Fixing Max-Product: Convergent Message Passing
Algorithms for MAP LP-Relaxations

Amir Globerson  Tommi Jaakkola
Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology
Cambridge, MA 02139
gamr,tomm @sail.mt.edu

Abstract

We present a novel message passing algorithm for appraxigtae MAP prob-
lem in graphical models. The algorithm is similar in struetto max-product but
unlike max-product it always converges, and can be provéinddhe exact MAP
solution in various settings. The algorithm is derived izck coordinate descent
in a dual of the LP relaxation of MAP, but does not require amable parameters
such as step size or tree weights. We also describe a geragicli of the method
to cluster based potentials. The new method is tested oheymtand real-world
problems, and compares favorably with previous approaches

Graphical models are an effective approach for modelingpdexobjects via local interactions. In
such models, a distribution over a set of variables is asduat@ctor according to cliques of a graph
with potentials assigned to each clique. Finding the assa with highest probability in these
models is key to using them in practice, and is often refetwexs the MAP (maximum aposteriori)
assignment problem. In the general case the problem is NR Wwiah complexity exponential in the

tree-width of the underlying graph.

Linear programming (LP) relaxations have proven very usafapproximating the MAP problem,
and often yield satisfactory empirical results. These agphes relax the constraint that the solution
is integral, and generally yield non-integral solutionsowéver, when the LP solution is integral,
it is guaranteed to be the exact MAP. For some classes ofgrabthe LP relaxation is provably
correct. These include the minimum cut problem and maximenykat matching in bi-partite graphs
[8]. Although LP relaxations can be solved using standaréalRers, this may be computationally
intensive for large problems [13]. The key problem with géneP solvers is that they do not use
the graph structure explicitly and thus may be sub-optim#&ims of computational efficiency.

The max-product method [7] is a message passing algoritatrigloften used to approximate the
MAP problem. In contrast to generic LP solvers, it makesditese of the graph structure in
constructing and passing messages, and is also very simpigptement. The relation between
max-product and the LP relaxation has remained largelyvapualthough there are some notable
exceptions: For tree-structured graphs, max-product dhdath yield the exact MAP. A recent
result [1] showed that for maximum weight matching on biti@igraphs max-product and LP also
yield the exact MAP [1]. Finally, Tree-Reweighted max-puot(TRMP) algorithms [5, 10] were
shown to converge to the LP solution for binaryvariables, as shown in [6].

In this work, we propose the Max Product Linear Programmiggrithm (MPLP) - a very simple
variation on max-product that is guaranteed to converge has several advantageous properties.
MPLP is derived from the dual of the LP relaxation, and is egjaint to block coordinate descent in
the dual. Although this results in monotone improvemenhefdual objective, global convergence
is not always guaranteed since coordinate descent may gt ist suboptimal points. This can
be remedied using various approaches, but in practice we foand MPLP to converge to the LP



solution in a majority of the cases we studied. To derive MRIePuse a special form of the dual
LP, which involves the introduction of redundant primaligies and constraints. We show how
the dual variables corresponding to these constraintsaurtho be themessagem the algorithm.
We evaluate the method on Potts models and protein desidpepns, and show that it compares
favorably with max-product (which often does not convergeliese problems) and TRMP.

1 The Max-Product and MPLP Algorithms

The max-product algorithm [7] is one of the most often usethwds for solving MAP problems.

Although it is neither guaranteed to converge to the corsetition, or in fact converge at all, it

provides satisfactory results in some cases. Here we grageralgorithms: EMPLP (edge based
MPLP) and NMPLP (node based MPLP), which are structurally wémilar to max-product, but

have several key advantages:

e After each iteration, the messages yield an upper bound @MthP value, and the se-
quence of bounds is monotone decreasing and convergentmésggages also have a limit
point that is a fixed point of the update rule.

¢ No additional parameters (e.g., tree weights as in [6]) egeired.
o If the fixed point beliefs have a unique maximizer then theyespond to the exact MAP.

e For binary variables, MPLP can be used to obtain the solutican LP relaxation of the
MAP problem. Thus, when this LP relaxation is exact and \desare binary, MPLP will
find the MAP solution. Moreover, for any variable whose kfsliare not tied, the MAP
assignment can be found (i.e., the solution is partiallyodeble).

Pseudo code for the algorithms (and for max-product) isrgimeFig. 1. As we show in the next
sections, MPLP is essentially a block coordinate desceguriéhhm in the dual of a MAP LP re-
laxation. Every update of the MPLP messages correspondsatt minimization of a set of dual
variables. For EMPLP minimization is over the set of varhtorresponding to an edge, and for
NMPLP it is over the set of variables corresponding to allébdges a given node appearsin (i.e., a
star). The properties of MPLP result from its relation to tedual. In what follows we describe
the derivation of the MPLP algorithms and prove their préipsr

2 The MAP Problem and its LP Relaxation

We consider functions over variablesz = {z1,...,x,} defined as follows. Given a gragh =
(V, E) with n vertices, and potentiats; (z;, z,) for all edgesj € E, define the functioh
ijeEE

The MAP problem is defined as finding an assignmept that maximizes the functioyfi(x; ).
Below we describe the standard LP relaxation for this probBenote by u;; (z;, z;) }ije g distri-
butions over variables corresponding to edges £ and{u;(x;)}:cv distributions corresponding
to nodes € V. We will useu to denote a given set of distributions over all edges and siotlee
setM 1 (G) is defined as the set of where pairwise and singleton distributions are consistent

My(G) = {u>0 Do Hig (Tiy w) = py(@5) o Dog, pag (@i, &5) = palas) Vij € B, xi, x; }

inui(‘ri)zl VieV
Now consider the following linear program:
MAPLPR : put* =arg max pu-6. (2)

HEML(G)
wherep-0 is shorthand fop-6 = >~ 1 Z%mj 0i;(xi, xj)pij(xi, z;). Itis easy to show (seee.g.,
[10]) that the optimum of MAPLPR yields an upper bound on the®alue, i.e u>*-0 > f(xar).
Furthermore, when the optimal;(x;) have only integral values, the assignment that maximizes

wi(z;) yields the correct MAP assignment. In what follows we show tiee MPLP algorithms can
be derived from the dual of MAPLPR.

We note that some authors also add a 18071, 6:(x:) to f(a; @). However, these terms can be included
in the pairwise function8;; (x;, z;), so we ignore them for simplicity.




3 The LP Relaxation Dual

Since MAPLPR is an LP, it has an equivalent convex dual. In.Afppve derive a special dual of
MAPLPR using a different representation 8, (G) with redundant variables. The advantage of
this dual is that it allows the derivation of simple messaggsing algorithms. The dual is described
in the following proposition.

Proposition 1 The following optimization problem is a convex dual of MARLP

DMAPLPR:

min d>max Y. max fi(xk, x;) 3)
i TiokeN(i) Tk

s.t. Bji(xj, i) + Bij(xi, x5) = 0i5(xi, 75)

where the dual variables arg;; (z;, z;) for all i5, ji € E and values of; andx;.

The dual has an intuitive interpretation in terms of re-paeterizations. Consider thstar
shaped graph; consisting of node and all its neighborsV(i). Assume the potential on
edgek: (for k € N(i)) is Bri(xk,z;). The value of the MAP assignment for this model is
max Y. max B (zk, ;). This is exactly the term in the objective of DMAPLPR. Thus thual

i geN@) Tk
corresponds to individually decoding star graphs aroultbales: € V' where the potentials on the
graph edges should sum to the original potential. It is easee that this will always result in an
upper bound on the MAP value. The somewhat surprising restitte duality is that there exists a
(3 assignment such thatar decodingields the optimal value of MAPLPR.

4 Block Coordinate Descent in the Dual

To obtain a convergent algorithm we use a simple block coatdi descent strategy. At every
iteration, fix all variables except a subset, and optimizerdkis subset. It turns out that this can
be done in closed form for the cases we consider. We begin byirg the EMPLP algorithm.
Consider fixing all the3 variables except those corresponding to some edge E (i.e., 8;; and
B;i), and minimizing DMAPLPR over the non-fixed variables. Ot terms in the DMAPLPR
objective depend of;; and3;;. We can write those as

f(Bij, Bji) = max A () + max ﬁjz‘(%‘,xi)} + max |:/\j_i(xj) +max G (s, ;)| (4)

X4

where we defined; ”’ (z;) = Z%N(i)\j Aki(x;) andAg; (z;) = maxy, Ori(Tk, z;) asin App. A.
Note that the functiotf (3;;, 8;;) depends on the othgrvalues only througl;\j_i(xj) andX; 7 (z;).
This implies that the optimization can be done solely in ®oh\;;(x;) and there is no need to
store theg values explicitly. The optimaB;;, 3;; are obtained by minimizing (3;;, 3;;) subject

to there-parameterizatiorwonstraint3;; (z;, z;) + Bi;(x:, x;) = 0;;(x;, z;). The following propo-
sition characterizes the minimum ¢f3;;, 5;;). In fact, as mentioned above, we do not need to
characterize the optimah; (z;, z;) itself, but only the newA values.

Proposition 2 Maximizing the functiorf(8;;, 5;:) yields the following\;;(x;) (and the equivalent
expression fon; (z;))

1 1 .
Aji(xi) = —3Ni M) + 5 max (A7 (25) + 05 (i, 25)]

Zj J

The proposition is proved in App. B. Theupdates above resultin the EMPLP algorithm, described
in Fig. 1. Note that since thg optimization affects both;; (x;) and\;;(z;), both thesenessages
need to be updated simultaneously.

We proceed to derive the NMPLP algorithm. For a given nodel/, we consider all its neighbors
J € N(i), and wish to optimize over the variablgs (z;, z;) for ji,ij € E (i.e., all the edgesin a
star centered on), while the other variables are fixed. One way of doing so isse the EMPLP
algorithm for the edges in the star, and iterate it until @gence. We now show that the result of



Inputs: A graphG = (V, E), potential function®;; (z;, z;) for each edge;j € E.
Initialization: Initialize messages to any value.
Algorithm:

e [terate until a stopping criterion is satisfied:
— Max-product: Iterate over messages and updateshifts the max to zero)

mji(z;)— max [mfi(ﬁvj) + 0ij (@i, IJ)} — G
J
— EMPLP: For eachj € E, update);;(z;) and \;;(z;) simultaneously (the update
for \;;(z;) is the same withi and; exchanged)
1. 1 .
Nji(wi)m = GA7 () + 5 max [ A7 (@) + 03 (22, 2)|

2 2 oy

— NMPLP: Iterate over nodesc V and update aly;;(x;) wherej € N (i)

2
%y‘(l’j)ﬁmﬁx Oij (i, x5) — Vi (i) + NO+1 kgv:(i) Yri (T4)

e Calculate node “beliefs™: Séf(z;) to be the sum of incoming messages into nodeV’
(e.g., for NMPLP seb; (i) = >, ¢y () T (%2))-

Output: Return assignment defined as:; = arg maxgz, b(£;).

Figure 1: The max-product, EMPLP and NMPLP algorithms. Max-prod&¥PLP and NMPLP use mes-
sagesmi;, Ai; andv;; respectively. We use the notation; *(z;) = >, ¢y ;)\ ks (25)-

this optimization can be found in closed form. The assunmpaioout3d being fixed outside the star
implies that\;* (x;) is fixed. Define:v;i(z;) = maxy, [0i;(xi,z;) + A;"(x;)]. Simple algebra
yields the following relation betweek; 7 (x;) andy; ;) for k € N(i)

; 2
AN (@) = =) + i(2 S)

keN (i)
Plugging this into the definition of;; (x;) we obtain the NMPLP update in Fig. 1. The messages
for both algorithms can be initialized to any value sinceait e shown that after one iteration they
will correspond to valig3 values.

5 Convergence Properties

The MPLP algorithm decreases the dual objective (i.e., @®upound on the MAP value) at every
iteration, and thus its dual objective values form a coneetgequence. Using arguments similar to
[5] it can be shown that MPLP has a limit point that is a fixedpof its updates. This in itself does
not guarantee convergence to the dual optimum since cadediescent algorithms may get stuck
at a point that is not a global optimum. There are ways of aweing this difficulty, for example by
smoothing the objective [4] or using techniques as in [2¢ (3£636). We leave such extensions for
further work. In this section we provide several resultsiabloe properties of the MPLP fixed points
and their relation to the corresponding LP. First, we cldiat tf all beliefs have unique maxima then
theexactMAP assignment is obtained.

Proposition 3 If the fixed point of MPLP has;(z;) such that for alli the functionb;(z;) has a
unique maximizet}, thenz* is the solution to the MAP problem and the LP relaxation isoéxa

Since the dual objective is always greater than or equalddAP value, it suffices to show that
there exists a dual feasible point whose objective valy&ig). Denote bys*, A* the value of the
corresponding dual parameters at the fixed point of MPLPnThe dual objective satisfies

domax 0 Nwi) =] > maxflonai) =D Y Fulaa) = f(@)

kEN (i) i keEN(i) i keN(5)



To see why the second equality holds, note that;) = max,, ., \J (%) + Bji(zj,z;) and

(2

bj(z}) = maxy, o; /\j_i(a:j) + fi;(zi, z;). By the equalization property in Eq. 9 the arguments of
the two max operations are equal. From the unique maximuomgsson it follows thatz;, x; are

the unique maximizers of the above. It follows ti¥af, 3;; are also maximized by;, z;.

In the general case, the MPLP fixed point may not correspomaddtimal optimum because of the
local optima problem with coordinate descent. However,mihe variables are binary, fixed points
do correspond to primal solutions, as the following profposistates.

Proposition 4 Whenz; are binary, the MPLP fixed point can be used to obtain the propémum.

The claim can be shown by constructing a primal optimal sofut*. For tiedb;, sety;(z;) t0 0.5
and for untied;, sety; (z7) to 1. If b;, b; are not tied we set}; (z;, z}) = 1. If b; is not tied bub;

is, we setu;; (7, z;) = 0.5. If b;, b; are tied thers;;, 3;; can be shown to be maximized at either
rf, o = (0,0),(1,1) orzy,x} = (0,1),(1,0). We then set;; to be0.5 at one of these assignment
pairs. The resultings* is clearly primal feasible. Settingf = b; we obtain that the dual variables
(6%, A%, *) and primalp* satisfy complementary slackness for the LP in Eq. 7 and therg* is
primal optimal. The binary optimality result implies pattdecodability, since [6] shows that the
LP is partially decodable for binary variables.

6 Beyond pairwise potentials: Generalized MPLP

In the previous sections we considered maximizing funstishich factor according to the edges of
the graph. A more general setting considers clusters ., ¢, C {1,...,n} (the set of clusters is
denoted by’), and a functiory (x; 0) = > _6.(z.) defined via potentials over clustetgz.). The
MAP problem in this case also has an LP relaxation (see el1g). [Io define the LP we introduce
the following definitions:S = {cNé: ¢,é € C, cNé # 0} is the set of intersection between clusters
andS(c) = {s € §: s C c} is the set of overlap sets for clusteWe now consider marginals over
the variables it € C ands € S and require that cluster marginagreeon their overlap. Denote
this set byM [, (C). The LP relaxation is then to maximize- 6 subject tou € M, (C).

As in Sec. 4, we can derive message passing updates thatireswdnotone decrease of the dual
LP of the above relaxation. The derivation is similar and wétdhe details. The key observation
is that one needs to introdu¢&(c)| copies of each marginal.(z.) (instead of the two copies
in the pairwise case). Next, as in the EMPLP derivation weirassall 3 are fixed except those
corresponding to some cluster The resulting messages axg.,;(x;) from a clusterc to all of its
intersection sets € S(¢). The update on these messages turns out to be:

1 Yz LInaux 2 (x5 T
/\c—>s(xs) = - (1 - M) )‘s ( S) + |S(C)| Teys Aeg)\ /\S ( S) +90( c)

where for a giver: € C all A._,s should be updated simultaneously foe S(c), andA; ¢(z;) is
defined as the sum of messages intbat are not fronz. We refer to this algorithm as Generalized
EMPLP (GEMPLP). It is possible to derive an algorithm simila NMPLP that updates several
clusters simultaneously, but its structure is more invdlaad we do not address it here.

7 Related Work

Weiss et al. [11] recently studied the fixed points of a cldssax-product likealgorithms. Their
analysis focused on properties of fixed points rather thamnexgence guarantees. Specifically, they
showed that if the counting numbers used in a generalizedprnaduct algorithm satisfy certain
properties, then its fixed points will be the exact MAP if thedibfs have unique maxima, and for
binary variables the solution can be partially decodablethBhese properties are obtained for the
MPLP fixed points, and in fact we can show that MPLP satisfiescbnditions in [11], so that
we obtain these properties as corollaries of [11]. We sthesgever, that [11] does not address
convergence of algorithms, but rather properties of theddfipoints, if they converge.

MPLP is similar in some aspects to Kolmogorov’'s TRW-S altori [5]. TRW-S is also a monotone
coordinate descent method in a dual of the LP relaxation enélxed points also have similar



guarantees to those of MPLP [6]. Furthermore, convergemeeldcal optimum may occur, as it
does for MPLP. One advantage of MPLP lies in the simplicityt®fupdates and the fact that it is
parameter free. The other is its simple generalization terg@ls over clusters of nodes (Sec. 6).
Recently, several new dual LP algorithms have been intrediluehich are more closely related to
our formalism. Werner [12] presented a class of algorithhilvalso improve the dual LP at every
iteration. The simplest of those is the max-sum-diffusigoeathm, which is similar to our EMPLP
algorithm, although the updates are different from oursiependently, Johnsat al. [4] presented

a class of algorithms that improve duals of the MAP-LP usiogrdinate descent. They decompose
the model into tractable parts by replicating variables amirce replication constraints within the
Lagrangian dual. Our basic formulation in Eq. 3 could beastifrom their perspective. However,
the updates in the algorithm and the analysis differ. Johmt@l. also presented a method for
overcoming the local optimum problem, by smoothing the cioje so that it is strictly convex.
Such an approach could also be used within our algorithmsitoiel and Koetter [9] recently
introduced a coordinate descent algorithm for decoding C@Bdes. Their method is specifically
tailored for this case, and uses updates that are similamtedyge based updates.

Finally, the concept of dual coordinate descent may be usagproximating marginals as well. In
[3] we use such an approach to optimize a variational bountd®partition function. The derivation
uses some of the ideas used in the MPLP dual, but importao#lg dot find the minimum for each
coordinate. Instead,gradient likestep is taken at every iteration to decrease the dual obgecti

8 Experiments

We compared NMPLP to three other message passing algorftiiree-Reweighted max-product
(TRMP) [10] 2 standard max-product (MP), and GEMPLP. For MP and TRMP wd tisestandard
approach of damping messages using a facter ef0.5. We ran all algorithms for a maximum of
2000 iterations, and used thgt-timemeasure to compare their speed of convergence. This measure
is defined as follows: At every iteration the beliefs can bedute obtain an assignmentwith value

f(x). We define théit-timeas the first iteration at which the maximum valuefok) is achieved'

We first experimented with &0 x 10 grid graph, with5 values per state. The functigi{x) was

a Potts model:f(z) = >_,;cp 0iZ(xi = x5) + > ey 0;(z;).°> The values for¥,;; and6;(z;)
were randomly drawn fronj—cy, ¢;] and [—cp, cr| respectively, and we used values @fand
cr in the range rang@.1, 2.35] (with intervals 0f0.25), resulting in100 different models. The
clusters for GEMPLP were the faces of the graph [14]. To sé¢MiPLP converges to the LP
solution we also used an LP solver to solve the LP relaxatiéa.found that the the normalized
difference between NMPLP and LP objective was at m@st® (median10~7), suggesting that
NMPLP typically converged to the LP solution. Fig. 2 (top doshows the results for the three
algorithms. It can be seen that while all non-cluster basgdrizthms obtain similarf (x) values,
NMPLP has bettehit-time(in the median) than TRMP and MP, and MP does not converge inyma
cases (see caption). GEMPLP converges more slowly than NBUt obtains much bettgi(x)
values. In fact, i9% of the cases the normalized difference between the GEMPldeike and
the f(x) value was less thar)—?, suggesting that the exact MAP solution was found.

We next applied the algorithms to the real world problems mitgin design. In [13], Yanover
et al. show how these problems can be formalized in terms dinfina MAP in an appropriately
constructed graphical mod&lWe used all algorithms except GNMPLP (since there is no aatur
choice for clusters in this case) to approximate the MAP tgmtuon the97 models used in [13].
In these models the number of states per variab®e-is158, and there are up t680 variables per
model. Fig. 2 (bottom) shows results for all the design peotd. In this case only1% of the MP
runs converged, and NMPLP was better than TRMP in ternfstdfime and comparable irf (x)
value. The performance of MP was good on the runs where iterged.

2As expected, NMPLP was faster than EMPLP so only NMPLP resulk given.

3The edge weights for TRMP corresponded to a uniform distidbwover all spanning trees.

“This is clearly a post-hoc measure since it can only be obdsafter the algorithm has exceeded its maxi-
mum number of iterations. However, it is a reasonable algorindependent measure of convergence.

The potentiab; (z;) may be folded into the pairwise potential to yield a modelre&d). 1.

®Data available from http://jmir.csail.mit.edu/papem$ime7/yanover06a/RosetBesign Dataset.tgz
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Figure 2: Evaluation of message passing algorithms on Potts modelgotein design problems(a,c).
Convergence time results for the Potts models (a) and prdesign problems (c). The box-plots (horiz. red
line indicates median) show the difference betweenhii¢ime for the other algorithms and NMPLEb,d):
Value of integer solutions for the Potts models (b) and pnodesign problems (d). The box-plots show the
normalized difference between the valuefgfc) for NMPLP and the other algorithms. All figures are such
that better MPLP performance yields positi¥eaxis values. Max-product converged 88f% of the cases for

the Potts models, and dri% of the protein problems. Only convergent max-product ruesshown.

9 Conclusion

We have presented a convergent algorithm for MAP approxémdhat is based on block coordi-
nate descent of the MAP-LP relaxation dual. The algorithmalao be extended to cluster based
functions, which result empirically in improved MAP estitea. This is in line with the observa-
tions in [14] that generalized belief propagation algarithcan result in significant performance
improvements. However generalized max-product algostfitd] are not guaranteed to converge
whereas GMPLP is. Furthermore, the GMPLP algorithm doesetptire a region graph and only
involves intersection between pairs of clusters. In cosioly, MPLP has the advantage of resolving
the convergence problems of max-product while retainimgiinplicity, and offering the theoretical
guarantees of LP relaxations. We thus believe it should blili;m a wide array of applications.

A Derivation of the dual

Before deriving the dual, we first express the constrainf\det ) in a slightly different way. The
definition of M (G) in Sec. 2 uses a single distributign;(z;,x;) for everyij € E. In what
follows, we usawo copies of this pairwise distribution for every edge, which denotei, ; (z;, z;)
andfij;(z;, x;), and we add the constraint that these two copies both eqatitinal 1.;;(x;, ;).

For this extended set of pairwise marginals, we consideifdliewing set of constraints which
is clearly equivalent toM,(G). On the rightmost column we give the dual variables that will
correspond to each constraint (we omit non-negativity trairgs).

fij (i w5) = pij(wi, x5)  Vig € B i xy | Bij(wi, x5)
gi(@s, wi) = pij(i ;) Vij € B xg,xj | Bi(wg, @)

i Hij (Zi,25) = py(xy) Vij € B, ij(z4) (6)
>s, Byi(g, @) = pixi)  Vji € E,x; Aji(3)

We denote the set dfu, iz) satisfying these constraints byt (G). We can now state an LP that
is equivalent to MAPLPR, only with an extended set of vagatand constraints. The equivalent
problem is to maximizgs - € subject to(u, i) € My (G) (note that the objective uses theginal

e copy). LP duality transformation of the extended problerids the following LP

min ). 0;
st Aij(x;) — Bij(wi, ;) 2 0
Bij (@i, x5) + Bji(wj, wi) = 0ij (w3, x5)
= 2 ken() i) +0; =20
We next simplify the above LP by eliminating some of its coaisits and variables. Since each
variable §; appears in only one constraint, and the objective minimizeis follows that §; =
max,, ZkeN(i) Aii(z;) and the constraints with; can be discarded. Similarly, sineg; (z;) ap-
pears in a single constraint, we have that foi gk E, ji € E, x;, x; A\ij(2z;) = maxy, Bi;(xq, ;)
and the constraints witk;; (z;), A;i (z;) can also be discarded. Using the eliminafednd; (x;)

VZ],]Z S E,Ii,Ij
Vij € E,xi,:vj
Vi € V, €Ty

()



variables, we obtain that the LP in Eq. 7 is equivalent to th&q. 3. Note that the objective in
Eq. 3is convex since it is a sum of point-wise maxima of corfuextions.

B Proof of Proposition 2
We wish to minimizef in Eq. 4 subject to the constraint that + 5;; = 0;;. Rewrite f as

f(Bij, Bji) = max A () + ﬁjz‘(%,xi)} + max (A () + Bij (2, ;)] (8)
The sum of the two arguments in the max i 7(z;) + )\;i(l'j) + 0i5(x, ;)
(because of the constraints o). Thus the minimum must be greater than
1 max,, 4, {/\;j(:ci) +/\j’i(:z:j) +9ij(a:i,xj)]. One assignment t@ that achieves this mini-
mum is obtained by requiring an equalization conditfon:

NN @g) + Big (i, ) = N () + By, mi) = % (9ij (@i, 25) + A7 (@) + )‘j_i(xj)) 9)

whichimpliesg;;(z;,z;) = 3 (91-3- (i, 25) + N7 (i) — )\;i(:cj)) and a similar expression fak;.
The resulting\;; (z;) = max,, 8;;(x;, z;) are then the ones in Prop. 2.
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