
Wrapster: Automatic Wrapper Generation for
Semi-Structured Sources in Question Answering

No Author Given

No Institute Given

Abstract. This paper presents Wrapster, a new system that automati-
cally generates wrappers for semi-structured Web sources and improves
wrapper robustness. Wrapster’s repair module periodically tests the per-
formance of all wrappers and automatically corrects any scripts that fail
after the layout or the format of a Web site changes. In addition, Wrap-
ster provides an interactive Web interface which allows the user to test
the generated wrappers, and edit them if needed. Wrapster has been
developed to work with a high-precision question answering system and
therefore its design puts a strong emphasis on the quality and precision
of generated wrapper scripts.

1 Introduction

Semi-structured resources constitute many of the available information sources,
especially on the Web, and this trend is likely to increase. Wrappers—collections
of access scripts—are often used to programmatically extract information from
semi-structured sources. Wrappers can be created manually, but this process re-
quires time and programming skills, and furthermore, semi-structured resources
often change their format, requiring wrappers to be rewritten. One approach to
this problem is to automatically generate a wrapper by generalizing over a set
of examples [?].

Question answering systems are one of the types of applications that make use
of semi-structured resources. Semi-structured resources are particularly valuable
as information sources for high-precision question answering systems because
once the question answering system has identified what information element
to extract, the appropriate information element can be reliably and precisely
extracted through the use of wrappers—provided the wrappers are reliable and
precise.

In this paper, we discuss Wrapster, a wrapper generation system that largely
automates the process of wrapper generation while putting a strong emphasis
on the quality of the generated wrappers that high-precision question answer-
ing systems require. Wrapster contains a repair component which automatically
reconstructs wrappers when resources change, it induces semantic labels for ele-
ments where possible to ease the process of integration into a question answering
system, and it provides a user interface so that a non-programmer can guide the
wrapper generation process. Wrapster has been incorporated into the START



question answering system, reducing the time and the programming skill required
to integrate new semi-structured resources.

2 Semi-structured Resources in High-precision QA

A typical Web site contains information about a specific domain. For example,
the Internet Movie Database (IMDb) is an online database which contains infor-
mation about movies, actors, television shows, etc. Many databases describe sets
of objects, with the database records describing fields of those objects. Similarly,
a semi-structured Web site can be viewed as consisting of “objects” with specific
Web pages containing information about these objects in various “fields”, and
because these Web pages have sufficiently similar structure, the “fields” can be
identified (and retrieved) programmatically with fairly high precision. For exam-
ple, an IMDb page for a movie contains a “director” field that can be identified
by the text landmark “Directed by” and some surrounding HTML formatting. In
a semi-structured resource, pages corresponding to individual objects are called
details pages. Most semi-structured resources also have list pages that list the
objects available in the resource. A script is a small program that extracts a
particular field from Web pages for a particular type of object; a wrapper is
the collection of scripts that extract all useful and/or identifiable fields from a
resource.

Question answering systems retrieve answers to questions posed in natural
language. They return short answers extracted from documents or databases,
as opposed to search engines which return lists of whole documents. Question
answering systems can retrieve particularly precise and accurate results if they
can map the question to a structured query, for example, to retrieve the value
for an object and field in a semi-structured resource.

START [?,?,?] is a publicly-accessible high-precision question answering sys-
tem.1 It answers natural language questions by presenting components of text
and multimedia drawn from a set of information sources that are accessed re-
motely through the Internet or hosted locally. These sources contain structured,
semi-structured, and unstructured information. START maps queries to infor-
mation sources through the use of natural language annotations [?]. An anno-
tation is a machine-parsable phrase or sentence that describes a query that can
be answered and maps it to an information fragment that contains the answer.
Annotations can be “parameterized” so that a single annotation covers a whole
class of objects and/or all fields with equivalent syntactic usage. Although any
type of information can be accessed, START is most successful at accessing semi-
structured resources because many such resources are available and wrapping a
single such resource provides access to a large quantity of information. START
uses a system called Omnibase [?] to access semi-structured (and structured) in-
formation through a uniform interface. Omnibase uses an object–property–value
relational model, and the execution of an Omnibase script generates the value
of a predefined property from a predefined resource.
1 http://start.csail.mit.edu



Fig. 1. START answering the query “Who directed Gone with the Wind?”.

Figure 1 shows START answering the query “Who directed Gone with the
Wind?”. After parsing the query, START determines the object (“Gone with
the Wind (1939)”) and property (“director”), finds the Omnibase script, and
retrieves the value, which is then incorporated into an English response.

The Omnibase scripts used by START are manually written and include
low-level regular expressions that extract information. For example, the script
used in the above query finds the URL of the details page for “Gone with the
Wind (1939)”, retrieves the page from the Web, and uses regular expressions
to find and extract the section of the page that lists the director(s). Omnibase
scripts are tailored to specific sources, and are not robust to format and layout
changes. Wrapster addresses these problems by: automatically detecting fields in
a semi-structured resource and generating wrapper scripts; proposing semantic
labels (contributing to the task of creating START’s natural language annota-
tions); repairing wrappers as resources change; and providing a user interface to
conveniently oversee and guide the process.

3 Related Work

Although semi-structured sources possess syntactic regularities, it is not trivial
to process and extract information from those sources. The main issues that
wrapper generation systems deal with are scalability and flexibility. Scalability
concerns the multiplicity of variations of layout and format between many sites,
and flexibility concerns the robustness of the wrappers to frequent layout and
format changes.

Existing wrapper generation systems for structured and semi-structured sources
do not make use of the global document structure and are dependent on a large
training set. Kushmerick et al. [?], in their WIEN system, used a four-feature
wrapper induction: HLRT, which stands for Head, Left, Right, and Tail regular
expression patterns of the property to be extracted. Muslea et al. [?] introduced
STALKER, a hierarchical wrapper induction system. STALKER uses greedy-
covering, an inductive learning algorithm, which incrementally generates extrac-
tion rules from training examples. The rules are represented as linear landmark
automata. A linear landmark automaton is a non-deterministic finite automaton



where transition between states is allowed if the input string matches the rule
for this transition. In each step, STALKER tries to generate new automata for
the remaining training examples, until all the positive examples are covered. The
system’s output is a simple landmark grammar where each branch corresponds
to a learned landmark automaton. Hsu et al. [?] used finite state transducers as
their model in their SoftMealy system. In contrast to WIEN, the SoftMealy and
STALKER systems’ representations support missing values and variable permu-
tations, and require fewer training examples. Newer systems have focused on
building end-user wrapper induction gadgets that reduce the amount of training
data needed, leverage the hierarchical structure of HTML, and learn patterns by
aligning multiple example trees using a tree edit distance algorithm. One such
system is Hogue et al.’s Thresher [?], that lets non-technical users extract se-
mantic content from the Web. However, Thresher fails to create wrappers that
make use of global document structure. It can wrap only a small subset of a
Web page, referred to as records. Huynh et al. [?] recently tried to augment the
sorting and filtering ability of retail sites on the Web. Since the resulting items
from a query on a retail site have the same structure, it is easy to recognize the
underlying structure by comparing the tree structure of the items. Even with
just the simple ability to sort and filter items interactively while visiting an on-
line retail site, great value has been added to the browser, as reported by their
user study. Wrapster has built on these ideas, and goes beyond them to represent
the full semantics of the page, add automatic testing and repair facilities, and
partly automate the labeling process.

4 Template Creation

Wrapster begins its work by creating a template for a resource. It creates a
template by aligning details pages for objects of the same type in order to find
what regions of pages are constant (names of fields, or elements for navigation or
decoration) and what regions are variable (values of fields, or advertisements).
Navigation, decoration, and advertisement regions are generally omitted from the
final wrapper on the grounds that they contain no useful information. The input
to Wrapster is a list of objects and the locations (URLs) of their corresponding
details pages.

Wrapster generates the alignment between a small subset of pages using
the tree edit distance technique [?,?,?,?]. It parses the selected items’ Web pages
into Document Object Model (DOM) parse trees using the Cyberneko [?] HTML
parser library, computes tree edit distance on all DOM tree pairs, and results in
the optimal mapping between each pair of DOM trees. Using the alignment,
Wrapster identifies and discards the elements in common, thus leaving us with
the relevant slots for extraction. Then, Wrapster clusters the slots from all the
aligned pages using a trained classifier [?] and identifies data structures such
as lists and tables by comparing the HTML structural and content similarity.
Wrapster only needs a few examples of training data because it uses a variation
of active learning technique [?]. Given a new set of unlabeled data, it classifies



the data and then retrains the classifier expanding the training data with new
classified instances that have a high confidence classification score.

To filter out irrelevant information and identify regions to extract, Wrapster
generates a list of DOM node candidates that are possible subregions. We add
to the list of node candidates all the text nodes whose node value is different in
the tree mapping (edit distance is not equal to zero). The text nodes are the leaf
nodes of the HTML DOM tree and they contain all the content of an HTML
document. Using the node-path of each candidate node, Wrapster identifies the
nodes that belong to the same region: Nodes are merged if there is no break
between them, that is, no boundary between “block-level” elements in running
text such as P and BR or in tabular text such as TD, LI, and DT.

Wrapster expands each region with all the close context (context within the
break node). All nodes in a region are ordered and each region stores its tree
mapping properties such as the edit distance cost for each node. In addition,
each region stores the previous and next general context (context not within the
break node). Given the list of regions, we infer structure such as lists and tables
using the regions’ node-paths.

4.1 Region Clustering

To form the general template for the resource, Wrapster clusters the identified
region instances from all the selected items’ Web pages, using SVMlight, a Sup-
port Vector Machine classifier implementation [?], that takes as input all pairs
of regions instances and decides for each pair if the regions match or not. Then,
Wrapster uses the classifier decision for each pair to create clusters for matching
regions that form the basic template for the wrapped site.

We labeled 2,517 region instances from five Web pages to form the training
data seed. The training data samples came from IMDb movie and The World
Factbook2 Web pages. They consist of 156 matching region instances and 2,361
non-matching instances. The features are mostly similarity measures between the
two region instances (see Table 1). We added the same features for preceding
and following region contexts. However, such a small dataset does not provide
enough training data to reliably generalize feature settings. Therefore, we used
a variation of active learning technique to automatically label data and retrain
the classifier (see Section 9).

5 Wrapper Induction

After computing the general template for the resource, Wrapster generates the
extraction rules, which are lists of patterns derived for each cluster formed dur-
ing template creation. Regular expressions have been used extensively to extract
regions. Recently, commercial systems have leveraged the HTML hierarchical
structure and used XPath to extract information from Web pages; however, this

2 https://www.cia.gov/library/publications/the-world-factbook/index.html



Table 1. Feature sets.

Feature type Description

Region size ratio The ratio of the number of nodes in the two regions.

Content similarities Exact match disregarding HTML tags, and string edit dis-
tance disregarding HTML tags.

Region node match ratio The ratio of the number of nodes in the two regions that
have zero tree edit cost (close context).

Node-paths similarities How far apart regions are in the HTML document.

technique requires parsing of Web pages, which is slower than just matching
string patterns. Furthermore, using XPath is limiting since the XPath language
cannot extract text fields that are not wrapped by an HTML tag. Other tech-
niques, such as Hap-Shu [?] and LAPIS [?], use rich pattern-matching libraries
which can extract regions from Web pages if the region can be identified via text
landmarks. Wrapster currently generates standard regular expressions matching
surrounding context, but rich libraries will yield more-robust scripts and will be
explored in future work.

By creating variants of the extraction rules, we can return exact values in ad-
dition to HTML fragments which is valuable for high-precision question answer-
ing in particular. For example, START uses HTML values for human-friendly
display purposes or an “exact” value for question fusion, value comparison, etc.
Since each region has mapping information from the tree alignment, we know
which parts of the region are constant and which parts have the actual content.
One heuristic is removing links and context text from the script output. In the
near future, we plan to explore more sophisticated heuristics to create variants
of scripts with alternate focuses.

6 Semantic Labelling

To use the wrapper in third-party systems such as question answering sys-
tems, the wrapper needs to store semantic information so that the query can
be mapped to the correct wrapper script. For example, if a QA system needs
to answer “How many people live in the United States?”, it will execute the
population script on the queried country’s Web page. (It is the responsibility of
the QA system to first identify the “United States” as a country and determine
that the question refers to the population of that country.)

Giving the scripts meaningful names, such as “director”, instead of machine-
generated names, such as “script-1242”, makes the connection of the wrapper
with a third-party application more intuitive and potentially automatic. Au-
tomating this process is a hard task because there are not always text clues for
all regions on the Web pages. Furthermore, if a text clue exists there is often
more than one to choose from, and its format varies greatly for each site. Wrap-
ster’s heuristic selects the text occurring in all region instances for the given



attribute and selects the text which is closest to the region of interest in the
preceding context. Non-alphanumeric characters are trimmed from each end of
the selected text. Earlier implementations of semantic labeling [?,?] systems re-
lied mainly on ontologies such as WordNet. In the future, we intend to improve
semantic labelling by implementing a component that takes into account the
region content and leverages HTML structure.

7 User Interface

To eliminate the need for programming skills usually required to generate a wrap-
per for the site, we developed a Web user interface for Wrapster that manages
all tasks needed for wrapper generation. The main purpose of the user interface
is to give a novice user the ability to monitor the automatic wrapper generation,
edit the final version of the generated wrappers, and verify or add the semantic
labeling for each property discovered.

Wrapster’s main page provides the user with two options: to create a new
wrapper for a site or to edit an existing wrapper. To create a wrapper the user
chooses the Web pages from which Wrapster will generate the wrapper. The
user chooses the pages interactively using an HTML proxy server by adding the
browsed pages to a basket using a control bar inserted on the top of the Web
pages. After selecting the Web pages, Wrapster generates the wrapper and redi-
rects the user to the wrapper editing Web page. The wrapper editing page lists
the wrapper’s scripts for the site. The user can edit or add semantic informa-
tion for each script, edit the extraction patterns, test, and output the scripts in
START’s Omnibase script format or XML format.

8 Repair Module

Wrapster’s repair module monitors and automatically repairs Wrapster scripts,
and so is central to Wrapster’s robustness. It handles cases where scripts fail
to extract the previously annotated information from a site, when the layout
or format or both have changed, by looking for regions identified in a newly
generated template whose values match values stored using the old template.
The repair module runs in the background and tests all wrappers for failing
scripts where stored values are available. The region instances calculated during
template creation serve as stored values for repair. If a failing script is detected,
the module repeats the process of template creation and wrapper induction for
that site and updates only the failing script or all the site scripts according to
the saved program configuration.

After generating the basic wrapper for the site, the module matches the
newly generated scripts and the existing ones using the stored regions instances.
It classifies all pairs of regions instances using the trained classifier and chooses
the script with the highest match ratio. Then, the user-edited information such
as semantic information is transfered to the newly generated scripts from the



failing scripts. Finally, the module can notify the administrator to verify the
correctness of the new scripts and apply the changes.

9 Experiments

To evaluate Wrapster we need to evaluate some components separately and the
performance of the system as a whole. We conducted experiments based on data
from seven sites that have details pages (Table 2). Four of the datasets, IMDb
person, POTUS, MSN Money, and The Weather Channel, are available at the
RISE repository [?], and have been evaluated by previous wrapper generation
systems such as STALKER [?], WIEN [?], and WL2 [?]. The other three sites
were chosen because they are in use by the START Question Answering system.

Table 2. Evaluation dataset.

Web sites Location Number of con-
tent regions

IMDb Movie http://imdb.com/title 30
IMDb Person http://imdb.com/name 14
World Factbook https://www.cia.gov/cia/publications/factbook 229
POTUS http://www.ipl.org/div/potus/ 25
MSN Money http://moneycentral.msn.com/ 28
Weather Channel http://www.weather.com/ 16
50 States http://www.50states.com/ 77

9.1 Classification

We evaluated the SVM classification on 10,132 training data samples using 10-
fold cross validation (Table 3). The training data were labeled using our classifi-
cation labeling tool. Table 4 shows the average F-Measure, precision, and recall
values for the SVM classifier across all feature groups for the full training data
samples and for IMDb Movie training data. The full feature group on IMDb
data had the best performance. The next context feature group appears to be
more informative for classification than the previous content feature group
since the former group outperformed the latter group in all datasets.

In addition we evaluated our system on 2,992 labeled instances of 62,010 data
samples gathered from the rest of the sites in our datasets where their classifier
confidence score was inside the [-1,1] range (outliers). The classifier accuracy
was 53.41 (37.36% precision and 60.3% recall). The results show satisfactory
performance of the classifier on the outlier points which are much harder to
classify. For example, by examining the labeled data samples the classifier didn’t
classify correctly the “Actress Filmography” and “Actor Filmography” regions
of IMDb. In the future we need incorporate more complex features such as using
morphology as a similarity measure.



Table 3. SVM training data

Source Total training samples Positive Negative

IMDb Movie 9566 466 9100
World Factbook 566 463 103

Table 4. SVM feature sets and performance on all training data and IMDb movie
traning data

Feature set F-Measure Precision Recall

All IMDb All IMDb All IMDb

rule based content 63.23 49.07 58.0 44.5 69.5 54.7
rule based content +
contexts

90.58 92.21 98.7 97.1 83.7 87.8

content 91.04 93.6 98.7 97.3 84.5 90.2
previous context 87.71 86.71 86 92.9 89.5 81.3
content + previous con-
text

94.57 94.8 97.3 95.6 92 94.0

content + next context 95.72 97.68 97.3 99.0 94.2 96.4
next context 87.28 87.6 84.2 83.6 90.6 92
full 95.46 97.89 97.3 98.2 93.7 97.6

9.2 Comprehensive Evaluation

Table 5 and Table 6 present the performance of Wrapster on the dataset. Wrap-
ster identified and generated extraction rules correctly for most of the content
regions from the test sites. Wrapster identified on average 88.22% of the content
regions for those sites. However, there are some cases where multiple scripts are
generated for the same region because our classifier, as mentioned earlier, fails
to classify correctly cases such a “Actress Filmography” and “Actor Filmogra-
phy”. This mis-classification can be exploited in the future to discover underlying
properties on the Web pages such as gender. Wrapster was able to generate a
significant proportion of scripts for updated versions for most of the sites. The
sites that benefited the most are IMDb person and MSN Money. The wrapper
scripts generated by Wrapster increased from 5 scripts each to 29 and 41 respec-
tively, from which we may conjecture that these sites changed their layouts in
order to increase consistency.

An interesting experiment is to evaluate Wrapster’s repair module on the
IMDb movie site after a recent significant change. Wrapster identified 100% of
regions for the site and was able to attach with 36.36% accuracy the semantic
information such as the names of the scripts from the old wrapper. The relatively
low accuracy for migrating semantic information can be mitigated by the user
editing the system’s proposed semantic labels in the user interface.



Table 5. Wrapper generation content discovery

Web sites Regions discov-
ered

Scripts gener-
ated

Recall for dis-
covered regions

IMDb Movie 39 38 100%
IMDb Person 31 5 100%
World Factbook 198 164 82.9%
POTUS 26 20 88%
MSN Money 18 5 46.4%
Weather Channel 26 16 62.5%
50 States 64 47 81.8%

Table 6. Evaluation dataset.

Web sites Regions dis-
covered

Number of
scripts gen-
erated

IMDb Movie 43 38
IMDb Person 46 29
World Factbook 203 161
POTUS 23 20
MSN Money 43 41
Weather Channel 20 19
50 States 63 48

10 Contributions and Future Work

Many available information sources on the Web are semi-structured, which cre-
ates an opportunity for automatic tools to process and extract their information
for easy access through a uniform interface language using wrappers. Although
semi-structured sources possess syntactic regularities, it is not trivial to process
and extract information from those sources because they are not uniform in for-
mat and are frequently updated, making it hard to create flexible wrappers that
can adapt to changing sources, and to scale wrapper-based systems.

In this paper we presented Wrapster, a wrapper generation system for details
pages which leverages HTML structure and reduces the amount of training data
needed compared to other wrapper systems, using an active learning technique.
The interactive Web user interface enables people with little or no programming
skills to create and edit wrappers. In addition, once a wrapper for a site is created,
Wrapster checks the correctness of all stored wrappers and automatically fixes
their failing scripts.

We have made the following contributions in this research area:

1. We developed a platform-independent, end-to-end wrapper generation sys-
tem.

2. We applied tree edit distance to construct the template of a details page.



3. We introduced a general wrapper representation that includes not only text
landmarks, but also region instances, extraction rules, and semantic labeling,
which aid in repair and integration.

4. We reduced the amount of training examples needed to create a wrapper
using an active learning technique.

5. We implemented an interactive Web user interface so that a user can edit
the generated wrapper without the need for programming skills.

6. We developed a wrapper repair module that checks the correctness of the
wrappers and fixes any failing scripts.

Our work with Wrapster suggests several interesting topics for future explo-
ration:

1. Test different approaches for template creation such as sequence alignment
and visual rendering alignment. In addition, create nested templates for sites
where an object spans over multiple Web pages.

2. Experiment with smart features such as using morphology and value type
as similarity measures to improve the performance of the classifier.

3. Develop and use rich pattern libraries such as Hap-Shu and LAPIS that
leverage the HTML structure and are more robust to format changes than
simple regular expressions.

4. Automatically annotate the generated scripts with possible questions for
each script.

5. Eliminate the manual input for Wrapster and build a tool that crawls a Web
site and discovers its objects.


