Automating the Design of Visualizations

Maneesh Agrawala August 2, 2002

Stanford University

Visualization: Explore & Present Data [Leonardo da Vinci ca. 1490] 3-Space [Curtis 92]

Good Design Improves Usability

- Visualizations are common Newspapers, textbooks, training manuals, scientific papers, ...
- Creating effective designs is time-consuming

Challenge

- Best visualizations are designed by humans
- Computing becoming ubiquitous
- Data collection / dissemination getting faster
- Most displays computer generated
- Therefore: Visualizations are regressing
- Can we build automated systems capable of designing effective visualizations?

Automation Allows Customization

- Purpose: Present data relevant to specific goals
- **Device:** Adapt to capabilities of display Situation: Update as data / goals change
- Person: Adapt to knowledge of user
- Customization increases effectiveness

Emulating Artistic Rendering Styles

Artistic rendering can improve perception

High-level design still specified manually

Outline Motivation Automated Route Map Design Framework for Automated Design Automated Assembly Instruction Design Future Directions

Automating Route Map Design • Layout problem • Set of graphic elements • Roads • Labels • Cross-streets • Choose visual attributes • Position • Orientation • Size • Distortions increase choices • Large space of possible layouts

Challenges Choose desirable characteristics Express as numerical score function Balance constraints, deal with conflicts Desired characteristics for road layout All roads visible Prevent excessive distortion

User Response Beta publicly accessible Oct 00 – Mar 01 150,000 maps served 2242 voluntary responses Should replace standard maps 55.6 % Use along with standard maps 43.5 % Standard maps preferable 0.9 % Most common suggestion Choose better routes (not a LineDrive issue) More context in unfamiliar areas

Outline

- Motivation
- Automated Route Map Design
- Framework for Automated Design
- Automated Assembly Instruction Design
- Future Directions

Step 1: Identify Design Principles

- Cognitive science
 - How people *conceive* information
 - How people *apprehend* visual representations
- Conception
 - Routes conceived as sequence of turns
- Apprehension
 - Route geometry not apprehended accurately
- High-level cognitive model

Step 1: Identify Design Principles

- Analyze hand-designed visualizations
 - Identify essential graphic elements
 - Identify distortion techniques

• Low-level visualization design principles

Step 2: Build Automated Algorithm

- Space of possible visualization designs
 - Graphic elements
 - Visual attributes
- Design principles → Constraints
 - Generative rules: How to vary visual attributes
 - Evaluation criteria: Measure effectiveness
 - Main algorithmic challenge
- Find most effective visualization design
 - Search-based optimization
 - Balance constraints
 - Efficiency

Outline

- Motivation
- Automated Route Map Design
- Framework for Automated Design
- Automated Assembly Instruction Design
- Future Directions

Constraints

- **Support**: All supporting parts added before supported
- Adjacency: All parts in step touch previous parts
- **Symmetry**: All symmetric parts added in same step
- Linearity: New parts added onto existing parts
- Visibility: If part A occludes B

Penalty = Occlusion $(A, B) * W_{visibility}$

Context: If < 25% of step N-I parts visible

Penalty = Occlusion (Step N, Step N-1) * W_{contex}

• Then asked to produce clear set of assembly instructions

Current Agenda

- Identify more design principles
- Incorporate other graphic design techniques
 - Insets
 - Scale exaggeration
 - Cutaways
 - Sections
 - Text labels
- User studies

Summary

- General two-step approach
- Step 1: Identify cognitive design principles
- Step 2: Encode principles as constraints and find most effective visualization
- Automated design systems
 - Route maps
 - Assembly instructions
- Benefits
 - Novices can leverage skills of experts
 - Deal with data overload

Outline

- Motivation
- Automated Route Map Design
- Framework for Automated Design
- Automated Assembly Instruction Design
- Future Directions

Many Other Domains To Consider

- Medical illustration: Complex biological organisms
- Scientific diagrams: Depict scientific concept
- Graphs and charts: Scatter plots, bar charts, etc.
- Architectural plans: Room and furniture layout
- Proof visualization: Depict complex logical statements

Interaction and Animation

- Interaction
 - Hide clutter, let user request details
 - Direct, intuitive, navigation controls
- Animation
 - Should add information [Hegarty 00] [Morrison 01]

Long-Term Challenge

Current focus on how

- Simulate realistic lighting, shading Emulate artistic media (paint, pen & ink, ...)
- Display data using std. metaphors (bar graph, binary tree, ...)

Need principles guiding where, what, why

- Where to place lights to communicate a mood?
- What information does an artistic rendering style convey?
- Why is a particular metaphor effective?
- Must understand and appreciate what makes an effective visualization

Acknowledgements

- Pat Hanrahan
- Chris Stolte
- Barbara Tversky
- Boris Yamrom
- Vicinity Corporation