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Abstract

Many problems in computer graphics and computer vision require
accurate global visibility information. Previous approaches have
typically been complicated to implement and numerically unstable,
and often too expensive in storage or computation. The Visibility
Skeleton is a new powerful utility which can efficiently and accu-
rately answer visibility queries for the entire scene. The Visibility
Skeleton is a multi-purpose tool, which can solve numerous differ-
ent problems. A simple construction algorithm is presented which
only requires the use of well known computer graphics agorithmic
components such as ray-casting and line/plane intersections. We
provide an exhaustive catalogue of visual events which completely
encode al possible visibility changes of a polygonal scene into a
graph structure. The nodes of the graph are extremal stabbing lines,
and the arcs are critical line swaths. Our implementation demon-
strates the construction of the Visibility Skeleton for scenes of over
athousand polygons. We also show itsuse to compute exact visible
boundaries of avertex with respect to any polygon in the scene, the
computation of global or on-the-fly discontinuity meshes by con-
sidering any scene polygon as a source, as well as the extraction of
the exact blocker list between any polygon pair. The algorithm is
shown to be managesable for the scenes tested, both in storage and
in computation time. To address the potential complexity problems
for large scenes, on-demand or lazy contruction is presented, itsim-
plementation showing encouraging first results.

Keywords: Visihility, Global Visibility, Extremal Stabbing Lines,
Aspect Graph, Global Illumination, Form Factor Calculation, Dis-
continuity Meshing, View Calculation.

1 INTRODUCTION

Ever since the early days of computer graphics, the problems of de-
termining visibility have been central to most computations required
to generate synthetic images. Initially the problems addressed con-
cerned the determination of visibility of a scene with respect to a
given point of view. With the advent of interactive walkthrough sys-
tems and lighting cal culations, the need for global visibility queries
has become much more common. Many examples of such require-
ments exist, and are not limited to the domain of computer graph-
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ics. When walking through acomplex building, real-timevisualiza-
tion algorithms require the information of which objects arevisible
to limit the number of primitives rendered, and thus achieve better
framerates. In global illumination computations, the dominant part
of any calculation concerns the determination of the proportion of
light leaving surface s and arriving at surface r. This determination
depends heavily on the relative occlusion of the two objects, requir-
ing the calculation of which parts of s are visible from r. All such
applications need detailed data structures which completely encode
global visibility information; previous approaches have fallen short
of thisgoal.

1.1 Motivation

The goa of the research presented here is to show that it is possi-
ble to construct a data structure encompassing all global visibility
information and to show that our new structureis useful for anum-
ber of different applications. We expect the structure we present
to be of capital importance for any application which requires de-
tailed visibility information: the calculation and maintenance of
the view around a point in a scene, the calculation of exact form-
factors between vertices and surfaces, the computation of disconti-
nuity meshes between any two pairs of objectsin asceneaswell as
applications in other domains such as aspect graph calculations for
computer vision etc.

Previous al gorithms have been unable to provide efficient and ro-
bust data structures which can answer global visibility queries for
typical graphics scenes. In what follows we present a new data
structure which can provide exact global visibility information. Our
structure, called the Visibility Skeleton, iseasy to build, sinceitscon-
struction is based exclusively on standard computer graphics algo-
rithms, i.e, ray casting and line-plane intersections. It is a multi-
purpose tool, since it can be used to solve numerous different prob-
lems which require global visibility information; and finally it is
well-adapted to on-demand or lazy construction, due to the local-
ity of the construction agorithm and the data structure itself. This
is particularly important in the case of complex geometries.

The central component of the Visibility Skeleton arecritical lines
and extremal stabbing lines, which, aswill be explained in detail in
what follows, are the foci of all visibility changes in a scene. All
modifications of visibility in a polygonal scene can be described by
these critical lines, and a set of line swaths which are necessarily
adjacent to these lines. In this paper we present the construction of
the Skeleton, and the implementations of several applications. As
an example, consider Fig. 1(a), which is a scene of 1500 polygons.
After the construction of the skeleton, many different queries can
be answered efficiently. We show the view from the green selected
point to theleft wall which only required 1.4 msto compute; in Fig.
1(b), the compl ete discontinuity mesh on theright wall is generated
by considering the screen of the computer as an emitter which re-
quired 8.1 ms.

After a brief overview of previous work (Section 1.2), we will
provide acomplete description of al possible nodes, and all the ad-
jacent line swaths in Section 2. In Section 3 the construction algo-
rithm and the actual data structure are described in detail. The re-
sults of our implementation are then presented in Section 4, giving
the compl ete construction of the Visibility Skeleton for asuite of test
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Figure 1: (a) Exact computation of the part of the left wall as seen
by the green vertex. (b) Complete discontinuity mesh on the right
wall when considering the computer screen as source.

scenes. We show how the Skeleton is then used to provide exact
point-to-surface visibility information for any vertex in the scene,
to calculate the complete discontinuity mesh between any two sur-
faces in the scene, extract exact blocker lists between two objects,
and compute al visibility interactions of one object with all other
objects in a scene, which could be used for dynamic illumination
updates in scenes with moving objects. Section 5 addresses the is-
sues arising when treating more complex scenes, and in particular
we present afirst attempt at on-demand construction. The results of
the implementation show that this allows significant speedup com-
pared to the complete algorithm. In Section 6 we sketch how the
structure can be extended to environments in which objects move,
aswell as other potential extensions, and we conclude.

1.2 Previous Work

Many researchers in computer graphics, computational geometry
and computer vision have addressed the issue of calculating global
visibility. We present here a quick overview of closely related pre-
vious work, which is of course far from exhaustive.

Interest in visibility structures in computer graphics was ex-
pressed by Teller [26], when presenting an algorithm for the calcula-
tion of anti-penumbra. Thiswork wasin part inspired by the wealth
of research in computer vision related to the aspect graph (e.g.,
[21, 10, 9]). Thework of Tellerisclosely related to the devel opment
of discontinuity meshing algorithms (pioneered by [14, 17]). These
algorithms lead to structures closely resembling the aspect graph
which contain visibility information (backprojections) with respect
to alight source [5, 24]. Discontinuity meshes have been used in
computer graphics to calculate visibility and improve meshing for
global illumination calculations [18, 6]. Nonetheless, these struc-
tureshave alwaysbeen severely limited by their inability totreat vis-
ibility between objects other than the primary light sources. Thisis
caused by thefact that the cal culation of the discontinuity mesh with
respect to a source is expensive and prone to numerical robustness
problems.

An alternative approach to calculating visibility between two
patches for global illumination has been proposed by Teller and
Hanrahan [27]. In this work a conservative agorithm is pre-
sented which answers queries concerning visibility between any two
patches in the scene but does not provide exact visibility informa-
tion. In addition, this approach provides tight blocker lists of po-
tential occluders between apatch pair. Information on the potential
occluders between apatch pair is central in the design of any refine-
ment strategy for hierarchical radiosity [12]. The ability to deter-
mine analytic visibility information between two arbitrary patches
would render practical the error bound refinement strategy of [16],
which requires thisinformation.

In computational geometry, the problem of visibility hasbeen ex-
tensively studied in two dimensions. The visibility complex [22]
provides all the information necessary to compute global visibility.
Thiswas successfully used in a 2D study of the problem applied to
radiosity [19]. A similar structure in 3D, called the asp, has been
presented in computer vision by Plantinga and Dyer [21], to alow
the computation of aspect graphs. This structure provides the in-
formation necessary to compute exact visibility information. A re-
lated, but more efficient structure called the 3D visibility complex
[7] has been proposed. Both structures have remained at the theo-
retical level for thefull 3D perspective casewhichisthe only case of
interest for 3D computer graphics, despite partial implementations
of orthographic and other limited cases for the asp [21]. Other re-
lated work in acomputational geometry framework can be found in
[15, 20].

Moreover, most of the work done on static visibility does not
easily extend to dynamic environments. Most of the time, motion
volumes enclosing al the positions of the moving objects are built
[3,8,23].

2 THE VISIBILITY SKELETON

The new structure we will present addresses many of the shortcom-
ings of previous work in global visibility. As mentioned earlier, the
emphasis is on the development of a multi-purpose tool which can
be easily used to resolve many different visibility problems, astruc-
ture which is easy and stable to build and which lends itself to on-
demand construction and dynamic updates.

In what follows, we will consider only the case of polygona
scenes.

2.1 Visual Events

In previous globa visibility algorithms, in particular those relating
to aspect graph computations (e.g., [21, 10, 9]), and to antipenumbra
[26] or discontinuity meshing [5, 24], visibility changes have been
characterized by critical lines sets or line swaths and by extremal
stabbing lines.

Following [20] and [26], we define an extremal stabbing line to
be incident on four polygon edges. There are severd types of ex-
tremal stabbing lines, including vertex-vertex (or V'V) lines, vertex-
edge-edge (or VEF) lines, and quadruple edge (or E4) lines. As
explained in Section 2.3.1, we will also consider here extremal lines
associated to faces of polyhedral objects.

A swath is the surface swept by extremal stabbing lines when
they are moved after relaxing exactly one of the four edge con-
straints defining the line. The swath can either be planar (if theline
remains tight on avertex) or aregulus, whose three generator lines
embed three polygon edges.

We call generator elements the vertices and edges participating
in the definition of an extremal stabbing line.

Westart with an example: after traversingan EV' line swath from
left to right as shown in Figure 2(a), the vertex as seen from the ob-
server will lie upon the polygon adjacent to the edge and no longer
upon the floor. This is a visibility change (often called visibility
event). The topology of the view is modified whenever the vertex
and the edge are aligned, that is, when there is aline from the eye
going through both e and v.

This EV line swath isaone dimensional (1D) set of lines, pass-
ing through the vertex v and the edge e1, thus it has one degree of
freedom (varying for example over theedgee). Whentwo such EV
surfaces meet asin Figure 2(b) aunique lineis defined by the inter-
section of the two planes defined by the EV surfaces. Thislineis
an extremal stabbing line; it has zero degrees of freedom.

In what follows we will devel op the concepts necessary to avoid
any direct trestment of the line swaths themselves since sets of lines
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Figure 2: (a) Whilethe eye traverses the line swath V E, the vertex
v passes over the edge e. (b) Two line swaths meet at an extremal
stabbing line (¢) and induce a graph structure

or the surfaces described by these sets are difficult to handle, in part
because they can be ruled quadrics. All computations will be per-
formed by line — or ray — casting in the scene.

We will be using the extremal stabbing lines to encode all vis-
ibility information, by storing a list of al line swaths adjacent to
each extremal stabbing line. In our first example of Figure 2(b), the
V EF line veies is adjacent to the two 1D elements ve; and ves
described above; i.e., the swaths ve; and ves. Additional adjacen-
ciesfor the VEE lineveies areimplied by the interaction of ves
and e; (Fig 3(9)).

To complete the adjacencies of aV E'E line, we need to consider
the EEE line swaths related to the edges e4 and ez, and the two
edges e4 and e3 which are adjacent to the vertex v (Fig. 3(b) and
(©).

The simple construction shown above introduces the fundamen-
tal ideaof the Visibility Skeleton: by determining al the appropriate
extremal stabbing lines in the scene, and by attaching all adjacent
line swaths, we can completely describe al possible visibility rela-
tionshipsina3D scene. They will be encoded inagraph structureas
shown on Fig.3, to be explained in Section 2.3.2. Consider the ex-
ample shown in Fig.3(a): The node associated to extremal stabbing
line vei ez is adjacent in the graph structure to the arcs associated
with line swaths ve1, ve1/ and ves.

2.2 The 3D Visibility Complex, the Asp
and the Visibility Skeleton

TheMsibility Complex[7], isastructurewhich also containsall rele-
vant visibility information for a3 dimensional scene. Itisalso based
on the adjacencies between visibility events and considers sets of
maximal free segments of the scene (these are lines limited by in-
tersections with objects).

The zero and one-dimensional components of the visibility com-
plex arein effect the same as those introduced above, which wewill
be using for the construction of the Visibility Skeleton. Similar con-
structions were presented (but not implemented to our knowledge
for the complete perspective case) for theasp structure [21] for as-
pect graph construction.

In both cases, higher dimensional line setsare built. For thevisi-
bility complex in particular, faces of 2, 3 and 4 dimensions are con-
sidered. For example, the set of lines tangent to two objects has 2
degrees of freedom, those tangent to one object 3 degrees of free-

dom, etc. (see[7] for details).

These sets and their adjacencies could theoretically be useful for
some specific queries such asview computation or dynamic updates,
for example in some specific worst cases such as scenes composed
of gridsaligned and slightly rotated. In such cases, amost all objects
occlude each other and the high number of line swaths and extremal
stabbing lines makes the grouping of lines into higher dimensional
setsworthwhile.

The Visibility Complex and asp are intricate data-structures with
complicated construction algorithms since they require the con-
struction of a4.D subdivision. In addition they are difficult to tra-
verse due to the multiple levels of adjacencies. Our approach isdif-
ferent: we have developed a data structure which is easy to imple-
ment and easy to use.

These facts also explain the name Misibility Skeleton, since our
new structure can be thought of as the skeleton of the complete Vis-
ibility Complex.

2.3 Catalogue of Visual Events
and their Adjacencies

The Visibility Skeleton is a graph structure. The nodes of the
graph are the extremal stabbing lines and the arcs correspond to line
swaths. In this section (and in Appendix 7.1) we present an exhaus-
tivelist of al possibletypes of arcsand nodes of the Visibility Skele-
ton.

2.3.1 1D Elements: Arcs of the Visibility Skeleton

In Figure 4, we see the four possible types of 1D elements: an
EV lineswath (shown in blue), an EE E line swath (shown in pur-
ple) and two line swaths relating a polygonal face (F') to one of its
vertices (F'v) or an edge of another polygon(F' E) (both areshownin
blue). Inthe upper part of thefigure we show theview (with changes
invisibility), as seen from aviewpoint located above the scene and,
from left to right in front of, on, or behind the line swath.

Note that the interaction of an edge e and a vertex v can corre-
spond to many wve arcs of the skeleton. These arcs are separated by
nodes. Consider, for example, arcs ve; and ve;/ adjacent to node
verez in Fig. 3(a).

2.3.2 0D Elements: Nodes of the Visibility Skeleton

As explained in Section 2.1, two line swaths which meet define an
extremal stabbing line, which in the Visibility Skeleton is the node
at which the arcs meet. This section presents alist of the configura-
tions creating nodes and their corresponding adjacencies. A figure
isgiven in each case.

The simplest node corresponds to the interaction of two vertices
shown in Figure 5(a).

Theinteraction of avertex v and two edgese; and ez canresultin
two configurations, depending on the relative position of the vertex
with respect to the edges. The first node was presented previously
in Figure 3 and the second is shown in Figure 5(b).

The interaction of four edges is presented in Figure 6, together
with the six corresponding adjacent EE'E arcs. Face related nodes
aregiven in detail inthe appendix: EFE, FEE, FF, E and Fuv
(see Fig. 18t0 19).

3 DATA STRUCTURE
AND CONSTRUCTION ALGORITHM

Given the catalogues of nodes and arcs presented in the previous
section, we can present the details of a suitable data structure to rep-
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Figure 4: (a) SameasFig. 1(9). (b) Infront of the EEE line swath the edge e isvisible, on the swath the edges meet at a point and behind
ez ishidden. (c) Infront of the F'V we see the front side of F', on the swath we see aline and behind we see the other side of F'. (d) The FE

swath issimilar to the F'V case.

resent the Visibility Skeleton graph structure, as well as the ago-
rithm to construct it.

Preliminaries. Our scene model provides the adjacencies be-
tween vertices, edges and faces. Before processing the scene, we
traverse all vertices, edges and faces, and assign a unique number
to each. Thisallows us to index these elements easily. In addition,
we consider al edges to be uniquely oriented. This operation is ar-
bitrary (i.e., the orientation does not depend on the normal of one of
thetwo faces attached to the edge), and facilitates consistency inthe
calculations we will be performing.

3.1 Data Structure

The simplest element of the structure isthe node. The Node struc-
ture contains alist of arcs, and pointers to the polygonal faces F,
and Fyo.n (possibly void) which block the corresponding extremal
stabbing line at its endpoints P, and Piown -

Thestructurefor an ArcisvisualizedintheFig.7(a). Thearcrep-
resented here (swath showninblue) isan EV lineset. Therearetwo
adjacent nodes Nstqrt, Nend, represented as red lines. All the ad-
jacency information is stored with the arc. Details of the structures
Node and Arc aregiveninFig. 7(b).

To access the arc and node information, we maintain arrays of

balanced binary search trees corresponding to the different type of
swaths considered. For example, we maintain an array ev of trees
of EV arcs (see Fig.7(b)). These arrays are indexed by the unique
identifiers of the endpoints of the arcs. These can be faces, vertices
or edges (if the swathisinterior, that isif the linestraverse the poly-
hedron).

This array structure allows us to efficiently query the arc infor-
mation when inserting new nodes and when performing visibility
queries. The balanced binary search tree used to implement the
query structure is ordered by the identifiers of the generators and by
the value of tstart-

3.2 Finding Nodes

Before presenting the actual construction of each type of node, we
briefly discuss the issue of “local visibility”. Ashas been presented
in other work (e.g., [10]), for any edge adjacent to two faces of a
polyhedron, the negative half-space of a polygonal face is locally
invisible. Thus when considering interactions of an edge e, we do
not need to process any other edgee’ whichis*behind” thefacesad-
jacent to e. Thisresultsin the culling of alarge number of potential

events.
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Figure 6: An E4 nodeisadjacent to six EEE arcs.

class Node {
List<Arcs> adjacentArcs
Face Fup, Faown
Point3D Pup, Piown

}

classArc {
Node Nstart, Nenda
float tstart tend
Face Fup, Faown

classEV : child of Arc {
Edgee
Vertex v

class VisibilitySkeleton {
tree<EV> eV[Fup][Fdoum]
tree<EEE> eee[Fup][Fdown]

@ (b)
Figure 7: Basic Visibility Skeleton Structure.

3.2.1 Trivial Nodes

The simplest nodes arethe V'V, Fvv and F'e nodes. For these, we
simply loop over the appropriate scene el ements (vertices, edgesand
faces). The appropriate lines are then intersected with the scene us-
ing atraditional ray-caster to determineif there is an occluding ob-
ject between the related scene elements, in which case no extremal
stabbing lineisreported. Otherwiseit givesthe elementsand points

at theextremitiesof thelines, and thusthe appropriatelocationinthe
overall arc tree array.

3.2.2 VEE and EEEE Nodes

We consider two edges of the scenee; and e;. All the lines going
through two segments are within an extended tetrahedron (or double
wedge) shown in Fig. 8, defined by four planes. Each one of these
planes is defined by one of the edges and an endpoint of the other.

To determine the vertices of the scene which can potentially gen-
erateaV EE or EV E stabbing line, we need only consider vertices
withinthewedge. If avertex of the sceneisinside thedoublewedge,
thereisapotential VEE or EV E event.

We next consider athird edge e of the scene. If e, cuts aplane
of thewedge, aV EE or EV E node is created. If edge e, of the
scene intersects the plane of the double wedge defined by edge e;
and vertex v of e;, thereisawe;ey, or e;vey, event (Fig. 8(a)).

We next proceed to the definition of the E4 nodes. The intersec-
tions of e;, and the planes of the double wedgerestrict thethird edge
er. To compute aline going through e;, e;, ex, we need only con-
sider the restriction of ey, to the double wedge defined by e; and e;;.
Thisprocessisre-applied to restrict afourth edgee; by the wedge of
e; and e;, by that of e; and e, and by that of e; and e;. Thismultiple
restriction process eliminates a large number of candidates.

Once the restriction is completed, we have two EEE line sets,
those passing through e;, e; and e; and those passing through e;,
e; and e.. A simple binary search is applied to find the point on ¢;
(if it exists) which defines the E£4 node. We perform this search for
apoint P of e; by searching for the root of the angle formed by the
two lines defined by theintersection of the plane (P, e;) withe; and
with e,. Thisis shown on Fig.8(c).
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Figure 8: (a) (b) VEE enumeration and EEF restriction. (c) E4
computation: find the root of the angle of the lines going through
ejeie; and that thl’OUgh €leLE;.

A more robust agorithm such as the one given in [28] could be
used, but the simpler algorithm presented here seems to perform
well in practice. Thisistrue mainly because we are not searching
for infinite stabbing lines, but for restricted edge line segments. The
potential V EE and E4 enumeration algorithmisgivenin Fig. 9.

We have developed an acceleration scheme to avoid the enu-
meration of all the triples of edges. For each pair of edges, we
reject very quickly most of the third potential edges using a reg-
ular grid. Instead of checking if each cell of the grid intersects
the extended tetrahedron, we use the projection on the three axis-
aligned planes. For each such plane, we project the extended tetra-
hedron (which gives us an hourglass shape), and we perform the ac-
tual edge-tetrahedron intersection only for the edges contained in
the cells whose three projections intersect the three pixelized hour-
glasses.

3.2.3 Non-Trivial Face Nodes

To calculate the non-trivial face-related nodes, we start by intersect-
ing the plane of each face f1 with every edge of the scene. For edges
intersecting the face we attempt to create an F'vE node (Fig.18).

For each pair of intersections, we search for a FEE node. To
do this we determine if the line joining the two intersections inter-
sects the face f1. The last operation required is the verification of
the existence of an F'F' node. This case occurs if the faces adjacent
to the edge of the intersection cause an F'F'. The construction for
the FEE and F'F nodes is described in Fig. 10 (a).

3.3 Creating the Arcs

The creation of the arcs of the Visibility Skeletonis performed si-
multaneously with the detection of the nodes. When inserting anew
node, we create al the adjacent arcs from the corresponding cata-
logue presented in Section 2.3.2. For each of these arcs a we cal-
culate the arc parameter ¢ corresponding to the node to be inserted,
and proceed as explained in Fig.12. We then access the list of arcs
in the Skeleton with the same extremities (thus in the same list of
thearray) and which have the same generator elements (verticesand
edges) asthe arc a. If the value of ¢ indicates that the node is con-
tained in the arc, we determine whether this node is the start of the
end node of the arc. Thisis explained in more detail in the follow-
ing paragraph. If this position is already occupied we split the arc,
else we assign the node the corresponding extremity of thearc. This
process is summarized in Fig. 11.

We have seen above that each time an arc adjacent to a node is
considered, we have to know if itisitsstart node or itsend node. In
some cases thisoperation istrivial, for examplefor av; v2 node and
oneif itsadjacent v, e arcs, we simply determineif v- isthe starting
vertex of e. In other cases, this can be moreinvolved, especialy for
the E'4 case. This case and the necessary criteriafor the other cases
are summarized in Table 2 in the Appendix.

In Fig. 12, we illustrate the construction algorithm. Initially a
trivial vve nodeiscreated. The second nodeidentifiedisv fe, which
is adjacent the arc ve. Thusthe arc ve is adjacent to both vv. and
vfe. The third node to be created is vees. When this node isin-
serted, we realize that the start node for ve already exists, and we
thus split the ve arc. This splitting operation will leave the end of
the ve arc connected to vv. undefined. The final insertion shown is
veze which will fill an undefined node previously generated.

4 |IMPLEMENTATION
AND FIRST APPLICATIONS

We have completed afirst implementation of the data structure de-
scribed. We have run the system on aset of test scenes, with varying
visibility properties. Inits current form, we have successfully com-
puted the Visibility Skeleton for scenes up to 1500 polygons.

In what follows we first present Visibility Skeleton construction
statistics for the different test scenes used. We then proceed to
demonstrate the flexible nature of our construction, by presenting
the use of our data structure to efficiently answer severa different
global visibility queries.

4.1 Implementation and Construction Statistics

Our current implementation requires convex polyhedra as input.
However, thisisnot alimitation of the approach since we use poly-
hedral adjacencies simply for convenience when performing local
visibility tests.

We treat touching objects by detecting this occurrence and
slightly modifying the ray-casting operation. We also reject copla-
nar edge triples. Other degeneracies such as intersecting edges are
not yet treated by the current implementation.

We present statistics on the size of our structure and construction
timein Table 1. Evidently, these tests can only be taken as an indi-
cation of the asymptotic behavior of our algorithm. Assuch, we see
that our test suiteindicates quadratic growth of the memory require-
ments and super-quadratic growth of the running time. In particular,
for the test suite used, the running time increases withn?-* on aver-
age, where n isthe number of polygons.

The V EE nodes are the most numerous. There are approxi-
mately a hundred times fewer E4 nodes, even though theoretically
there should be an order of magnitude more.

We believe that the memory requirements could be greatly de-
creased by an improved implementation of the arrays of trees. Cur-
rently, alarge percentage of the memory required is used by these
arrays(e.g. for scene(d) of Table 1., thearrays need 53.7Mb out of a
total 135Mb). Sincethese arrays are very sparse (e.g. 99.3% empty
for scene (d)), it isclear that storage requirements can be greatly re-
duced.

In the case of densely occluded scenes, the memory require-
ments grow at a lower rate, on average much closer to linear than
quadratic with respect to the number of polygons. As an exam-
ple, we replicated scene (a) 2, 4 and 8 times, thus resulting in iso-
lated rooms containing a single chair each. The memory require-
ments (excluding the quadratic cost of thearrays) are 1.2Mb, 2.8Mb,
8.6Mb and 17.3Mb, for respectively 78, 150, 300 and 600 polygons.

Thetheoretical upper bounds are very pessimistic, O(n*) insize
because every edge quadruple can have two lines going through it



potential VEE and EEEE enumeration
{
foreach edgee; from1ton
foreach edge e; from ¢ + 1 ton locdly visible
foreach edge e, from j + 1 ton localy visible
compute the EEE restrictionse; e ey,
foreach edge ey, from 5 + 1 ton localy visible
foreach segment of its restrictions
foreach edge e; from k + 1 to n locally visible
foreach segment of itsrestrictions
search for E4

@

EEE regtriction
{
foreach of the 4 planes
compute the intersection inter with the line of the edge
if it inter on the edge
propose aVEE
restrict the edge
foreach of the edge endpoints s,
if s¢p isinside the double wedge
propose a VEE
restrict the edge

(b)

Figure 9: Enumeration of Potential VEE and E4 Nodes.

Find Face Nodes {
foreach face f; of the scene
foreach edge e of the scene

foreach intersection P;
createa FvE
foreach intersection P;
if (P; Pj) intersects f
create FEE

if (P; Pj) intersects f1
create FF

compute the intersection of the edge e with the plane of f1

foreach of the 2 faces f» adjacent to the edge of Pi
find P; the intersection of asecond edge of f2 with f

ei f,

f.f

@
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Figure 10: Finding Face Nodes.

[28], and O(n®) in time because such potential extremal stabbing
lines have to be ray-cast with the whole scene. But such bounds oc-
cur only in uncommon worst case scenes such as grids aligned and
rotated or infinite lines. It is clear that our construction agorithm
would be very inefficient for such cases. More efficient construc-
tion algorithms are possibl e, but these approaches suffer fromall the
problems described previously in Section 2.2.

In what concerns the robustness of the computation, previous as-
pect graph and discontinuity meshing algorithms depend heavily on
the construction of the arrangement (of the mesh or aspect graph
“cells’), as the algorithm progresses. In the construction presented
here, this is not the case since al operations are completely local.
Since we perform ray-casting and line-plane intersections, the num-
ber of potential numerical problems is limited. Degeneracies can
occasionally cause some problems, but due to the locality, this does
not effect the construction of the Skeleton elsewhere. More efficient
sweep-based algorithms are particularly sensitive to such instabili-
ties, since an error in one position in space can render the rest of the
construction completely incorrect and inconsistent.

4.2 Point-to-Area Form-Factor for Vertices

The calculation of point-to-area form factors has become central in
many radiosity calculations. In most radiosity systems, point-to-
area caculations are used to approximate area-to-area calculations
[4, 2], and in others the actually point-to-area value is computed at
the vertices [29].

In both theoretical [16] and experimental [6] studies, previousre-
search has shown that error of thevisibility calculation isapredomi-
nant source of inaccuracies. Thisistypically the case when ray cast-
ing isused. Lischinski et al. [16] have developed avery promising
approach to bounding the error committed during light transfer for

hierarchical radiosity. For it to be useful for general environments,
accessisrequired to the exact visibility information between apoint
on one element with respect to the polygon faceit islinked to. This
information isinherently global, since apair of linked elements can
contain any two surface elements of the scene.

The Visibility Skeleton in itsinitial form can answer this query
exactly and efficiently for the original vertices of the input scene.

To calculate the view of a polygonal face from a vertex v, with
respect to aface f, wefirst access all the EV arcs of the skeleton
related to the face f. Thisis simply the traversal of the line of our
global two-dimensional array of arcs, indexed by f. For each entry
of thislist (many of which are empty), we search for the EV arcs
related to v. These EV arcs are exactly the visible boundary of f
seen from v.

An example is shown in Fig. 13(a) and (b) For scene (b), con-
taining 312 and 1488 polygons, the extraction of the point-to-area
boundary takes respectively 1.2 ms and 1.5 ms (all query time are
given without displaying the result).

4.3 Global and On-The-Fly Discontinuity Meshing

In radiosity calculations, it is often very beneficial to subdivide the
mesh of a surface by following some [14, 18], or al [6] of the dis-
continuity surfaces between two surfaces which exchange energy.
Thepartia [14, 17] or complete [5, 24] construction of such meshes
has in the past been restricted to the discontinuity mesh between a
source (whichistypically asmall polygon) and thereceivers (which
are the larger polygons of the scene). For all other interactions be-
tween surfaces of scenes, the algorithmic complexity and theinher-
ent robustness problems related to the construction of these struc-
tures has not permitted their use [25].

For many secondary transfers in an environment, the construc-



Creation of a Visibility Skeleton Node

foreach adjacent arc n
compute ¢

ifa — tstart <t < a— tend
AddNodeToArc(n, a)

if no arc found
create new Arc

foreach arc a with same extremities and same generators

AddNodeToArc(Node n, Arc a)
{
pos = decideStartOrEnd(n, a)
if pos in a undefined
setposton
else
split a into two parts

Figure 11: Node Cresation
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Figure 12: Example of node insertions: (a) Insertion node vv.. (b) Insertion of node f,e. Arc ve has now two ending nodes. (c) Insertion of
node vese. Arc ve is split. () Insertion of node vese, the two arcs ve have their actual adjacent nodes.

tion of a globa discontinuity mesh (i.e., from any surface (emit-
ting/refl ecting) to any other receiving surfacein ascene), can aidin
the accuracy of theglobal visibility computation. Thiswasshownin
the discontinuity driven subdivision used by Hardt and Teller [13].
In their case, the discontinuity surfaces are simply intersected with
the scene polygons, and thus visibility on the line swath is not com-
puted. Withthe Visibility Skeleton, the complete global discontinu-
ity mesh between two surfaces can be efficiently computed.

To efficiently perform this query, we add an additional two-
dimensional array DM (i, 7), storing al the arcsfrom face f; to f;.
Insertioninto thisarray of listsand well as subsequent accessis per-
formed in constant time. To extract the discontinuity mesh between
to surfaces f; and f; we simply access the entry DM (7, j), and
traversethe corresponding list. InFig. 14(a), the complete disconti-
nuity mesh between the source and the floor is extracted in 28.6 ms.
The mesh caused by the small lamp on the table in Fig 14(b) was
extracted in 1.3 ms (note that the arrangement is not built).

Theresulting information isaset of arcs. These arcs can be used
as in Hardt and Teller to guide subdivision, or to construct the ar-
rangement of the discontinuity mesh on-the-fly, to be used asin [6]
for the construction of a subdivision which follows the discontinu-
ities. The adjacency information available in the Skeleton arcs and
nodes should permit arobust construction of the mesh arrangement.

4.4 Exact Blocker Lists, Occlusion Detection and
Efficient Initial Linking

When considering the interaction between two surfaces, it is often
the case that we wish to have access to the exact list of blocker sur-

faces hiding one surface from the other. Thisis useful in the con-
text of blocker list maintenance approaches such as that presented
by Teller and Hanrahan [27].

The Visibility Skeleton can again answer this query exactly and
efficiently. In particular, we use the global array DM (4, j), and we
traversetherelated arcs. All the polygons related to the intervening
arcs are blockers. It isimportant to note that this solution resultsin
the exact blocker list, in contrast with all previous methods. Con-
sider the example shown in Fig. 13(c) where we compute the oc-
cluders between the |eft ceiling lamp and the floor in 4 ms.

The shaft structure [11] would report al objects on the table
though they are hidden by thetable. Inthiscasethe Visibility Skele-
ton reports the exact set of blockers.

When constructing the Visibility Skeleton, we compute all the
mutually visible objects of the scene: if two object see each other,
therewill be at least one extremal stabbing line which touches them
or their edges and vertices. Thisisfundamental for hierarchical ra-
diosity algorithmssinceit avoids the consideration of theinteraction
of mutually visible objectsin theinitial linking stage.

Similarly, the Skeleton allows for the detection of the occlusions
caused by an object. This can be very useful for the case of a mov-
ing object m alowing the detection of the form factorsto be recom-
puted. To detect if the form factor F;; hasto be recomputed we per-
form a query similar to the discontinuity mesh between two poly-
gons. wetraverse DM (i, j) and search for an arc caused by an ele-
ment (vertex, edge or face) of m. This gives us the limits of occlu-
sionsof m between f; and f;. Moreover, by considering al thearcs
of the skeleton, we report all the form factorsto be recomputed, and
not asuperset. Fig 14(c) showsthe occlusions caused by the body of



Scene

Polygons 84 168 312 432 756 1056 1488
Nodes (x10%) | 7 37 69 199 445 753 1266
Arcs (x10°) 16 o1 165 476 1074 1836 3087
Construction 1s71s 12s74 37s07 1min39s 5min36s 14min36s 31 min 59
Memory (Mb) | 1.8 9 21 55 135 242 416

Table 1: Construction statistics (al times on a 195Mhz R10000 SGI Onyx 2). Storage is scene dependent and can be greatly reduced.

@

Figure 13: (a) Part of the scene visible from a vertex of the airplane. (b) Part of the floor seen by a vertex of the right-hand light source. (c)
List of occluding blockers between the left light source and the floor. Note that the objects on the table that are invisible from the floor are not

reported as blockers.

the plane between the screen and the right wall. This computation
required 1.3 ms.

5 DEALING WITH SPATIAL COMPLEXITY:
ON-DEMAND CONSTRUCTION

We propose here an on-demand or lazy scheme to compute visibil-
ity information only where and when needed. For example, if we
want the discontinuity mesh between two surfaces, we just need to
compute the arcs of the complex related to these two faces, and for
this we only need to detect the nodes between these two faces.

Thekey for thisapproach isthe locality of the Visibility Skeleton
construction algorithm. We only compute the nodes of the complex
where needed. The fact that some arcs might have missing nodes
causes no problem since no queries will be made on them. Later
on, other queries can appropriately link the missing nodeswith those
arcs.

Two problems must be solved: determination of what is to be
computed, and determination of what has aready been computed.

We propose two approaches: a source driven computation, and
an adaptive subdivision of ray-space in the spirit of [1].

In the context of global illumination, the information related to
“sources’ (emittersor reflectors) iscrucial. Thusthe part of thevis-
ibility skeleton we compute in an on-demand construction isrelated
to lines cutting the sources. The event detection has to be modified:
every time adouble wedge or aface does not cut the source, the pair
of edges or the face is discarded, and if apotential node is detected,
the ray-casting is performed only if the corresponding critical line

cuts the source.

Weuse our grid-accel eration scheme heretoo: for eachfirst edge,
an edge pair isformed only for the edgesthat lieinside the hourglass
defined by the source and the first edge.

When considering many sources one after the other, we also have
to detect nodes already computed. If the sources are small, it is not
worth rejecting double wedges, and only the fina ray-casting and
node insertion can be avoided (in our implementation they account
for athird of the running time). We can perform a“final computa-
tion” if we want al the nodes that have not yet been computed: we
just test before ray-casting if the critical line cuts one of the sources.

For scene (g) of Table 1, the part of the Visibility Skeleton with
respect to one of the sources is computed in 4 min. 15 s. instead of
31 min. 59 s. for the entire scene.

When the number of sources becomes large, most of the time
would be spent in checking if lines intersect the sources or if they
have aready been subdivided. If we need visibility information
only between two objects, not between an object and the whole
scene, we propose the use of ray classification of [1] together with
the notions of dual space of [7] to build the visibility skeleton only
where and when needed. The idea (which is not currently imple-
mented) isto parameterize thelines of the 3D space (whichisasetin
4D space), for example by their direction and projection on aplane
or by their intersections with two parallel planes. We then perform
asubdivision of the space of lineswith asimple scheme (e.g., grid,
hierarchical subdivision) and compute the nodes of the complex |o-
cated inside a given cell of this subdivision.
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Figure 14: (a)The complete discontinuity mesh with respect to the right source. (b) Discontinuity mesh between the lamp and the table. (c)

Figure 15: The edge moving from right to left causesaV E'V temporal visibility event which isthe meeting of two E'V with the the two same
extremities and with a common element (here the edge e). Four nodes are created, the £V arcs are split into three parts and eight arcs are
created. These events and the topological visibility changes are local in the visibility skeleton.

6 CONCLUSIONS AND FUTURE WORK

We have presented a new data structure, called the Visibility Skele-
ton, which encodes dl globa visibility information for polygonal
scenes. The data structure is a graph, whose nodes are the extremal
stabbing lines generated by the interaction of edges and verticesin
the scene. These lines can befound using standard computer graph-
icsalgorithms, notably ray-casting and line-planeintersections. The
arcsof the graph arecritical line sets or swathswhich are adjacent to
nodes. Thekey ideafor simplicity wasto treat the nodes and deduce
the arcs using the full catalogues of all possible nodes and adjacent
arcs we have presented for polygonal scenes. A full construction
algorithm was then given, detailing insertion of nodes and arcs into
the Skeleton.

We presented an implementation of the construction algorithm
and severa applications. In particular, we have used the Skeleton
to calculate the visible boundary of apolygonal face with respect to
a scene vertex, the discontinuity mesh between any two polygons
of the scene, the exact list of blockers between any two polygons,
as well as the complete list of all interactions of a polygon with all
other polygons of the scene.

The implementation shows that despite unfavorable asymptotic
complexity bounds, the algorithm is manageable for the test suite
used, both in storage and in computation time. In addition, we have
developed and implemented a first approach to on-demand or lazy
construction which opens the way to hierarchical and progressive
construction techniques for the Skeleton.

The use of our implemented system shows the great wealth of in-
formation provided by the Visibility Skeleton. Only a few of the
many potential applications were presented here, and we believe
that there are many computer graphics (and potentially computer vi-
sion) domains which can exploit the capacities of the Skeleton.

In future work many issues remain to be investigated. From a
theoretical point of view, the most challenging problems are the de-
velopment of a hierarchical approach so that the Visibility Skeleton
can be used for very complex scenes as well as the resolution of al
theoretical issues for the treatment of dynamic scenes. Some of the
problems for the dynamic solution are sketched in Fig 15. Adapt-
ing the algorithm to curved objects requires the enumeration of all
relevant events and definitely has many applications.

Finally thefield of applications must be extended: exact point to
areaform-factor from any point on aface, aspect graph construction,



and incorporation into aglobal illumination algorithm.
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7 Appendix

7.1 Complete Catalogue of FACE Adjacencies

Face related events are adjacent to F'E elements F'v elements as
well as EEE arcs when two non-coplanar edges are involved.

Theinteraction of aface with two edgesisshown in Fig. 16, the
interaction of aface a vertex and an edge is shown in Fig. 18 and
finally the interaction of two facesis shown in Fig. 17.

Figure 18: A FvE node.

7.2 Details of the Construction to find the Orienta-
tion of Arcs

Finding the correct extremity of an arc when inserting anodeis cru-
cia for the construction algorithm to function correctly. We present
here the most complex case, which istheinsertion of an £4 node.

Consider the node e; ezeseq shown in Fig. 19, and the adjacent
arc erezes. The question that needs to be answered is whether the
node e; ezezeq isthe start or the end node of thisarc. To answer this
query, we examine the movement of thelinel going through e, ez
and e3, when moving on e;. The side of e4 to which we move will
determine whether we are a start or an end node.

Consider the infinitesimal motion déi on e;. The corresponding
point of e3 onthe EEE will lie on theintersection of the plane de-
fined by e2 and the defining point on e;. The motion of dei on e;
corresponds to arotation of o = % of the plane around e2. Sym-
metrically, thisrotation corresponds to the motion de3 on es and we
have o = 4%, by angle equality. Thus, dej = €3 Sl

Now we want to obtain déz, the infinitesimal motion of the line
going through the three edges around e4. We consider theline asbe-
ing defined by itsorigin on e; and by itsunnormalized direction vec-
tor dir from e; to es. For themotion de; of the origin, the direction
vector of moves by de; — déi, and thus déi = def + =24 (dé3 —
€1).

Thesign of (€3 x €3).node determines on which side of e, the
linel will move.

The adjacencies aso depend on the face related to the edges
which are visible from the other edges. The other cases are simpler
and summarized in Table 2.

da

Figure 19: Determining the direction of an E4 node insertion.

Node Adjacent arc | Start or End Criterion
V1V2 vies vy == startV (e)
veies vey (€5 x é1).node > 0
ese1ez v == startV(e3)
eseres n= nor;nal(v, €3)
ez nxer.n >0
erves vey (é1 x é3).node > 0
ezeres i = normal(v, €3)
e3.m* e3.m >0
eirezezes | eiezes ii = normal(€z, node);
G =
€ =é+ [i3j+d1(€§ —ei)
(€2 x €1).node > 0
e1fes fer eE.normizl(f) >0
elefien eﬁ.normizl(f) >0
feies fea eﬁ.normizl(f) >0
eze1ef1 n= nor?nal(no?ie, €1)
7.3 x i.ef1 > 0
foe fv é’.nor?nal(f) >0
ve énormal(f) > 0

Table 2: for each arc adjacent to a created node, thereis a criterion
that tellsif it is a start node or an ending node.
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