Automating the Design of Visualizations

Maneesh Agrawala
August 2, 2002
Stanford University

Good Design Improves Usability

- Visualizations are common
 - Newspapers, textbooks, training manuals, scientific papers, …
- Creating effective designs is time-consuming

Challenge

- Best visualizations are designed by humans
- Computing becoming ubiquitous
 - Data collection / dissemination getting faster
 - Most displays computer generated
- Therefore: Visualizations are regressing

- Can we build automated systems capable of designing effective visualizations?

Automation Allows Customization

- **Purpose:** Present data relevant to specific goals
- **Device:** Adapt to capabilities of display
- **Situation:** Update as data / goals change
- **Person:** Adapt to knowledge of user
- Customization increases effectiveness

Emulating Artistic Rendering Styles

- **Artistic rendering can improve perception**
- High-level design still specified manually
Automated Design as Optimization

- Page design
 - TeX [Knuth 81], GRIDS [Feiner 88], LayLab [Graf 92], [Westman & Wittenburg 94], [Sconing et al. 97, 00]
- 3D object visualization
 - APEX [Feiner 85], IBIS [Seligmann & Feiner 91], WIP [Rist et al. 94]
- Data graphics presentations
 - APT [Mackinlay 86], SAGE [Roth et al. 94, 96], SYSTAT [Wilkinson 99]
- UI layout, Label layout, VLSI design, Camera planning, 2D/3D packing, Graph drawing, …
- Need domain specific constraints

Outline

- Motivation
- Automated Route Map Design
 - Framework for Automated Design
 - Automated Assembly Instruction Design
- Future Directions

Contributions

- Analysis
 - Identify design principles
 - Route maps
 - Assembly instructions
- Synthesis
 - Automated design systems

Visualizing Routes

- Standard online route maps difficult to use

A Better Visualization

- Hand-drawn maps much easier to use

Communicative Intent of Route Maps

- Route is a sequence of turns [Tversky 92] [MacEachren 95]
 1. Start at 100 Serra
 2. Turn Right on University
 3. Turn Left on El Camino
 4. Turn Right on San Antonio
 …
- Verbal directions emphasize turns [Denis 97]
- Hand-drawn maps highlight turns [Tversky & Lee 99]
- Maps must communicate turning points
Depicting Turns

- Pair of roads (entering / exiting the turn)
- Turn direction (left / right)
- These graphic elements must be visible

Context can Facilitate Navigation

- Local context
 - Consistency checks
 - Cross-streets
 - Landmarks along route
 - Distance along each road
 - Overview context
 - Orient route to geography
 - Large area landmarks
 - Overall shape & heading
- Context is secondary to turning points

Geometric Properties Distorted

- Geometry not apprehended accurately [Tversky 81]
- Geometry not drawn accurately [Tversky & Lee 99]
- Topology is accurate

LineDrive: Route Map Design System

- Hand-drawn Route Map
- LineDrive Route Map

Automating Route Map Design

- Layout problem
 - Set of graphic elements
 - Roads
 - Labels
 - Cross-streets
 - Choose visual attributes
 - Position
 - Orientation
 - Size
 - Distortions increase choices
 - Large space of possible layouts

Layout as Search-Based Optimization

- Hard constraints
 - Required characteristics
- Soft constraints
 - Desired characteristics
- Challenge: Develop relevant constraints
- Simulated annealing
 - Perturb: Form a layout
 - Score: Evaluate quality
 - Minimize score
Cartographic Generalization
- Selection
- Simplification
- Exaggeration
- Regularization
- Displacement
- Aggregation

[Monmonier 96], [MacEachren 94], [DiBiase 91]

Three Generalizations for Route Maps
- Our observations from hand-drawn examples:
 - Exaggeration
 - Road length
 - Regularization
 - Turning angle
 - Simplification
 - Road shape
- Generalizations emphasize turning points!

Exaggeration: Length Generalization
- Grow short roads, shrink long roads
 - Ensures all roads visible
 - Maintain relative ordering by length

Regularization: Angle Generalization
- Regularize turning angles
 - Reduces visual complexity
 - Maintain consistent turn direction

Simplification: Shape Generalization
- Simplify roads to straight lines
 - Differentiates roads and turning points
 - Maintain overall shape of route

Request for Directions
Route Finding Service
Route Data
- LineDrive
- Shape Simplification
- Road Layout
- Label Layout
- Context Layout
- Decoration
- Route Map
Stage 2: Road Layout

- Goal: Choose road lengths & orientations

Road Layout Search

- Initialize
 - Uniformly scale route to fit given viewport

- Perturb
 - Pick random road
 - Either
 - Rescale by random factor
 - Reorient by random angle
 - Rescale entire route to fit viewport

- Hard Constraints
 - Must fit in viewport
 - Must maintain consistent turn direction

Designing Soft Constraints

- Challenges
 - Choose desirable characteristics
 - Express as numerical score function
 - Balance constraints, deal with conflicts

- Desired characteristics for road layout
 - All roads visible
 - Prevent excessive distortion

Constraints

- Length
 - Ensure all roads visible: \((L_{\text{min}} \cdot l(r_j)/L_{\text{max}})^2 \cdot W_{\text{small}}\)
 - Maintain ordering by length: \(W_{\text{shuffle}}\)

- Orientation
 - Maintain original orientation: \(|\alpha_{\text{curr}}(r_j) - \alpha_{\text{orig}}(r_j)| \cdot W_{\text{orient}}\)

- Topological errors
 - Prevent false: \(\min(d_{\text{orig}}, d_{\text{dest}}) \cdot W_{\text{false}}\)
 - Prevent missing: \(d \cdot W_{\text{missing}}\)
 - Ensure separation: \(\min(d_{\text{dest}}, E) \cdot W_{\text{ext}}\)

- Overall route shape
 - Maintain endpoint direction: \(|\alpha_{\text{curr}}(v) - \alpha_{\text{orig}}(v)| \cdot W_{\text{enddir}}\)
 - Maintain endpoint distance: \(|d_{\text{orig}}(v) - d_{\text{dest}}(v)| \cdot W_{\text{enddist}}\)

Balancing Soft Constraints

- Prioritize scores by importance
 1. Prevent topological errors
 2. Ensure all roads visible
 3. Maintain original orientation
 4. Maintain ordering by length
 5. Maintain overall route shape

- Informal usability engineering
 - Consider maps containing errors
 - Rate which errors most confusing

Bellevue to Seattle
User Response

- Beta publicly accessible Oct 00 – Mar 01
- 150,000 maps served
- 2242 voluntary responses
 - Should replace standard maps 55.6%
 - Use along with standard maps 43.5%
 - Standard maps preferable 0.9%
- Most common suggestion
 - Choose better routes (not a LineDrive issue)
 - More context in unfamiliar areas

Current Status

- Default rendering style www.mapblast.com
- 250,000 maps/day

Next Steps

- Map enhancements
 - Cross-street after turning point
 - Large area landmarks
- In-depth user study
 - Watch users following LineDrive maps

Future: Point Location Maps

Hand-designed Wedding Map [www.WeddingMaps.CC 01]
Two-Step Approach

1. Analyze cognitive science research and examples of most effective hand-designed visualizations
2. Encode principles as constraints and algorithmically find design satisfying constraints

Step 1: Identify visualization design principles

Step 2: Build Automated Algorithm

Step 1: Identify Design Principles

- Cognitive science
 - How people conceive information
 - How people apprehend visual representations
- Conception
 - Routes conceived as sequence of turns
- Apprehension
 - Route geometry not apprehended accurately
- High-level cognitive model

Step 2: Build Automated Algorithm

- Space of possible visualization designs
 - Graphic elements
 - Visual attributes
- Design principles → Constraints
 - Generative rules: How to vary visual attributes
 - Evaluation criteria: Measure effectiveness
 - Main algorithmic challenge
- Find most effective visualization design
 - Search-based optimization
 - Balance constraints
 - Efficiency

Outline

- Motivation
- Automated Route Map Design
- Framework for Automated Design
- Automated Assembly Instruction Design
- Future Directions
Assembly Instructions

Goal: Create step-by-step instructions from 3D model

Geometrically Valid Sequences

Robotics / Mechanical Engineering
[DeFazio & Whitney 87] [Wolter 89] [Wilson 95] [Romney et al. 95]

Many Geometrically Valid Sequences

How do we choose most effective sequence?

Cognitive Science

• Experiments to learn how people understand assembly instructions
 [Heiser in progress]

• Assemblies conceived as groupings of parts
 • Coarse level - functional units
 • Finer levels - symmetry, similarity, proximity

• People prefer certain assembly sequences
 • Add all supporting parts then supported parts
 • Add all internal parts then external parts
 • Add grouped parts in same step, or in sequence
 • Add new parts onto existing parts

Analysis of Hand-Designed Examples

• Essential graphic elements
 • Parts added in step (visibility)
 • Previous parts (context)

• Graphic design techniques
 • Small multiples
 • Technical illustration style
 • Insets improve part visibility
 • Arrows show attachments
Constraints

- **Support**: All supporting parts added before supported
- **Adjacency**: All parts in step touch previous parts
- **Symmetry**: All symmetric parts added in same step
- **Linearity**: New parts added onto existing parts

- **Visibility**: If part A occludes B

 \[\text{Penalty} = \text{Occlusion}(A, B) \times W_{\text{visibility}} \]

- **Context**: If $< 25\%$ of step $N-1$ parts visible

 \[\text{Penalty} = \text{Occlusion}(\text{Step } N, \text{Step } N-1) \times W_{\text{context}} \]

Lego Car

Landspeeder

Mechanical Assembly

Assembling TV Stand

- Subjects assemble TV stand without instructions
- Then asked to produce clear set of assembly instructions

Analysis of Hand-Drawn Diagrams

- **Static**: Show object after each assembly step
- **Action**: Show operations required in each step
 - Emphasize new parts
 - Show motion of parts
 - Show alignment of parts
 - Show how fasteners attach parts
Computer-Generated Instructions

Current Agenda
- Identify more design principles
- Incorporate other graphic design techniques
 - Insets
 - Scale exaggeration
 - Cutaways
 - Sections
 - Text labels
- User studies

Future: Exploded Views

Train [from Mijksenaar 99] Camping Stove [from Mijksenaar 99]

Future: 3D Environments

MoMA Design Entry [Tschumi 99] IBM Building Plan [from Holmes 93]

Summary
- General two-step approach
 - Step 1: Identify cognitive design principles
 - Step 2: Encode principles as constraints and find most effective visualization
- Automated design systems
 - Route maps
 - Assembly instructions
- Benefits
 - Novices can leverage skills of experts
 - Deal with data overload
Outline

- Motivation
- Automated Route Map Design
- Framework for Automated Design
- Automated Assembly Instruction Design
- Future Directions

Many Other Domains To Consider

- Medical illustration: Complex biological organisms
- Scientific diagrams: Depict scientific concept
- Graphs and charts: Scatter plots, bar charts, etc.
- Architectural plans: Room and furniture layout
- Proof visualization: Depict complex logical statements

Interaction and Animation

- Interaction
 - Hide clutter, let user request details
 - Direct, intuitive, navigation controls
- Animation
 - Should add information [Hegarty 00] [Morrison 01]

Long-Term Challenge

- Current focus on how
 - Simulate realistic lighting, shading
 - Emulate artistic media (paint, pen & ink, …)
 - Display data using std. metaphors (bar graph, binary tree, …)
 - …
- Need principles guiding where, what, why
 - Where to place lights to communicate a mood?
 - What information does an artistic rendering style convey?
 - Why is a particular metaphor effective?
 - …
- Must understand and appreciate what makes an effective visualization

Acknowledgements

- Pat Hanrahan
- Chris Stolte
- Barbara Tversky
- Boris Yamrom
- Vicinity Corporation