A Unifying Paradigm for Ray-Tracing and Rasterization

Frédo Durand
MIT CSAIL

Abstract

Ray casting and rasterization are not sbedent.

Keywords: Rendering

1 Introduction

The world of rendering is often presented as a battlegroetaden
two irreconcilable approaches: ray tracing and rasteozatn this
document, we show that they are actually quite similar.

2 Background

2.1 Ray casting

originally: all sorts of primitives. Now: mostly triangles
Various ray-triangle, one of the good ones: barycentrie @go
Tomas’s stif)
Ray casting often not used for primary rays
Discuss Marks and Hunt.

2.2 Rasterization

Old style: scanline, etc. New style: edge equation. Latedyno-
geneous rasterization.

3 Main loop

We first analyze the raw algorithm with no acceleration datacs
tures. We only consider primary rays, that is, the comporatif
what is visible from the viewpoint, ignoring shadows andbglbil-

lumination. In a nutshell, the mainfé&rence between ray casting

and rasterization in this context is the order of their maopl

Ray casting loops over pixels in the image. For each pixel, it

generates a ray that gets intersected with all scene prasitiA

valuetmin is maintained to select only the closest intersection:

for each pixel
generate ray
for each triangle
intersect(ray, triangle)
if t<tmin, keep intersection

In contrast, rasterization (a.k.a. the graphics pipeliegders
one triangle at a time and displays all the pixels that cavisrtti-
angle. Modern rasterization is based on edge equationsetbtaf
a pixel is inside the triangle or not. In its simplest form,@kels
are tested against the edge equations. To handle hiddercssyia
z bufer is used that stores for each pixel the distance to thestlose
surface. When rendering a triangle, a pixel is updated drilyei
new z value is closer than the stored one:

for each triangle
for each pixel
test if pixel passes all three edge tests
if z<zbuffer([x,y], keep

The main diference between ray casting and rasterization for
primary visibility is that the two main loops (over pixelscaover
triangles) are swapped. Incidentally, this means thaerasttion
needs to store and access randomly the equivalent of theviahin
ues, which we do with a z itier. Now let’s look closer at the details
of teh ray-triangle intersection and that of the edge equati

4 Ray-Casting

4.1 Ray-Triangle Intersection

A triangle is described by its three verticAsB, andC. A ray is
described by its origi©® and its directiorD

We use the popular barycentric approach to ray-triangégrset-
tion [?]. A point on the plane of the triangle can be described by its
barycentric coordinates (18—7v), 8, y. P = A+ BAB+yAC. Points
inside the triangle respegt> 0,y > 0 andB+vy < 1. A point along
the ray is described by a parameteo thatP(t) = O + t « D.

The intersection between the plane and the ray is givaP(t)y=
O+t=+D = A+ BAB+yAC Orin matrix form:

(-AB — AC D) = (OA)

Y
t

(i.e. the leftmost term is a matriM whose first column is the vector
-AC, etc.)
we can use Cramer’s rule to solve thig 3 system:

_|OA - AC D

d T

_|-ABOAD|
M|

. | - AB — AC OA|
M|
where|M| denotes the determinant bf One convenient expression

of the determinant is the cross product of the two first colssmn
followed by a dot product with the third column.

This gives us
Aw = BAxXCA-D (1)
As; = OAxCA-D)
A, = BAxOC-D 3
Ac = BAXCA-OA (4)

Which gives us the codéntersectWithBarycentric in
Fig. 72

4.2 Ray Casting main loop

Ray casting loops over the pixels and for each pixel it loogs o
the triangles and performs ray-triangle intersection.
See the coderaycast in Fig. ??

5 Rasterization

5.1 Edge equation test

We start from the triangle-ray intersection code from akeve not
that when the ray origin is shared by many queries, we caroprec
pute many of the quantities, namely most of the cross preduiot
what follows | assume that the origin is at (0, O, -z) but it sloet
matter much.

For a given pixel, the ray direction is simply = (x,y, 1)

Recall the determinant equations 1 through 4. hlyaries on a
per pixel basis. We compute and cache all the riesis a constant.

Equ = BAxCA (5)
Egy, = OAxCA (6)
Eg, = BAxOC @)
Ar = BAXCA-OA (8)
And we get
Ay = EqM -D (9)
t = A/Detay (10)
B = Eq-D/Ay (12)
y = Eqg,-D/Aw (12)

See the codaetUpTriangle for the preprocessing part, and
testPixel for the per-pixel part.

In fact, these equations define perspective-correct (sespace)
interpolation of depth and edge equations. If one remowveslith-
sion by Ay, this is essentially Olano’s homogeneous rasterization,
except that we have only two edge equations. In the perspecti
correct version, we can get away with only two equations beea
those equations are setup so that they are equal to 1 at tde thi
vertex.

5.2 Rasterization main loop

See the routinerasterize in the code to see how rasterization
makes use ofetUpTriangle andtestPixel. Because the for
loops over triangles and pixels are reversed compared toasty
ing, we can #ord to factorize the preprocessing more easily and
do it once per triangle. Note that the same could be done for ra
casting, at the cost of additional per-triangle storagecdntrast,
rasterization requires per-pixel storage for the #dauand frame
buffer.

Discuss streaming of triangles vs random access. On the othe
hand, graphics hardware also likes to have the scene in rgemor

6 Acceleration

6.1 Space hierarchy

image vs. object hierarchy. See Greene’s hierarchicaifebu
Bounding volume hierarchy
Look at hit rate (both image and object).

7 Misc.

Add multipass;: pre-Z, déered shading, per light pass (deferred
lighting)

displacement, tesselation

shading: object vs. image space, especially with derigativ

Add discussion of sort last vs sort middle to unified rendgrin
Either frame bffer or bin data needs to gdtehip.

Cacheability, look at last reference of an object, histogra

def intersectWithBarycentric (self, triangle, orig, D):
detM=triangle.BA.cross(triangle.CA)*D
if fabs(detM)<epsilon: return False, 0
OA=triangle.A-orig
detBeta=0OA.cross(triangle.CA) *D
beta=detBeta/detM
detGamma=triangle.BA.cross(OA) *D
gamma=detGamma/detM
detT=triangle.BA.cross(triangle.CA)*0A
t=detT/detM
if beta<-epsilon or gamma<-epsilon or betat+gamma>l+epsilon:
return False, 0
else: return True, t

def setUpTriangle (self, triangle, orig):
self.detMEg=triangle.BA.cross(triangle.CA)
OA=triangle.A-orig
self.detBetaEg=0OA.cross(triangle.CA)
self.detGammaEg=triangle.BA.cross(OA)
self.detT=triangle.BA.cross(triangle.CA)*OA

def testPixel(self, D):
detM=self.detMEqg*D
if fabs(detM)<epsilon: return False, 0
detBeta= self.detBetaEg*D
beta=detBeta/detM
detGamma=self.detGammaEq*D
gamma=detGamma/detM
t=self.detT/detM
if beta<-epsilon or gamma<-epsilon or betat+gamma>1l+epsilon:

return False, 0

else: return True, t

Figure 1: Code. In yellow are the parts that only depend on the ray origin, while green parts also require the direction (pixel position). In
blue are the termsthat are preprocessed and cached by the setup in rasterization. * denotes the dot product while cross isthe cross product.

def

def

raycast(scene, width, height):
im=Image.new(’RGB’, (width,height))
for y in range(height):
for x in range(width):
dir=vec3(2.0*x/width-1.0, 1.0-2.0%y/height, 1.0)
tmin=infinity
for T in scene.triangles:
test, t=inter.intersectWithBarycentric (triangle, orig, dir)
if test and t>0 and t<tmin:
im.putpixel ((x,y), T.shade())
tmin=t
return im

rasterize(scene, width, height):
im=Image.new(’RGB’, (width,height))
tmin = [[infinity for col in range(width)] for row in range(height)]
for T in scene.triangles:
inter.setUpTriangle(T, orig)
for y in range(height):
for x in range(width):
dir=vec3(2.0*x/width-1.0, 1.0-2.0*y/height, 1.0)
test, t=inter.testPixel(dir)
if test and t>0 and t<tmin[x][y]:
im.putpixel ((x,y), T.shade())
tmin[x] [y]=t
return im

