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A Graphical Solution of 3xm Game Matrices

Summary

Anyone seeking to win a game might well employ game
theory to determine his best course of action. One means
of attaining this end in certain types of simple games is
presented in "A Graphical Solution of 3xm Game Matrices."
This method is actually a combination of existing tech-
niques put together in such a way as to afford a complete
picture of the game. From this picture, the optimal

course of action is readily determined.



Introduction

Game theory is a relatively new field of mathematics, originating
with the publication of THE THEORY OF GAMES AND ECONOMIC BEHAVIUR by
John von Neumann and Uskar Morgenstern in 19i;. Since then, the theory
has grown so much in importance as to be considered one of the major
scientific contributions of the first half of the twentieth century.

The most important use of the theory of games to date has been its
application‘to logistics or the plamning of strategy in "games™ of war.
Even now, the RAND Corporation, in conjunction with the U. S. Alr Force,
is working to determine the full extent of its applications. Most
likely, the stratezies in any future conflict will be planned not by
generals on the field but by game theorists and computers far behind
the line of battle.

Game theory, however, is not limited in its use to waging war; it
can also be vsed in the interpretation and application of experimental
data and, as the name implies, in playing ordinary, everyday games. In
short, wherever there is a decision to be made, game theory may be
employed to determine the best course of action.

T was first introduced to the theory of games through the Inter-
School Math Society of Buffalo, an organization devoted to the promotion
of interest in mathematics. Cur study of games was quite interesting,
but I was soon disappointed when I discovered that we weren't actually

learning the "theory" of games, but rather the mechanics involved in
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the solution of a game., 1 desired some reason for the methods we used,
and therefore decided to launch my own investigation of the theory of
games e

During my research, I became intrigued by a few methods of solving
games graphically. I decided to experiment with these in order to see
what sort of variations there might be. One day, my experimentation
revealed what seemed to be a new and different means of solving one
particular classification of games. I tested it on a few games, and,
after some expansion and revision, I was able to develop my idea into
a method that worked in all cases I could imagine.

At this point, I entered my project in the Physics Division of the
Science Conzress of Western New York, as there was no separate division
for mathematics. Here I won second nrize; in the final competition, I
achieved third place. This award entitled me to compete in the State
Science Congress at Vassar College on May 15, 1958, where I won second
prize.

During the sumer of 1958, I had the opportunity to discuss my
project with Dr. John G. Kemeny of Dartmouth College. He offered some
valuable hints concerning a remedy for the one major drawback of my
report, namely the lack of an efficient method for selecting the optimal
solution from the graph. Since that time, I have worked his suggestions
into my project and have attempted an axiomatic proof of my method. This

method, as it now stands, is presented in the remaining chapters of this

report.
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As of now, I have one theorem yet to establish concerning my method.
(A statement of this theorem is presented at the end of the anpendix. )
Once I have accomplished this proof, I hope to secure the publication
of my report in a mathematical magazine. After that, I may continue
to do further research in game theory, or, as seems likely now, I will
turn my attention to the application of Boolean algebra to circuit design.
But whatever I decide to do, I know that I will continue my interest in
mathematics, as my work on this project has helped me to better appreciate

what can be dore and what is being done by modern mathematics.
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An Tllustration of a Graphical Solution
of 3 xm Game Matrices

A game is essentially a conflict sitnation; one persa opposing
another in any sort of contest from a friendly game of cards to a deadly
duel. Fach participant has a certain number of plans which he may
follow in playing the game, and any plan of his, when opposed by a
definite plan of his opponent, will yield a certain result called the
payoff. A complete course of action in playing the game is called a
stfategy, and a good strategy must tell the player exactly what to do
under all circumstances. For instance, in a game of tick-tack-toe, a
strategy must tell a vlayer where to place his first mark, and then,
according to what his opponent does, where to place his remaining marks.
Each complete course of action, and there are about 400 of them, is
properly termed a strategy.

The games which I have considered for solution are limited to two
plavers, one of whom is further limited to three distinct strategies.

I numbered the strategies of the first player, or vlayer 4, 1, 2 and

3; and those of the second player, or player B, 1, 2, 3, « « «, Me

Since each player can choose any one of his strategies, the game can
proceed in any one of 3m different ways, where m is the nurber of
strategies possessed by player B. If player A's strategy is represented
by i, and player B's by j, then an amount gjj can be assigned as the

payoff won by player A as a result of that particular course of the game.



Al]l possible amounts gij can then be arranged in a réctangular array,
or game matrix, with the rows representing the strategies available to
A and the columns the strategies available to B.

Thus, in the game matrix G:

B
1 2 3 h
11 5 213 10
A 2l 31T L5 | o
3T 1611 [k

player A has three stfategies and player B has four. The amounts gij
in the matrix represent the payoff to A for each combination of
strategies. For instance, if A plays strategy 1 and B plays strategy
3, A wins three units. As can be seen from the matrix, player A will
always win in this game. (If player B were to win, a negative entry
would appear in the matrix.)

Obviously, A would like to be able to mix his strategies in such
a manner as to win as much as possible. Similarly, B would like to be
able to mix his strategies in such a manner as to lose as little as
possible. It is in the accomplishment of these aims that game theory
plays an important part.

Since player A has the fewest strategies, it is easlest to consider
him first. A three component probability vector pO can be used to
represent the optimal mixture of his strategies since all its emtries
are non-negative numbers having a sum of one. (The game 1is considered

as being played only once.) It is convenient to label the components
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of this vector x, y, and l-x=y, thereby limiting the number of unknowns .
to two. The next step in the solution is to multiply this vector by the
matrix and obtain the average value of each of B!'s strategies. Thus,

o
D G = (vl, Vs v3, vh), and the following values result:

vy) lx+ 2y +1 - (1)
vo) =lx - 2y + 6 (2)
vy 2x+ by +1 (3)
v),) =bx + 2y + L (L)

At this point, most texts introduce a third unknown, the vector V =
(v,v,vyv), to represent the desired value of the game. They state that
pOGZ“V, or that each of the four payoff values is elther greater than or
equal to v. They then can solve the resulting inequalities for the
aporopriate values of x and ¥

This method, however, would require three dimensions if it were to
be done graphically, and I felt that if the graph could be reduced to
two dimensions, it would be much simpler to work with. In order to
accomplish this reduction, 1 assumed that pOG=V; that is, that all of
the four payoff values were equal to v, and therefore equal to each
other. This actually was to assume that each player would utilize all
of his strategies with his optimal mix, as only in this case would all
the payoffs beequal. Actually, not all the strategies might be active,

and therefore, only two, three, or even none of the payoff values might

be equal. However, 1 found that any of these cases would show up readily



on the graph. Thus eliminating one unknown, I obtained the following

equations:
vy =vg) ¥ = =2x + 5/k (5)
v=V3) ¥ = % (6)
v =vy,) x = 3/8 (7)
Vo=vy) ¥y = =X 5/6 (8)
vp=v)) ¥ = 1/2 (9)
vy=v,) ¥ = =3x + 3/2 (10)

In order to graph these equations, I used a graph marked in fractions
rather than in intezers since, by the definition of a probability vector,
neither x nor y can exceed 1. Also, by the same definition, no value can
be less than zero, and all possible values of x and y are therefore
limited to the area bounded by the two axes and the line x+y=l.

As every game matrix 1s composed of two sets of strategies, different
combinations of these strategies will result in different subgames, all
of which are contained in the original matrix. If one of these subgames
is made sufficiently small, all its strategies will be active, and
therefore all the payoff values will be equal. This means that on the
graph every intersection of three lines (va=vb, Vgo=ve, and Vb=Vc) plus
every intersection of a line v =vy with a boundary (x=0, y=0, x+y=l)
indicates a solution to one subgame of the original matrix. Since every
basic solution of the matrix is associated with at least one square
submatrixl, all that is necessary in order to solve the game is to

determine which subgame solution is also the solution of the original

matrix.






If the game value at a point representing the solution to a
subgame is considered to be v, then since pQ}Z\B every value v
of a strategy k not equal to v must be greater than v if that point
is to be a solution of the matrix. This 1is to say that if a point
is to be the solution of the matrix, all strategies not active at
that point must have a greater value than the active ones.

0n the graph, it can be determined that one strategy has a
larger value than another on one side of the line representing their
equality, and a lesser value on the other side of the line. To
determine which strategy had a greater value on which side of the
line, I compared their values at the point (0,0). Since A's strategy
3 is his only active one at that point, the value for each of B's
strategies is the payoff in the third row. Therefore all I needed
to do was to determine which payoff was larger and then record the
results. If a line happened to pass through the origin, that is, if
two of B's strategies had equal payoffs against A's strategy 3, I
considered either the point (1,0) or the point (0,1) as my point of
reference. To eliminate extra symbols on the graph, 1 indicated the
equation of a line and its corresponding inequalities by writing the
number of each component strategy on that side of the line at which

it was greater than the other. Thus, at the origin in the sample game,

lDresher, Melvin, MATHEMATICAL THEQRY OF ZERO SUM TWO PERSON GAMES,
p. 16
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Vo7V, Vo7 V3, Vp? V), V) ¥ vy, and v) 7 Vg3 and at the point (0,1),

v3> vl.

The next step in the solution is to eliminate those points where
poG V is not satisfied. This is done by discarding all points whose
active strategies have greater values than those of the inactive ones.
For instance, at the intersection of (8), (9), and (10), v < Vg, and
the point therefore cannot be a solution to the matrix. However, at
the intersection of (5), (7) and (9), v;< v3, and the point can be a
solution to the game. Thus, each intersection is checked separately
in order to determine whether or not it can be a solution.

Since this can get to be qﬁite a lengthy process, as all endpoints
must also be checked, I have devised a way to shorten the procedure.
First, I simply check all intersections within the boundaries (the
two axes and the line x+y=l). Then, the only endpoints which I need
to check are those lying on lines that pass through the points leit
by the first check. (For a proof of this method, see Theorem 16.)
Thus, in the sample game, the endpoints of (8) need not be checked.

After this process has been completed in the sample matrix,
only those points indicated by the red dots are left. Since there
are still a nurber of them, however, it must be determined which of

them give the highest game value and thereby the best solution.



To accomplish this, I took the wvalue of y in terms of x from each
of the six equations and substituted it in the expression for the
payoff value of one of its component strategies. (If the v term was
missing in the equation, I merely substituted the appropriate value
of x in the expression.) Making such a substitution for each of the
six equations gives the following results:

v in (5) substituted in (1) 7/2

v in (6) substituted in (1) 6x + 1

x in (7) substituted in (1) 2y + 11/8
v in (8) substituted in (2) =2x + 13/3
v in (9) substituted in (2) =bx + 5

y in (10) substituted in (3) -10x + 7

From the signs of the literal in each expression, the exact manmner
in which the value along each line will vary can be determined. If the
sign is positive, the value will vary in the same way as the literale.
If the sign is negative, the value will vary in the opposite mamners
If the literal is missing altogether, the value will remain constant.*
Thus, the game value for (6) will increase as X increases, and the
value for (8) will decrease as X increases. In (5), the value will

remain constant as there is no literal. After following this procedure

el
FANANS

s

% As is evident, the constant has no effect on the way in which the

value will vary. Therefore, 1t may be ignored in order to shorten

this step.



for each equation, I recorded the results on the graph by indicating
with an arrow the direction in which the value increased along a line.
If the value remainad constant, I used arrows pointing in opposite
directions.

With this information on the graph, it can easily be seen that
points T and IT will give the highest game value. Therefore, A can
use the mixture represented by either one of them, or, since the lie
on a line of constant value, he can use the mixture represented by
any point on the line between them. Thus, two possible mixtures for
A are p0 = (1/L, 3/L, 0) and pt = (3/8, 1/2, 1/8). The general
solution for A may be represented by the strategy po = (x, 5/l -
2x, x - 1/l) where x is greater than or equal to 1/l; but less than
or equal to 3/8. The game value for any of these mixtures will be
7/2.

Player B, in his best mix, should naturally use only those
strategies against which A wins the least. In this case, they are
strategies 1, 2, and L. To find their optimal mixture, I first
reversed the payoff matrix by interchanging the rows and the colunns
and changing the signs of all payoffs. In doing so, I omitted B's
strategy 3 as it gave A a higher value than the game value. Then,

T found B's optimal mixture in the same manner I found A's: first,
T assigned a probability vector to his optimal mixture; second, I
multiplied the matrix by the vector to determine the payoff values

against each of A's strategies; third, I set all of these values



equal to each other and graphed the resulting equations; fourth, I
eliminated those points wiich did not satisfy pOGﬂZV; and fifth, I
determined which of the remaining points gave the optimal solution.
This procedure gave B an optimal strategy of © = (1/2, 1/2, 0, 0).

This is the general method of solution at which 1 have arrived.
0f course, different cases will arise with different matrices, and
in the appendix to this report, I have indicated a few of these
variations along with their solutions.

The general method which I have employed in solving these matrices
is basically my own, and I have indicated a proof of its key features
in the next section. 1In establishing this proof, 1 have used the same
basic structure as used by Dre John G. Kemeny in AN INTRODU CTION TO
FINITE MATHEMATICS. My own theorems were then derived from this
foundation. Definitions of the terms used in the proof will be found

in the glossarye.



M F] s o s
A Graphical Solution of 3xm Game Matrices:
An Axiomatic Proof

Definition 1. A matrix is a rectangular array of numbers written

in the form

g]l glz L gln

gnﬂ_ gm2 sse gm_n

The letters gij stand for real numbers, and m and n are

integers.l

Definition 2. If i represents a strategy of player A and j a
strategy of player B, then the amount gij is the payoff to

player A and the array of all values g; 3 is the game matrix.l

Definition 3. An m component row vector p is a mixed strategy
vector for A if it is a probability vector; similarly, an n
component column vector is a mixed strategy vector for B if
it is a probability vector. (A probability vector is a vector

with non-negative entries whose sum is one.) Let V and v! ve

the vectors

lKemeny, John G., et al, AN INTRODUCTION TO FINITE MATHEMATICS,
Chapter V, Sectlon O.
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v

V= (v,V,eee,v) and V! = | . [ n components
L—*w._——' .
m components v

where v is a number. Then v is the value of the game and po

and qO are optimal strategies if and only if the following

inequalities hold:

Theorem 1. If G is a matrix game which has a value and optimal

strategies, then the value of the game is unique.l

Theorem 2. If G is a matrix game with the value v and optimal

strategies po and qp, then v=pOGqQ.l

Theorem 3. If G is a game with value v and optimal strategies
o0 and qO, then v is the largest expectation A can assure
for himself. Similarly, v is the smallest expectation B

can assure for himself.l

Definition L. A matrix game G is strictly determined if there is

an entry 8ij in G that is the minimum entry in the ith row

and the maximum entry in the jth colurm.t

yeneny, John G., et al, AN INTRODUGTION TO FINITE MATHEMATICS,
Chapter V, Section 6.
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Theorem 4. If G is a strictly determined matrix game with an entry
813 as indicated in Definition L, the value of the game is
v=gij. Moreover, A should chose the row that contains 213 and

=]

B should choose the column that contains gij.l

Theorem 5. If pO and pl are two optimal strategies for A in a matrix

G, then the strategy

p=ap + (1 - a)ph,

where a is any number satisfying 0< a< 1, is also an optimal
strategy for A.
Similarly, if qO and q1 are optimal strategies for B in
G, then the strategy
qg=aq’+ (1 -a)l,
where a is any number satisfying 0<a <1, is also @ optimal

strategy for B.1

Theorem 6. Let G be any mxn matrix gamej; then there exists a value
v for G and optimal strategies pO for player A and qO for
player B. In other words, every matrix game possesses a

solution.2

Theorem 7. If a matrix game G is not strictly determined, there exists

a square submatrix G' of G with all stratesies active such that

Yemeny, John G., et al, Al INTRODUCTION T0 FINITE MATHEMATICS,
Chapter V, Section 6.

2Ipid., Chapter V, Section 7.

-12=-



the optimal strategies pO and qO in G' are also optimal in G.1

Theorem 8. If a square submatrix G!' is a 3x3 matrix with a, b, and
¢ as B's active strategies, and an optimal strategy po = (x, ¥,
1-x~y) for A, one solution lies at the intersection of the lines
representing the equations vg = vy, Vg=v,, and vp=vc. This point
may be anywhere in the volygon bounded by the two axes and the
line x+y=l.

Proof: If all strategies are active, A's probability
vector must contain only non-zero numbers. This limits the
values of x and y to those in theipolygon bounded by the
two axes and x+y=l.

Also, if all of B's strategies are active, then each
must give A the same payoff value. (If a strategy gave a
higher value, B would not use that strategy in his optimal
mix, and it would not be active. If it gave a lower value,

Al's mix would not be optimal, and again the strategy would

not be active.) Thus pOG‘=V, and Va=vp=Vee

Theorem 9. If a square submatrix is a 2x2 contained in a 3x2 matrix
with a and b as Bl's active strategies, and an optimal strategy
pO = (x, y, l-x~y) for A, then one solution lies at the inter-

section of vy=vy with one of the axes or the line x+y=l.

lDresher, Melvin, MATHEMATTCAL THEORY OF TWO PERSON ZERO SUM GAMES,
p. 16.
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Proofs If only two of A's strategies are active, one
entry in the probability vector must be zero. Also, since

a and b are active, v =vy must hold true. Hence the theorem.

Theorem 10. There exists at least one possible solution point Py
for each square submatrix G!' of a matrix G.
Proof: By Theorem 6, every matrix game possesses a

0 can be

solution and optimal strategies po and 0, Since D
represented by a probability vector as in Theorem 8, it can
also be represented on the graph by an ordered pair of

mumbers (x,y).

Theorem 11. If some Py of a square submatrix G' is also to be a
possible solution point for a game matrix G, then every
active strategy of B must have a value vy at Pi such that
for any other strategy k possessed by B, vy vVke

Proof: By Definition 3, if v is the value of the
matrix game G' and pO is A's optimal strategy, then pOG‘Z Ve
But, by Theorem 7, pOG'=V, and P32V must also be true.

Hence the theorem.

Theorem 12. At any point p on a line vy=vy, the value v, is less
than or equal to the value v' at any point p' on one segment
of the line formed by its division by p, and greater than or

equal to the value v'! at any point p'! on the other segment.



Proof: Let the payoff matrix for strategies a and b be

711 810
Gt = g1 822
831 832

and A's probavility vector be pO

(X, ¥ 1-x=y )

E Then, the values v_ and vy, are

Vg = (gll-g3l)x + (g2l"g3l)y + €31 and

v, = (810m830)% + (8p0=832)¥ + 832-

Setting v, equal to vy and solving for y,

£31~211"832*212, , 8327831 .
Y = 82178317822%232  £2178317822%E32

Substituting this in v, and combining terms,

#3181 %32 %10
o™ Puen * Earss) (g21‘€31‘g22+€32

84,78
+ (g917837) ( 22 Sl + 8320
21 3L \ea1m8317822% 232 =

Let k be the coefficient of the x term. Then, if

| k70, v, increases as X increases;

k {0, v, decreases as X increases; and

k =0, v, remains constant.

% If the y term disappears in V=V the theorem can be proved

\ similarly by solving for X.
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Theorem 13. The optimal P is that P; which has passing through it no
line v, =vy with another point P;! giving a greater value to v,

than does Pi .
Proof: If Pi' gave a greater value to vy than did P;, it

would be optimal. Hence for P; to be optimal, Pj' cannot have

a greater value.

Theorem ll. If @ line V=V gives a constant value to v, and passes
through two optimal P;, all points on that line between the two
P; also represent optimal solutions.

Proof: If the endpoints of the line are Pj, then the value
vy of any strategy k of B not active at both endpoints must be
greater than or equal to the value v at both endpoints. Therefore,
it follows that it must be greater than v for the length of the
segment, and since the segment has a constant value, all points

on it renresent optimal solutions.

Theorem 15. All optimal Pi on the line Vo=V described in Theorem 1l
must lie between the two original Py.
Proof: Let V=V, be the line of a constant value v with
the endpoints Py and P,. Then, any line V=V passing through
Pl or Pp must give a greater value to k on that segment of the
line v, =V, containing the other endpoint, and a lesser value to
k on the other segment. Hence, all points on the external

segments are excluded from representing ootimal solutions as

an inactive stratesy has a lesser value than an active one.
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Theorem 16. Any line V=V passing through the intersection of vV =Ve

b

and V=V, not containing a P; in the interior of the polygon
described in Theorem 8 has no P; at tis intersection with a
boundary of the polygon.

Proof: If the point S (see the diagram) at the intersection
of v =Vvy and V=V, is not a P;, then v, must be greater than some
value vi. at S. Then, if v is to’be greater than v, at one endpoint
of V=V the line v, =v; must intersect v =v, between 5 and the
endpoint. By the hyvothesis, this point is not a Pi’ and vy
rust be greater than v, at this intersection. But, since this
intersection lies between S and the endpoimt, v, is also greater

than v at the endooint, and the endpoint cannot be a P.. Hence

the theoreme.

‘AA;‘:‘)’\

Vg &N A S
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Each example in this section is composed of the following:

1)

2)

3)

L)

Appendix:

Matrices and Their Solutions

.

A game matrix G.

An associated probability vector po = (x, y, 1l=x=y) for A

and a probability vector qQ = (a, b, l=a=b) for B's active
strategies. Since the payoff matrix is reversed in finding

B's optimal nmix, qo is written as a row vector instead of a -
column vector.

The equations derived from the matrix. For the sake of

brevity vy is shortened to 1, V=V, to 1=2, etc.

The graph employed in the solution. On the graph is found

the following information:

a) The limiting boundaries (x=0, y=0, x+y=1)
designated by the outer triangle on each
araph.

b) The equations derived from the matrix with
their associated inequalities and changes
of the payoff values.

c) Red dots indicating possible solution points
with two dots indicating the optimal solutione
linless otherwise indicated, the dot belongs
to the intersection of the two lines it lies

between.

-] 8=




5) The solution of the matrix.

6)

Comments on the solution.
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Matrix 1

This matrix is strictly determined; that is, the value £23 is
simultaneously the minimum value in its row and the maximum in its
colum. Thus, by Theorem L, A's optimal mixture is

o0 = (0,1,0),
and B's optimal mixture is

0
q = (0,0,1,0).

As the game is strictly determined, a graph 1s not necessary in its
solution. The rest of the matrices in this section were checked for

such a strictly determined solubion before the graphical method was

used.



L. Payoff values to A
1) =2x =2y + 3
2) =X+ y + 2

3) x+ 2

II. Egqual payoff values

1=2) v = =x/3 + 1/3
1=3) y = =3x/2 + 1/2
2=3) v = 2x

TiI. Solution

po = (1/7, 2/7, )4-/7)
v = 15/7

Matrix 2

B
1 2 3
1{14{3
L3 2
3] 2 2
I.
II.
IIf.

Payoff wvalues to B
1) 2a+ 2b =3
2) a=Db =2

3) -a =2

Equal payoff values

1=2) b = -a/3 + 1/3
1=3) b = =3a/2 + 1/2
2=3) b = 2a
Solution

®© = /7, 2/7, W)
vt =-15/7

Because of the symmetry of this matrix (the rows and the columns

are imterchangeable), the graphs for the solutions of the two players

are the same. Since all strategies are active, the solution is found

by Theorem 8.

=P

























































Glossary
Active strategy - a strategy that is utilized in a player's optimal mix
Game theory - The mathematical theory dealing with decision meking

Mixed strategy - a strategy composed of other strategles combined in

a certain ratio

Optimal - best; an optimal mixture of strategies is that mixture which

wins more for its user than any other
po, qp - optimal strategies for A and B respectively

Payoff - the amount won by a player as a result of a certain course of

action in a game

Probability vector - a vector having only non-negative entries with a

sum of one

trategy - a complete set of rules as to how one player should make his

decisions in a game

Subgame or submatrix - the game or matrix obtained by deleting one or

more strategies from either player's set of strategies in a particular

game

V, V' - the desired payoff value in a game in vector form

Vector - an ordered collection of numbers written in a row or a column
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