
- Only geometrical optics





# Disclaimer: not Fourier optics



- We do **not** consider wave optics, interference, diffraction
- Only geometrical optics





### Overview

- Previous work
- Our approach:
  - Local light field
  - Transformations on local light field
- Case studies:
  - Diffuse soft shadows
  - Adaptive shading sampling
- Conclusions and future directions

### Overview

- Previous work
- Our approach:
  - Local light field
  - Transformations on local light field
- Case studies:
  - Diffuse soft shadows
  - Adaptive shading sampling
- Conclusions and future directions



#### **Previous work**

- Vast body of literature:
  - Light field sampling
  - Perceptually-based rendering
  - Wavelets for Computer Graphics
  - Irradiance caching
  - Photon mapping
- We focus on frequency analysis in graphics:
  - Light field sampling
  - Reflection as a convolution

### Light field sampling



[Chai et al. 00, Isaksen et al. 00, Stewart et al. 03]

- Light field spectrum as a function of object distance
- No BRDF, occlusion ignored



From [Chai et al 2000]

# Signal processing for reflection



[Ramamoorthi & Hanrahan 01, Basri & Jacobs 03]

- Reflection on a curved surface is a convolution
- Direction only



### Overview

- Previous work
- Our approach:
  - Local light field
  - Transformations on local light field
- Case studies:
  - Diffuse soft shadows
  - Adaptive shading sampling
- Conclusions and future directions



- Light sources are input signal
- Interactions are filters/transforms
  - Transport
  - Visibility
  - BRDF
  - Etc.



- Light sources are input signal
- Interactions are filters/transforms
  - Transport
  - Visibility
  - BRDF
  - Etc.

#### Light source signal



- Light sources are input signal
- Interactions are filters/transforms
  - Transport
  - Visibility
  - BRDF
  - Etc.



**Transport** 



- Light sources are input signal
- Interactions are filters/transforms
  - Transport
  - Visibility
  - BRDF
  - Etc.





- Light sources are input signal
- Interactions are filters/transforms
  - Transport
  - Visibility
  - BRDF
  - Etc.





- Light sources are input signal
- Interactions are filters/transforms
  - Transport
  - Visibility
  - BRDF
  - -Etc.





- Light sources are input signal
- Interactions are filters/transforms
  - Transport
  - Visibility
  - BRDF
  - Etc.



#### Local light field



• 4D light field, around a central ray



#### Local light field

- 4D light field, around a central ray
- We study its spectrum during transport



#### Local light field

- 4D light field, around a central ray
- We study its spectrum during transport



#### Local light field

- 4D light field, around a central ray
- We study its spectrum during transport





#### Local light field

We give explanations in 2D
Local light field is therefore 2D

See paper for extension to 3D

# Local light field parameterization



Space and angle



## Local light field representation



• Density plot:

Area light source



### Local light field Fourier spectrum



- We are interested in the Fourier spectrum of the local light field
- Also represented as a density plot

### Local light field Fourier spectrum



Spectrum of an area light source:



**Spatial frequency** 

#### Fourier analysis 101



- Spectrum corresponds to blurriness:
  - Sharpest feature has size 1/F<sub>max</sub>
- Convolution theorem:
  - Multiplication <> convolution
- Classical spectra:
  - Box ↔ sinc
  - − Dirac ↔ constant

### Overview

- Previous work
- Our approach:
  - Local light field
  - Transformations on local light field
- Case studies:
  - Diffuse soft shadows
  - Adaptive shading sampling
- Conclusions and future directions

### Overview

- Previous work
- Our approach:
  - Local light field
  - Transformations on local light field
    - Transport
    - Occlusion
    - BRDF
    - Curvature
- Case studies
- Conclusions and future directions
### Example scene





- Previous work
- Our approach:
  - Local light field
  - Transformations on local light field
    - Transport
    - Occlusion
    - BRDF
    - Curvature
- Case studies
- Conclusions and future directions



#### **Transport in free space**





#### **Transport in free space**



#### nrennnalion - nios nation

even in the second second

#### Transport → Shear



 This is consistent with light field spectra [Chai et al. 00, Isaksen et al. 00]



From [Chai et al. 2000]

- Previous work
- Our approach:
  - Local light field
  - Transformations on local light field
    - Transport
    - Occlusion
    - BRDF
    - Curvature
- Case studies
- Conclusions and future directions



#### **Occlusion: multiplication**

- Occlusion is a multiplication in ray space
  Convolution in Fourier space
- Creates new spatial frequency content
  - Related to the spectrum of the blockers



- Previous work
- Our approach:
  - Local light field
  - Transformations on local light field
    - Transport
    - Occlusion
    - BRDF
    - Curvature
- Case studies
- Conclusions and future directions

#### Light Propagation







- Previous work
- Our approach:
  - Local light field
  - Transformations on local light field
    - Transport
    - Occlusion
    - BRDF
    - Curvature
- Case studies
- Conclusions and future directions

#### **BRDF** integration



• Outgoing light:

Integration of incoming light times BRDF





#### **BRDF** integration

#### Ray-space: convolution

- Outgoing light: convolution of incoming light and BRDF
- For rotationally-invariant BRDFs
- Fourier domain: multiplication
  - Outgoing spectrum: multiplication of incoming spectrum and BRDF spectrum

#### **BRDF in Fourier: multiplication**





#### BRDF is bandwidth-limiting in angle

#### Example: diffuse BRDF



- Convolve by constant:
  - multiply by Dirac
  - Only spatial frequencies remain



- Previous work
- Our approach:
  - Local light field
  - Transformations on local light field
    - Transport
    - Occlusion
    - BRDF
    - Curvature
- Case studies
- Conclusions and future directions



#### **Curved receiver**

- Reduce to the case of a planar surface:
  - "Unroll" the curved receiver
- Equivalent to changing angular content:
  - Linear effect on angular dimension
  - No effect on spatial dimension
- Shear in the angular dimension





#### Transforms: summary

|           | Radiance/Fourier           | Effect                      |
|-----------|----------------------------|-----------------------------|
| Transport | Shear                      |                             |
| Occlusion | Multiplication/Convolution | Adds spatial frequencies    |
| BRDF      | Convolution/Multiplication | Removes angular frequencies |
| Curvature | Shear                      |                             |

#### More effects in paper



- Cosine term (multiplication/convolution)
- Fresnel term (multiplication/convolution)
- Texture mapping (multiplication/convolution)
- Central incidence angle (scaling)
- Separable BRDF
- Spatially varying BRDF (semi-convolution)



- Previous work
- Our approach:
  - Local light field
  - Transformations on local light field
- Case studies:
  - Diffuse soft shadows
  - Adaptive shading sampling
- Conclusions and future directions

- Previous work
- Our approach:
  - Local light field
  - Transformations on local light field
- Case studies:
  - Diffuse soft shadows
  - Adaptive shading sampling
- Conclusions and future directions

#### **Diffuse soft shadows**



- Decreasing blockers size:
  - First high-frequencies increase
  - Then only low frequency
  - Non-monotonic behavior



#### Diffuse soft shadows (2)



- Occlusion : convolution in Fourier
  - creates high frequencies
  - Blockers scaled down → spectrum scaled up



### Diffuse soft shadows (3)



- Transport after occlusion:
  - Spatial frequencies moved to angular dimension
- Diffuse reflector:
  - Angular frequencies are cancelled



### Diffuse soft shadows (3)



- Transport after occlusion:
  - Spatial frequencies moved to angular dimension
- Diffuse reflector:
  - Angular frequencies are cancelled



- Previous work
- Our approach:
  - Local light field
  - Transformations on local light field
- Case studies:
  - Diffuse soft shadows
  - Adaptive shading sampling
- Conclusions and future directions



### Adaptive shading sampling

- Monte-Carlo ray tracing
- Blurry regions need fewer shading samples



#### Adaptive shading sampling

- Per-pixel prediction of max. frequency (bandwidth)
  - Based on curvature, BRDF, distance to occluder, etc.
  - No spectrum computed, just estimate max frequency



Per-pixel bandwidth criterion

#### Adaptive shading sampling

- Per-pixel prediction of max. frequency (bandwidth)
  - Based on curvature, BRDF, distance to occluder, etc.
  - No spectrum computed, just estimate max frequency





#### Adaptive sampling





#### **Uniform sampling**





- Previous work
- Our approach:
  - Local light field
  - Transformations on local light field
- Case studies:
  - Diffuse soft shadows
  - Adaptive shading sampling
- Conclusions and future directions

#### Conclusions

- Unified framework:
  - For frequency analysis of radiance
  - In both space and angle
  - Simple mathematical operators
  - Extends previous analyses
- Explains interesting lighting effects:
  - Soft shadows, caustics
- Proof-of-concept:
  - Adaptive sampling



#### **Future work**

- More experimental validation on synthetic scenes
- Extend the theory:
  - Bump mapping, microfacet BRDFs, sub-surface scattering...
  - Participating media
- Applications to rendering:
  - Photon mapping
  - Spatial sampling for PRT
  - Revisit traditional techniques
- Applications to vision and shape from shading


## Acknowledgments

- Jaakko Lehtinen
- Reviewers of the MIT and ARTIS graphics groups
- Siggraph reviewers
- This work was supported in part by:
  - NSF CAREER award 0447561 Transient Signal Processing for Realistic Imagery
  - NSF CISE Research Infrastructure Award (EIA9802220)
  - ASEE National Defense Science and Engineering Graduate fellowship
  - INRIA Équipe associée
  - Realreflect EU IST project
  - MIT-France



### Solar oven







#### **Other bases?**

- We're not using Fourier as a function basis
  - Don't recommend it, actually
  - Just used for analysis, understanding, predictions
- Results are useable with any other base:
  - Wavelets, Spherical Harmonics, point sampling, etc
  - Max. frequency translates in sampling rate
- Analysis relies on Fourier properties:
  - Especially the convolution theorem



# Why Local Light Field?

- Linearization:
  - θ ≈ tan θ
  - -Curvature
- Local information is what we need:
  - -Local frequency content, for local sampling
  - -Local properties of the scene (occluders, curv.)



#### **Extension to 3D**

#### • It works. See paper:



# Reflection on a surface: Full summary



- Angle of incidence
- Curvature
- Cosine/Fresnel term
- Mirror re-parameterization
- BRDF
- Curvature

# Reflection on a surface: Full summary



- Angle of incidence: scaling
- Curvature: shear in angle
- Cosine/Fresnel term: multiplication/convolution
- Mirror re-parameterization
- BRDF: convolution/multiplication
- Curvature: shear in angle



















