A Frequency Analysis of Light Transport

F. Durand, MIT CSAIL
N. Holzschuch, C. Soler, ARTIS/GRAVIR-IMAG INRIA
E. Chan, MIT CSAIL
F. Sillion, ARTIS/GRAVIR-IMAG INRIA
Illumination effects

• Blurry reflections:

From [Ramamoorthi and Hanrahan 2001]
Illumination effects

- Shadow boundaries:

 Point light source

 Area light source

© U. Assarsson 2005
Illumination effects

- Indirect lighting is usually blurry:

Complete lighting
Illumination effects

• Indirect lighting is usually blurry:
Frequency aspects of light transport

• Blurriness = frequency content
 – Sharp variations: high frequency
 – Smooth variations: low frequency

• All effects are expressed as frequency content:
 – Diffuse shading: low frequency
 – Shadows: introduce high frequencies
 – Indirect lighting: tends to be low frequency
Problem statement

• How does light interaction in a scene explain the frequency content?

• Theoretical framework:
 – Understand the frequency spectrum of the radiance function
 – From equations of light transport
Unified framework:

- Spatial frequency (e.g. shadows, textures)
- Angular frequency (e.g. blurry highlight)
Disclaimer: not Fourier optics

- We do **not** consider wave optics, interference, diffraction
- Only geometrical optics

From [Hecht]
Disclaimer: not Fourier optics

- We do **not** consider wave optics, interference, diffraction
- Only geometrical optics

From [Hecht]
Overview

• Previous work
• Our approach:
 – Local light field
 – Transformations on local light field
• Case studies:
 – Diffuse soft shadows
 – Adaptive shading sampling
• Conclusions and future directions
Overview

• Previous work

• Our approach:
 – Local light field
 – Transformations on local light field

• Case studies:
 – Diffuse soft shadows
 – Adaptive shading sampling

• Conclusions and future directions
Previous work

- Vast body of literature:
 - Light field sampling
 - Perceptually-based rendering
 - Wavelets for Computer Graphics
 - Irradiance caching
 - Photon mapping
 - ...

- We focus on frequency analysis in graphics:
 - Light field sampling
 - Reflection as a convolution
Light field sampling

[Chai et al. 00, Isaksen et al. 00, Stewart et al. 03]

- Light field spectrum as a function of object distance
- No BRDF, occlusion ignored

From [Chai et al. 2000]
Signal processing for reflection

[Ramamoorthi & Hanrahan 01, Basri & Jacobs 03]

• Reflection on a curved surface is a convolution
• Direction only
Overview

• Previous work

• Our approach:
 – Local light field
 – Transformations on local light field

• Case studies:
 – Diffuse soft shadows
 – Adaptive shading sampling

• Conclusions and future directions
Our approach

• Light sources are input signal
• Interactions are filters/transforms
 – Transport
 – Visibility
 – BRDF
 – Etc.
Our approach

• Light sources are input signal
• Interactions are filters/transforms
 – Transport
 – Visibility
 – BRDF
 – Etc.
Our approach

- Light sources are input signal
- Interactions are filters/transforms
 - Transport
 - Visibility
 - BRDF
 - Etc.
Our approach

- Light sources are input signal
- Interactions are filters/transforms
 - Transport
 - Visibility
 - BRDF
 - Etc.
Our approach

- Light sources are input signal
- Interactions are filters/transforms
 - Transport
 - Visibility
 - BRDF
 - Etc.

Light source signal

Transport

Occlusion

Signal 2
Our approach

- Light sources are input signal
- Interactions are filters/transforms
 - Transport
 - Visibility
 - BRDF
 - Etc.
Our approach

- Light sources are input signal
- Interactions are filters/transforms
 - Transport
 - Visibility
 - BRDF
 - Etc.
Local light field

- 4D light field, around a central ray
Local light field

• 4D light field, around a central ray
• We study its spectrum during transport
Local light field

- 4D light field, around a *central ray*
- We study its spectrum during transport
Local light field

- 4D light field, around a *central ray*
- We study its spectrum during transport
Local light field

• We give explanations in 2D
 – Local light field is therefore 2D
• See paper for extension to 3D
Local light field parameterization

- Space and angle

Diagram showing space and angle with a central ray.
Local light field representation

• Density plot:

Area light source

Space

Angle
Local light field
Fourier spectrum

• We are interested in the Fourier spectrum of the local light field

• Also represented as a density plot
Local light field
Fourier spectrum

Spectrum of an area light source:

Angular frequency

Spatial frequency
Fourier analysis 101

• Spectrum corresponds to blurriness:
 – Sharpest feature has size $1/F_{\text{max}}$

• Convolution theorem:
 – Multiplication \leftrightarrow convolution

• Classical spectra:
 – Box \leftrightarrow sinc
 – Dirac \leftrightarrow constant
Overview

• Previous work

• Our approach:
 – Local light field
 – Transformations on local light field

• Case studies:
 – Diffuse soft shadows
 – Adaptive shading sampling

• Conclusions and future directions
Overview

• Previous work

• Our approach:
 – Local light field
 – Transformations on local light field
 • Transport
 • Occlusion
 • BRDF
 • Curvature

• Case studies

• Conclusions and future directions
Example scene

Light source

Blockers

Receiver
Overview

• Previous work

• Our approach:
 – Local light field
 – Transformations on local light field
 • Transport
 • Occlusion
 • BRDF
 • Curvature

• Case studies

• Conclusions and future directions
Transport in free space

Shear

Angle

Space

Angle

Space
Transport in free space

Shear

Spatial frequency

Angular freq.

Angular freq.
propagation
Transport \rightarrow Shear

- This is consistent with light field spectra [Chai et al. 00, Isaksen et al. 00]

From [Chai et al. 2000]
Overview

• Previous work

• Our approach:
 – Local light field
 – Transformations on local light field
 • Transport
 • Occlusion
 • BRDF
 • Curvature

• Case studies

• Conclusions and future directions
Occlusion: multiplication

- Occlusion is a multiplication in ray space
 - Convolution in Fourier space
- Creates new spatial frequency content
 - Related to the spectrum of the blockers
Overview

• Previous work

• Our approach:
 – Local light field
 – Transformations on local light field
 • Transport
 • Occlusion
 • BRDF
 • Curvature

• Case studies

• Conclusions and future directions
Overview

- Previous work
- Our approach:
 - Local light field
 - Transformations on local light field
 - Transport
 - Occlusion
 - BRDF
 - Curvature
- Case studies
- Conclusions and future directions
BRDF integration

- Outgoing light:
 - Integration of incoming light times BRDF
BRDF integration

• Ray-space: convolution
 – Outgoing light: convolution of incoming light and BRDF
 – For rotationally-invariant BRDFs

• Fourier domain: multiplication
 – Outgoing spectrum: multiplication of incoming spectrum and BRDF spectrum
BRDF in Fourier: multiplication

- BRDF is bandwidth-limiting in angle
Example: diffuse BRDF

- Convolve by constant:
 - multiply by Dirac
 - Only spatial frequencies remain
Overview

• Previous work

• Our approach:
 – Local light field
 – Transformations on local light field
 • Transport
 • Occlusion
 • BRDF
 • Curvature

• Case studies

• Conclusions and future directions
Curved receiver

• Reduce to the case of a planar surface:
 – “Unroll” the curved receiver

• Equivalent to changing angular content:
 – Linear effect on angular dimension
 – No effect on spatial dimension

• Shear in the angular dimension
<table>
<thead>
<tr>
<th></th>
<th>Radiance/Fourier</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transport</td>
<td>Shear</td>
<td></td>
</tr>
<tr>
<td>Occlusion</td>
<td>Multiplication/Convolution</td>
<td>Adds spatial frequencies</td>
</tr>
<tr>
<td>BRDF</td>
<td>Convolution/Multiplication</td>
<td>Removes angular frequencies</td>
</tr>
<tr>
<td>Curvature</td>
<td>Shear</td>
<td></td>
</tr>
</tbody>
</table>
More effects in paper

- Cosine term (multiplication/convolution)
- Fresnel term (multiplication/convolution)
- Texture mapping (multiplication/convolution)
- Central incidence angle (scaling)
- Separable BRDF
- Spatially varying BRDF (semi-convolution)

...and extension to 3D
Overview

• Previous work

• Our approach:
 – Local light field
 – Transformations on local light field

• Case studies:
 – Diffuse soft shadows
 – Adaptive shading sampling

• Conclusions and future directions
Overview

• Previous work
• Our approach:
 – Local light field
 – Transformations on local light field
• Case studies:
 – Diffuse soft shadows
 – Adaptive shading sampling
• Conclusions and future directions
Diffuse soft shadows

- Decreasing blockers size:
 - First high-frequencies increase
 - Then only low frequency
 - Non-monotonic behavior
Diffuse soft shadows (2)

- Occlusion: convolution in Fourier
 - creates high frequencies
 - Blockers scaled down \rightarrow spectrum scaled up

![Diagram showing Fourier space and blocker spectrum](image-url)
Diffuse soft shadows (3)

- **Transport after occlusion:**
 - Spatial frequencies moved to angular dimension

- **Diffuse reflector:**
 - Angular frequencies are cancelled
Diffuse soft shadows (3)

- Transport after occlusion:
 - Spatial frequencies moved to angular dimension

- Diffuse reflector:
 - Angular frequencies are cancelled
Overview

• Previous work

• Our approach:
 – Local light field
 – Transformations on local light field

• Case studies:
 – Diffuse soft shadows
 – Adaptive shading sampling

• Conclusions and future directions
Adaptive shading sampling

- Monte-Carlo ray tracing
- Blurry regions need fewer shading samples
Adaptive shading sampling

- Per-pixel prediction of max. frequency (bandwidth)
 - Based on curvature, BRDF, distance to occluder, etc.
 - No spectrum computed, just estimate max frequency
Adaptive shading sampling

• Per-pixel prediction of max. frequency (bandwidth)
 – Based on curvature, BRDF, distance to occluder, etc.
 – No spectrum computed, just estimate max frequency
Adaptive sampling

Adaptive sampling
20,000 samples
Uniform sampling

20,000 samples
Overview

• Previous work
• Our approach:
 – Local light field
 – Transformations on local light field
• Case studies:
 – Diffuse soft shadows
 – Adaptive shading sampling
• Conclusions and future directions
Conclusions

• Unified framework:
 – For frequency analysis of radiance
 – In both space and angle
 – Simple mathematical operators
 – Extends previous analyses

• Explains interesting lighting effects:
 – Soft shadows, caustics

• Proof-of-concept:
 – Adaptive sampling
Future work

• More experimental validation on synthetic scenes
• Extend the theory:
 – Bump mapping, microfacet BRDFs, sub-surface scattering…
 – Participating media
• Applications to rendering:
 – Photon mapping
 – Spatial sampling for PRT
 – Revisit traditional techniques
• Applications to vision and shape from shading
Acknowledgments

• Jaakko Lehtinen
• Reviewers of the MIT and ARTIS graphics groups
• Siggraph reviewers
• This work was supported in part by:
 – NSF CAREER award 0447561 Transient Signal Processing for Realistic Imagery
 – NSF CISE Research Infrastructure Award (EIA9802220)
 – ASEE National Defense Science and Engineering Graduate fellowship
 – INRIA Équipe associée
 – Realreflect EU IST project
 – MIT-France
Solar oven

- Curved surface
- In: parallel light rays
- Out: focal point
Other bases?

• We’re not using Fourier as a function basis
 – Don’t recommend it, actually
 – Just used for analysis, understanding, predictions

• Results are useable with any other base:
 – Wavelets, Spherical Harmonics, point sampling, etc
 – Max. frequency translates in sampling rate

• Analysis relies on Fourier properties:
 – Especially the convolution theorem
Why *Local* Light Field?

- **Linearization:**
 - $\theta \approx \tan \theta$
 - Curvature

- **Local information is what we need:**
 - Local frequency content, for local sampling
 - Local properties of the scene (occluders, curv.)
Extension to 3D

• It works. See paper:

rotation around the x axis by α

step 1, 2, 3, 4 central normal

local normal

incoming light field

Mirror direction (wrt local N)

step 5

(a) (b) (c)
Reflection on a surface: Full summary

- Angle of incidence
- Curvature
- Cosine/Fresnel term
- Mirror re-parameterization
- BRDF
- Curvature
Reflection on a surface: Full summary

- Angle of incidence: scaling
- Curvature: shear in angle
- Cosine/Fresnel term: multiplication/convolution
- Mirror re-parameterization
- BRDF: convolution/multiplication
- Curvature: shear in angle
Application: 3D scene

1. Spectrum of the source

Spatial frequencies
Application: 3D scene
Application: 3D scene
Application: 3D scene
Application: 3D scene