
A Unifying Paradigm for Ray-Tracing and Rasterization

Frédo Durand
MIT CSAIL

Abstract

Ray casting and rasterization are not so different.

Keywords: Rendering

1 Introduction

The world of rendering is often presented as a battleground between
two irreconcilable approaches: ray tracing and rasterization. In this
document, we show that they are actually quite similar.

2 Background

2.1 Ray casting

originally: all sorts of primitives. Now: mostly triangles.
Various ray-triangle, one of the good ones: barycentric (see also

Tomas’s stuff)
Ray casting often not used for primary rays
Discuss Marks and Hunt.

2.2 Rasterization

Old style: scanline, etc. New style: edge equation. Lately,homo-
geneous rasterization.

3 Main loop

We first analyze the raw algorithm with no acceleration data struc-
tures. We only consider primary rays, that is, the computation of
what is visible from the viewpoint, ignoring shadows and global il-
lumination. In a nutshell, the main difference between ray casting
and rasterization in this context is the order of their main loop.

Ray casting loops over pixels in the image. For each pixel, it
generates a ray that gets intersected with all scene primitives. A
valuetmin is maintained to select only the closest intersection:

for each pixel

generate ray

for each triangle

intersect(ray, triangle)

if t<tmin, keep intersection

In contrast, rasterization (a.k.a. the graphics pipeline)renders
one triangle at a time and displays all the pixels that cover this tri-
angle. Modern rasterization is based on edge equations thattest if
a pixel is inside the triangle or not. In its simplest form, all pixels
are tested against the edge equations. To handle hidden surfaces, a
z buffer is used that stores for each pixel the distance to the closest
surface. When rendering a triangle, a pixel is updated only if the
new z value is closer than the stored one:

for each triangle

for each pixel

test if pixel passes all three edge tests

if z<zbuffer[x,y], keep

The main difference between ray casting and rasterization for
primary visibility is that the two main loops (over pixels and over
triangles) are swapped. Incidentally, this means that rasterization
needs to store and access randomly the equivalent of the tminval-
ues, which we do with a z buffer. Now let’s look closer at the details
of teh ray-triangle intersection and that of the edge equations.

4 Ray-Casting

4.1 Ray-Triangle Intersection

A triangle is described by its three verticesA, B, andC. A ray is
described by its originO and its directionD

We use the popular barycentric approach to ray-triangle intersec-
tion [?]. A point on the plane of the triangle can be described by its
barycentric coordinates (1−β−γ), β, γ. P = A+βAB+γAC. Points
inside the triangle respectβ > 0,γ > 0 andβ+γ < 1. A point along
the ray is described by a parametert so thatP(t) = O + t ∗ D.

The intersection between the plane and the ray is given byP(t) =
O + t ∗ D = A + βAB + γAC Or in matrix form:

(−AB − AC D)



















β

γ

t



















= (OA)

(i.e. the leftmost term is a matrixM whose first column is the vector
−AC, etc.)

we can use Cramer’s rule to solve this 3× 3 system:

β =
|OA − AC D|

|M|

γ =
| − AB OA D|

|M|

t =
| − AB − AC OA|

|M|

where|M| denotes the determinant ofM One convenient expression
of the determinant is the cross product of the two first columns,
followed by a dot product with the third column.

This gives us

∆M = BA ×CA · D (1)

∆β = OA ×CA · D (2)

∆γ = BA × OC · D (3)

∆t = BA ×CA · OA (4)

Which gives us the codeintersectWithBarycentric in
Fig. ??

4.2 Ray Casting main loop
Ray casting loops over the pixels and for each pixel it loops over
the triangles and performs ray-triangle intersection.

See the coderaycast in Fig. ??

5 Rasterization

5.1 Edge equation test
We start from the triangle-ray intersection code from aboveand not
that when the ray origin is shared by many queries, we can precom-
pute many of the quantities, namely most of the cross products. In
what follows I assume that the origin is at (0, 0, -z) but it does not
matter much.

For a given pixel, the ray direction is simplyD = (x, y,1)
Recall the determinant equations 1 through 4. OnlyD varies on a

per pixel basis. We compute and cache all the rest.∆t is a constant.

EqM = BA ×CA (5)

Eqβ = OA ×CA (6)

Eqγ = BA × OC (7)

∆t = BA ×CA · OA (8)

And we get

∆M = EqM · D (9)

t = ∆t/DeltaM (10)

β = Eqβ · D/∆M (11)

γ = Eqγ · D/∆M (12)

See the codesetUpTriangle for the preprocessing part, and
testPixel for the per-pixel part.

In fact, these equations define perspective-correct (screen-space)
interpolation of depth and edge equations. If one removes the divi-
sion by∆M , this is essentially Olano’s homogeneous rasterization,
except that we have only two edge equations. In the perspective-
correct version, we can get away with only two equations because
those equations are setup so that they are equal to 1 at the third
vertex.

5.2 Rasterization main loop
See the routinerasterize in the code to see how rasterization
makes use ofsetUpTriangle andtestPixel. Because the for
loops over triangles and pixels are reversed compared to raycast-
ing, we can afford to factorize the preprocessing more easily and
do it once per triangle. Note that the same could be done for ray
casting, at the cost of additional per-triangle storage. Incontrast,
rasterization requires per-pixel storage for the z buffer and frame
buffer.

Discuss streaming of triangles vs random access. On the other
hand, graphics hardware also likes to have the scene in memory.

6 Acceleration

6.1 Space hierarchy
image vs. object hierarchy. See Greene’s hierarchical z buffer

Bounding volume hierarchy
Look at hit rate (both image and object).

7 Misc.

Add multipass;: pre-Z, deffered shading, per light pass (deferred
lighting)

displacement, tesselation
shading: object vs. image space, especially with derivative
Add discussion of sort last vs sort middle to unified rendering

Either frame buffer or bin data needs to go off chip.
Cacheability, look at last reference of an object, histogram

def intersectWithBarycentric (self, triangle, orig, D):

 detM=triangle.BA.cross(triangle.CA)*D

 if fabs(detM)<epsilon: return False, 0

 OA=triangle.A-orig

 detBeta=OA.cross(triangle.CA)*D

 beta=detBeta/detM

 detGamma=triangle.BA.cross(OA)*D

 gamma=detGamma/detM

 detT=triangle.BA.cross(triangle.CA)*OA

 t=detT/detM

 if beta<-epsilon or gamma<-epsilon or beta+gamma>1+epsilon:

 return False, 0

 else: return True, t

def setUpTriangle (self, triangle, orig):

 self.detMEq=triangle.BA.cross(triangle.CA)

 OA=triangle.A-orig

 self.detBetaEq=OA.cross(triangle.CA)

 self.detGammaEq=triangle.BA.cross(OA)

 self.detT=triangle.BA.cross(triangle.CA)*OA

def testPixel(self, D):

 detM=self.detMEq*D

 if fabs(detM)<epsilon: return False, 0

 detBeta= self.detBetaEq*D

 beta=detBeta/detM

 detGamma=self.detGammaEq*D

 gamma=detGamma/detM

 t=self.detT/detM

 if beta<-epsilon or gamma<-epsilon or beta+gamma>1+epsilon:

 return False, 0

 else: return True, t

Figure 1: Code. In yellow are the parts that only depend on the ray origin, while green parts also require the direction (pixel position). In
blue are the terms that are preprocessed and cached by the setup in rasterization. * denotes the dot product while cross is the cross product.

def raycast(scene, width, height):

im=Image.new(’RGB’,(width,height))

for y in range(height):

for x in range(width):

dir=vec3(2.0*x/width-1.0, 1.0-2.0*y/height, 1.0)

tmin=infinity

for T in scene.triangles:

test, t=inter.intersectWithBarycentric (triangle, orig, dir)

if test and t>0 and t<tmin:

im.putpixel((x,y), T.shade())

tmin=t

return im

def rasterize(scene, width, height):

im=Image.new(’RGB’,(width,height))

tmin = [[infinity for col in range(width)] for row in range(height)]

for T in scene.triangles:

inter.setUpTriangle(T, orig)

for y in range(height):

for x in range(width):

dir=vec3(2.0*x/width-1.0, 1.0-2.0*y/height, 1.0)

test, t=inter.testPixel(dir)

if test and t>0 and t<tmin[x][y]:

im.putpixel((x,y), T.shade())

tmin[x][y]=t

return im

