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A, Graphical Solutlon of 3lctn Oane llatri.ces

SrmarV

Anyone seeking to lrin a gane might well employ galne

theory to d.eterrnine his best course of action. one mea3s

of attaining this end in cerbaln types of simple games is

presented in nA Graphical Solrrtion of 31(In Gane }[atrices.rl

This method is actually a combination of eristing tech-

niques put togettrer in such a lray as to afford a conplete

pictur"e of tJre glrrl€r From this rricture, the optfunal

course of action ls readily determlned'



a

Introduction

Game theory is a relatively new field of nathemati-cs, originating

with the prrblication of TllB THEORY OI' GAI'ES Ai\D ECOI\IOI'IIC BSTA'/IOR by

John von }leumarrn and Oskar lulorgenstern il 19[L. Si:rce then, the theory

has grown so much in inrportance as bo be considered one of the major

scientj-fic contributions of the fjrst half of the twenti-eth century.

TLre most irn'oortant use of the theory of games to date has been its

aoplication to logistics or ihe plaruring of strategy j.rr rlganesrf of war'

Even now, i;he RAir{D Corporation, in conjr:nction with the U. S. Ail'Force,

is working to determine the fuIL extent of its applications' fiost

likely, the stratelSies in any future conflict will be planneci not lry

generals on the field but by game theorists and computers far behj:rd

the }ine of battle.

Game theory, honever, is not limited in its use to naging war; it

can also be used. in tire interpretation ano application of erperirnental

data and, as the name implies, in playing ordlnary, everyday games' In

shori, ilherever there is a decision to be rnade, game theory rnay be

anployed to determine the best course of action'

I was first introduced to the theory of games tirroudr tne Inter-

school l,lath society of tsuffalo, an orgar:-ization devoted to the 'oromotion

ofinterestinmathenatics.Curstudyofgarneswasquitei-nter'esting'

but I was soon disappointed when I discovered that we werenr t actual] y

learni-ng the tttheoryrr of galrpst but rather the mechanics involved i:t

)
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the sol-ution of a game. I desired some reason for the nrethods we used,

and therefore decided to launch my own investigation of the theory of

gAlnes.

During mv research, I became iltrigued by a few 'nethods of solvJrtg

ganies granhically. I decided to experinent u-ith the se in order to see

what sort of variations there night be. One day, my ex-oerimentation

revealed uhat seemed. to be a new and differenl, means of solving one

particular classification of garnes. I tested it on a few games, and,

after sone expansion and revision, I was able to cievelop my idea into

a method that worked in all cases I could i-rnaqine.

At this point, I entered my project in the Physics Division of the

$cience congress of western IIew York, as lhere was no separate division

for mathernabics. Here I won second nrize; in the final competition, I

achieved third. place. This award entitled' me to ccmpete in the state

Science congress ab Vassar College on Mair L5, L95Bt where I won second

prize.

During the sunmer of 1958, I had the opporbunity to discuss my

projectwithDr.JohnG'KemenyofDari:mouthCo}lege.}leofferedsorne

valuablehintsconcerninga:.emedyfortheonemajordrawbacicofrny

report, nar"iely the lack of an efficlent nethod for selecting the optimal

solution from the graph. Since that tjme, I have worked his suggestions

into my project and have atternpted an axionatic proof of nry method' This

method,asitnowsta:rds,isnreserrtecljrrtherernainingchaptersofthis

report.
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As of now, I have one theorem yet to establish concerning my rnethod.

(A staternent of this theorem is presented at the end of the append-ix.)

C):rce I have accoraplished this proof, I hope to secure the publicatron

of my report in a nathemat-ical magaziue. After that, I nay continue

to do further research in game theory, or: as seems likel;y now, I ivil]

turn my a.i;tent,ion to the aoplication of Booleari algebra to circuj-t <iesign.

But whatever I d.ecid.e to do, I know that I will contj-nue my interest in

mathematics, as rny work on thie proiect has helped me to better appreciate

r*rat can be dore and what is being done by modern niathernatics'
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An fl-lustration of a Graphical- Solution
of 3 :<rn Game l'{atrices

A gane is essentiall_t' a conflict sitr.ration; one .oersoj onposi:tg

another in an;' sort of contest from a friendly garne of eards to a deadly

duel. ilach participant has a certain mrnber of plans which he rnay

follow in playing the game, and any plan of iris, when ooposed by a

definite plan of his opponent, r,rill yield a certai-n result called the

payoff. A corlplete course of action in playing the game is cafled a

stra't,egy, and a .-good strategy inust teIL the player exactly what to d.o

under all circumstances. For instance, in a game of tick-tack-toe, a

strategy must tell a nlayer where to place his first rnark, and then,

aceordlng to r^rhat his or:ponent does, where to plaee his remaining marks.

Each cory:lete cqrrse of action, and tirere are about i+OO of them, is

properly termed a strategy.

The ganes ldrich f liave considered for solution are limited to two

players, one of whom is further limited to three distinct strategies.

I numbered the strategies of the first olayer, or player A, 1, 2 and

3; *d those of the second olayer, or player B, I, 2, 3, .1 II1.o

Since each player can choose any one of his strategiesr the gslne can

proceed in any oue oi 3m d:ifferent wa;ys, where m is the nunber of

strategies possessed. b.-; r;Iayer B. If piayer Ats strategy is represented

by i, and player Br s by i, then an amoi:nt 91; can be assigned as the

payoff won by player A as a result of that pariicular course of the 93J11€.

-1-



All possible amounts gij can then be arranged

or game matrj-x, r'ritkr the rows representing the

A and the colunrns the strateqies available to

Thus, in the game matrix G:

in a rectangular array,

strategies available to

DD.

I

2

?

A

player A has three strategies and player B iras four. The amounts gii

in the matrix r.epresent the p4roff to A for each combiftr.tion of

stratesies. For instance, if A plays strategy 1 and B pl-ays strategy

3, A wins three units. As can be seen frorn the matrix, player A will

always,nrin in this game' (If player B were to rnrin' a negative entry

would appear i-n the matrix' )

0bviously,Awould}iketobeabletorrr.ixhj-sstrategiesinsuch

a manner as to r^ri:l as much as possible' Sinilarly' B would like to be

abletomixhisstrategiesinsuchamannerasto]-oseasLittleas

possib}e.Itisintheaccomp}ishmentoftlreseaimsthatgametheory

olays an imPortant Part'

SinceplayerAhasthefeweststrategies,itiseasiesttoconsider

hirn first. A three component probability vector p0 can be used to

representtheoptirnalmixtr:reofhisstrateiiiessjlceallitser.rtries

&fe oorr-fiegative nrxnbers havir\q a sum of one. (Ttre game is considered

asbeingplayed.onlyonce.)Itisconvenienttolabelthecomponenbs

q 2 3 0

{ il 5 6

I 6 I ir
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of this vector xt yt and l-x-y, thereby liniting the number of unknotrns,

to two. The next step in the solutign is to multipty this vector by the

matrix and obtain tkre average value of each of Bt s strategies. Thust

O^/p'G = (vr, v2, v3, v6,), and the following values resuft:

tf) )s+2Y+L

v2)-Ix-2y+6

t3) 2x + ,i1y + 1

q*) -)+x + 2Y + Ia

(r)

(z)

(r)

(h)

At this poinb, most texts introduce a third. unknown, the vector v =

(vrvrvrv), to represent the iesjred value of the game' They state that

pOO) V, or that each of the four payoff vaf-ues is either greater than or

equal to v. They then can solve the resulting inequalities for the

anpropriate values of x anci Y.

Thismethod,hor^rever,wouldrequlret,Lrreedj-mensionsj.fitwereto

bedonegraphicallyrancllfeltthatifthegraphcouldberedrrcedto

twodimensions,itwouldbemuchsj-nrp}ertoworkwith.Inorderto

aecomplish this reductj-on, I assumed that pOG=V; that is, that all of

tirefourpayoffvalrreswereequaltov,and.thereforeequaltoeach

other. This actualry was to assume that each player would utilize arl

ofhisstrategieswithhisoptimalnlx,asonlyinthiscasewor].da]J.

tirepayoffsbeequal.Actually,notal].thes.i;rategiesm:ightbeactive'

and' therefore, only two, three, or even none of the payoff values might

be equal. I{owever, I found. that any of tirese cases woul-d' show up readily

-3-



on the graph.

equations:

Thus elininating one unknor.m, I obtalned the following

vr=v2) x

vr-v3) ts

vr=v1*) x

v2=v3) y

v2=v1t) X

v3=v1) J

= -Zx + 5/tr

x

3/B

-y + lf6
t/2

-3x + 3/z

$)
(6)

(? )

(B)

(e)

(ro)

In order to graph these equations, I used a graph narked in fractions

rather than in integers since, by the d.efinition of a probability vector,

neither x nor y can exceed I. .Llso, by the same defi.l.}ition, no value can

be less i;han zero, md all possi-ble valu-es of x and y are therefore

ljmited to the area bound.ed by the ttro axes and the line x+y=l'

Aseverygamematrixiscontposedoftwosetsofstrategies,different

combinations of these strategies will result j:r d"i-fferent subgames' all

ofwhicharecontajned.intheoriginalmatrix.Ifoneofthesesubgames

is rnade sulficiently srnall, all its strategies wil]. be active, md

thereforealltirepayoffvalueswil].beequa}.Thismeansthatonthe

graph every intersection of three li-nes (v"=v5r vsrvsr and v6=v") plus

every intersection of a ljne va=vb with a boundary (x=o' y=o' x+1n'l)

indicat,es a soliltion to one subgame of the original matrix' Sj:rce every

basicsolutionofthema.i;rixisassociatedwithatleastonesquare

submatri:cl, a[ that is necessary in order to so]ve the game is to

deternr.iner,lhichsubgamesolutionisa].sothesolutionoftheoriginal

matrix.

-l+-



Oraptr for Player A

Notel lbe red dots pertain
they lie betneen.

Scale - h8lf

to the inter:sections of the Ilnes



If the game value at a point representing the solution to a

subgame is considered to be v, then si-nce p0G2V, every velue v6

of a strategy k not equal to v must be greater than v j-f that point

is to be a solution of the matrix. This is to say that if a point

is to be the solutj-on of the nratrix, all strategies not active at

that point rnust have a greater value than the active or.€sr

&t the graph, it can be determined that one strategy has a

larger value than another on one side of 'bhe line representi-:eg their

equality, and a lesser value on the other side of ttre line. To

deterr,r-ine wir-ich strategy had a greater value on wirich side of the

line, I comparecl their values at the point (OrO). Since Ats strategy

3 is his only active one at that pofurt, the value foreach of Bts

strategies is the pa,voff in the third row. Therefore al-l- f needed

to d.o was to determine which Dayoff was larger and then record the

results. If a line hapnened to pass ttrroug.h the origin, that is, if

trvo of Brs strategies had equal nayoffs against Ats stratesX 3r I

consldered either ihe point (rro) or the noint (orr) as ny point of

reference. To eli.nrinate extra symbols on the graph, I indicated the

equation of a line and its corresponding inequalities b;r writing the

mlnber of each component strategy on that sid-e of the line at which

it was greater than the other. Thus, at the origin in the sample qame,

lDresher, I,{e}vin, }{AT}EI"IATICAL THE0RY 0F ZERO Sril"{ TWO PEr.iSilN GAi'ES'

p. 16
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v27vat u.7u3, vr)1*: v1) v' and v;*"tv33 and at the point (Orl),

vr) va'

The nerb si;ep in the solu-bion is i;o eliminate those points where

pOG V is not satisfj-ed. This is done by discard:ing all points whose

active strategies have greater values than those of the inae'bive orleso

For instance, at the intersection of (8), (9), ana (10), tf< v3r arrd

the point therefore carrnot be a solution to the tnatrix. However, at

the intersection of (5,\, (?) and (9), v1( v3: and the point can be a

solution to the gaJne. Thus, each intersection is checked separately

in order t o d.etenni:re rshether or not it can be a solution.

since thj-s can get to be quite a lengthy processr as all endpoints

must also be ehecked, I have d.evised a way to shorten the procednre'

First, I si:nply check all intersections r,rithjn the bo*nd-aries (the

two axes and the lins )c+y=I). Then, the only endpoints which I need

to check are those lying on lines that pass through the points left

by the first check. (For a proof of this rnethod, see Theorem tO' )

Thus, in the sample galne, the end'points of (B) need not be checked'

Arterthisprocesshasbeencomlr}etedinthesamplematrix,

onlythosepointsindieatedbythered.d.obsareleft.Sincethere

are still a nunber of thern, holoever, i.t rnrst be d.ete::rrined whic}r of

thengivethehighestganevalueandtherebythebestsolutlon.

4-



To accornolish this, I took-bhe val-ue of y in terrns of x frcm eaeh

of the six eqrrations and substituted it in the ex,pression for the

payoff value of one of its cornponent strategies. (ff tfre y ter:n was

missing in the equation, I merely substituted the appropriate vaLue

of x in the erpression. ) t'taicing such a substitution for each of tlre

six equations gives the follor^ring results:

y in (5) substituted in (l) 7/2

Y in (5) substituted in (r) 6x + I

x in (7) substituteo in (1) 2Y + LL/B

y in (B) substituted in (z) -zx + t3/3

Y in (9) substituted in (Z) -W * 5

y in (f0) srrbstitutec in (3) -fox + I

From the signs of the literal 1n each expression, i;he exact manner

in wi'r-ich the value along eaeh llne riri-r-L vary carr be detern'ri3ed' If the

signisposj.tive,thevaluer,iillvaryin-t,iresamewayastlreliteral.

Ifthesignisnegative,thevafuewillvaryintheoppositeln&flIlefo

If the literal- is nissj-ng altogether, the value will reniain constant'it

Thus, the garne value for (6) wif:L increase as x increases' and the

value for (B) .r,n11 decrease as x j-ncreases. In (5), lhe value will

remain constant as 'bhere is no literal. Mter following tiris procedure

no effect on the waY in which the

may be ignored in order to shorten
')t As is

value

this

evidentr the

will vary.

step.

constant has

Therefore, it



for each equation, I recorded the resulbs on tire graph by indieating

with a:r arrow tlie direction in r^hich tite value increased along a line.

If the value rernained constant, I used arrows pointing in opposite

directions.

With tiris information on the graph, i-t can easily be seen that

poin'Ls I and II will give the highest game value. Thereforer A can

use the mjxture represented by either one of them, olr sinee thq lie

on a line of constali va.lue, he can use the nrixture represented $1

any point on the line between them. Thr-rs, two possibl-e mjxtures for

A are p0 = (r/L, 3/)r, 0) and pI = (3lB , L/2, r/B). The general

solu.tion for A may be represented by the strategy p0 = (*, 5/\ -

2x, x - L/L) rdrere x is greater than or equal Lo L/L+ but less than

or equal to 3fB. The game value for any of i;hese mixtures will be

7 /2.

PlayerBofuhisbestnix,shou.]-dnaturallyuseonl;ri;hose

strategies against llhich A lrins the least. In th-is case, they are

strategies 1, 2, and [. To find' their opti:nal mixbure' I fjrst

reversed ihe payoff matrix by interchanging the rcrws and the cohunns

and changing the sigrs of all payoffs' In doi:rg so I omitted Brs

strategy 3 as it gave A a higher valu-e than the garae value' Thent

I found. Bts optimal n:'j-:rbure in the sa]ne ma]-rner I fourrd A|s: flrst'

I assigned a probability vector to his optimal mi:cbure; second, I

multinlied the matrix by the vector to deterrnine tire payoff values

against each of Ars strategies; third', I set all of tnese valu"es

-6-



equal- to each other and graphed the resu-lting equations; fourthr 1

elimj-nated those points wirich cU-d" not satisfv pOGIV; and fift'hr I

deterrrrined which of the remaininE noints qave tire optirnal solution.

This procedure gave B an ontimal strategy of q0 = 1tfZ, tfZ, C, 0)'

This is i;he general nethod. of solution at dlieh I have arrived.

of course, d,ifferent cases will arise ltith different matrices, and

in the appenclix to ihis re1:rori, I have indicated a few of 'bhese

variations along wittr their solr-r'tions'

'Ihe general raethod. which l have employed il solving -i;hese rnatrices

is basicalty my own, ancl I have indicated a "oroof of its ke17 featu:'es

in the next section. In establishing this proof, r har,"e rrsed tjre same

basic structure as used by lr. John G. Kemeny in Altr IllT'iiJ-iJil'JII$\i To

FII{IT5}1ATHEI,1ATI0S.l'tyorrlntheoremswerethenderivedfronthis

foundation'Definitlonsoftheterrnsusedintheproofwillbefqrnd

in the glossarY.



A ilraphical- $olution of J:an Garne Matricesl
An Axiomaii- c Proof

Definition l. A matrix j-s a rectan;1ular array of nurnbers r,rritten

in the fornr

Q=

/ro 
fi:rz ... ut\

I 3zr 9pz ' " tttr 
1.

\;- 

'EmZ 

.:. 
'r- 

)'
The tetters A:. stand for real nunbers, end m and n are-'rJ

Il_ntegers.

Definition 2. If i- represents a strategy of player A and .1 a

strateqy of player B, then the a:nount gij is the payoff to

player A and the arrail of aIL values gii is the 'qane ma'uri:<'I

Definition 3. An rn com'oonent row vector p is a rnjxed strategy

vectorforAifiti-saprobabilii;:rvector;si:nilarlyrann

component colurrrn vector is a mixed strategy vector for B j-f

itisaprobability..rector.(Aprobabilitl-vectorisavector

with non-negative entries whose sum is one') Let V and Vl be

the vectors

lK"*"r.,Y, JOhN G., Et gI' A}I I}JTli,OJ]UCTril[\ TO FII\JITE I']ATHFT{IATICS'

0haPter V, Seciion O'

-10-



V = .(vo vr". ..: v), and V t

m components

where v is a number. Then v is

arrd q0 are optjlral strategies if

inequalities hold:

components

value of the game and p0

only if the following

value v anri optirnal

flj
the

and

Theorem 1. Ii G

strategies,

rJd

then

^oa 7,,
rJg-,,

Gqol vt'1

rnatrix game which has a val-rp anci optlmal

the value of the garae is u:riqre.l

'lheorem 2. If G

strategies

is a matrix ,qarne with tite

po and qo, thun 't =pocqo.l

Theorem 3. If G is a garrp with value v and optirnal strategies

p0 and. q0, tiren v is the largest expectation A can assure

for himself . si:nilarly, v i-s the snallest ercpectation Ll

can assure for hi-:nself .l

Definition h. A rnatrix garne

an entrY gij i G that i

and. the maximum entrY in

strictly determined j-f there is

e nr-inimum entry in 't he ith rctw

jth colurnn.l

Gis

sth

the

rKemeny, John
0rapter

INT]TODUCTIOJ\|G. r €t a} , .At\

v, sedfiffi 6.

-r1-
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Theorem h. If G is a strictly determined matrix gane with an entry

gij r indicated in Definition [, the va]-ue of the garne is

'n=gij. lloreover, A should chose the row that contains gi; and

B should choose the column ihat contains gtr.f

Theorem !. tf p0 r:rd pl are two optin"ral strategies for A in a matrix

G, then the stra-tegy

p=apo+(1 -a)pI,

where a is any nurnber satisfying 0 ( a ( 1, is also an optirnal

strate3y for A.

Similarly, iJ q0 
"nd 

ql are optimal strategies for B in

G, then the strategY

q=aqo+ (1 -a)ql,

where a is any nunber satisf-ving 0 < a ( 1, is afso ar opti-nal

strategy for 8.1

Theorern 6. Let G be any n'rxn matri:c game; then there exists a vafue

v for G and optimal strateqie" p0 f* player A and qO for

player B. In other words, every matrix garne possesses a

solution.2

Theorem ?. If a matrix game G is not strictly deternr-ined, there exists

a square submatrix Gt of G r,rith a-11 strategies active such that

to"r"r,", 
John G., et alr.AIr rli'rRglucrrol'l T'J Filirrg I'iA1'Fltlar-rcs,

cirapter v, sedioE 5.

2lbid., Chapter V, Section 7.
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the optlrnal strateqies p0 *rd qC in Gr are also optimal in G.l

'rheorem B. If a square submatrix Gt is a 3x3 matrix with a, b, and

c as Br s actlve strategies, and an op'i;j-rnal strategy p0 = (x, y,

1-*-y) for A, one soluti-on lies at the interseciion of the lines

representing the equations vs = vfo, va=vcr and v6=vs. 'Ihis point

may be anyvrhere in the oolygon bounded by the iwo axes and the

|lns >(+/=1 o

Proof: If al-l strategies are active, Ars probability

vector mu-st contain only non-zero nurnlcers. This hrnits the

values of x a:rd y to those in the Dolyqon bounded b.y the

two axes and x+tr1=I.

Also, if all of Bts strategies are active, then each

nust give A the saITIe payoff value. (If a strategy gave a

higher value, B would nob use that strategy in his optirnal

mix, and it would. not be active. If it gave a lower value,

Ar s mix would not be optimal, and again the strateSy would

not be active. ) Thus pocr=Vr and" vs=v[=vs'

Theorem 9. If a square submatrix is a 2x2 contained in a 3x2 natrix

with a and b as Bt s active strategies, and an optimal strateg-y

p0 = (x, y, l-x-y) for A, then one solution lies at the inter-

section of va=v5 rr,rith one of lhe axes or tire lj.l]e;+y=I.

IDresher, l.telv-in, I'1ATIImIATICAL TtEtlRY O!' 'Iiii0 Pi*"SOi{ ilEP"O SUl'r GA}ES'
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fuoof t If only two of Ars strai;egies are active, one

entry in the probability vector rnust be zero. Also, since

a and b are active, va=vb nrust hold true. Hence the theorem.

Theorem 10. There exists at least one possible soluti-on point Pi

for each square submatrix Gt of a matrix G.

Proof: By Theorem 6, every rnatrix game possesses a

solution and optimal strategies p0 and q0. Since p0 can be

represented by a probabili-ty veetor as in Theorem B, it can

also be represented on the graph by an ordered pair of

nurnbers (*ry).

Theorem l-l-. If some Pi of a squrre submatrix Gr is also to be a

fossible solution point for a game rnatrix G, then every

active strategy of B must have a value vs at P1 such tiiat

fcr any other strategy k possessed b.ir B, va vk.

Proof! tsy Definition 3, if v is the value of the

matrix game Gt and p0 is Ar s optjmal strategy, then pOGr r V.

But, by Theorem 7, pOGr=V: &ild pOaZV nust also be true.

Hence the theorem.

Theorem 12. At any loint p on a line v*=v6, the value v* is less

than or equal to the value vr at any point pr on one segment

of the line fornpd by its division by p, and greater than or

equal to the value vt I at any poinf pr I on the oftrer segmenb.

-u-



Proof: Let the payoff matrix for strateqies a and b

Gl=
I?.LL 

*t, 
\

I err- gzz 
\

\/
\*t,- 4zl

bu po = (x, y,

are

and Ars probability vector

Then, the values v" and v6

l-x-y).

(s21-s31)x + e31:

(822'832)Y + 832.

+

+

(s11-431)x

Gv2-4)x

andVâ

vb

Setting vr eqrral to v6 a:rd solving for yt

s3r-s1r-e32+q]3x n _sJ*.:,].-_ .
x = 82f-83l-gz2+932 8zre3L-e22+932

and combinirg termst

cj -9-32'3L + 532.
E2y-83y-822!8

Substituting

r
ta = l*.

L

+

v 4̂

(n

)

l_n

+I

ol

this

-L .-?

(g"t

r ?'j

2L

It

Let k be tire coefficient of the x term'

k 7 O, vn increases as x i-ncreases;

k (0, v" decreases as x increases; and

k = O, v, remains constant'

If the Y ternr disgPPears i.n v"=v5:

sirailarty bY solving for x'

Then, J.f

-Li-
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Theoreni 13. The ontimal Pt is that Pi which has passing through

line va=Ih itith another point Pir giving a greater value to

than does P1.

Proof: If Pit gave a greater valr:.e to v* than d:id Pir it

nould be opti-ma1. Hence for Pi to be optimal, P1l cannot have

a greater value.

Theorem th. If q tine va=vb gives a constant value to v" and passes

through ti,,ro opi;inal Pir all points on that line between the two

Pi also represeni optirnal solutions.

Proof: If the endpoints of the line are Pi, then the value

vi. of any strategy k of B not active at both endpoints n'Lr-rst b e

qreater thsn or equ-al to tlre value v at both endpoints. Therefore,

it follows that it nust be qreater tlian v for the length of the

segrnent, a]]d since the segment has a cons'bant value, all points

on it renresent optirnal solutions'

Theorem 15. A1I ontimal Pi on the line v"=v'n rlescribed" in Theorem 1l-l

must lie between the two original Pi'

hoof : Let v*=tb be the h-ne of a constant value v with

the erd.points P1 and P2. Then, any li:re t"=tk passing throqgh

Pl * P2 rnust give a greater value to k on that segment of the

linevr=vbcontainingiheotherendpointrandalesserval-t'reto

k on the other segment. Hence, a1-L points on the external

segnrents are excluded rrom rerrresenting ontirnal solutions as

aninactivesLrateqyhasalesservaluet,Lrananactiveone.

it no

v
4̂

-16-



Theorem 16. Any Line va=vb passing throu;.$r the intersection of v"=v"

and v'=v" not containlnq a Pi in tire interior of the polygon

described in Theorem B has no Pi at tj-s intersection with a

boundary of the polygon.

koof : If the noj-nt S (see the diagrarn) at the inbersection

of v.=v6 and v6=v" is not a Pir then v, raust be grea-ber than some

value vL at S. Then, jJ rk is to be greater than v, at one erdooj-nt

of v"=v6r the line vaoVk rnust jntersect va=vb betrnreen S and the

endpoint. By t'he hyloothesis, this point is not a P* and v"

nrust be greater than v" at this intersection. But, since this

intersection lies between S a:rd tire encipoinb, v* is also greater

than v" at the endooint, and ihe endpoint cartnot be a Pt. Hence

the i;heorem.

;vL
s

f .>{,

v4 {\y r,tot V x

{".7{c '.J<\ (vc

-L7-
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Appendixl

I'lai,rices and Their Solutions

example in lhis section is comoosed of the following4:

game matrix G.

associai,ed. probabilit;" vector p0 = (x, y, l-x-y) for A

The equations derived frotn

brevity v, is shortened to

The graPh emPlcYed in the

the following informaticu^t:

3)

), \

a'd a probabitity vector q0 = (a, b, 1-a-b) for Bts active

strategies. since tire payoff rnatrix is reversed in finding

Bt s op-i;imal nix, q0 i" roritten as a row veci:or instead oi a

column vec'r,or.

the matrix. For tire sake of

1, vr=v, to l=2r etc.

solution. On the graPh is f out:d

The li-nlting boundaries (:c=0, pO, x+y=I)

d.esignated. by the outer tri'angle on each

.qraph.

Tl-re eq-Lrations derived frorn the matrix rrith

their associated. inequalii;ies and char€es

of tire PaYoff val-ues'

Red dots indicating oossible solubion polnts

with two dots indicating the optimal solution'

Unless obherwise j-ndicated, the dot belongs

to the interseciion of the two lines i-t lies

tletween'

a)

b)

c)

-lB-



5) The solution of the natrix.

6) Coirnnents on the solution.

-lBa-



i4airix 1

B

123b
.:..--i

I

A2

filismat,ri:cisstrictlydeternrined;thatis,t}revalueg23'u

sintultaneousiy ttie mini:nrm valrre in i,cs ro-,r and" the nraxj_mum in its

column. 'l'}lus, b;r Theoren [, Ars optirnal injxture is

po = (ortro),

and Brs optimal nrirLure is
n

qu = (ororrro).

AsLhegameisstrictt;lcieterrrri:red,agraohisnotnecessaryinits

solution. The rest of the matrices in this section were checked for

such a strictly d.etermjled solution before the graphical- method was

used.

t 7 3 l+

6 )+ 5

l 2 e )

-19-



]-iatrix 2

nD

123

1

A2
?

Payoff values to A

1) -Zx -2y + 3

2)-x+y+2

3)x+z

IL Equal nayoff values

L=Z)y=-x/3*L/3
t=3)y=4xf2+t/2
2=3)y=b

III. Solution

po =_ Ltlt , 2/7, V7)
v = Lr/l

Because of tlie s.-,nrunetr-rr of this

are interchangeable)o tfte graphs for

are the s€Jrleo Since aIL strategies

b;r Theorem B.

If. Eqral oa;roff values

1=2)b=-"/3*L/l
t=3)b=4afz+t/z
2=3) o = 2a

IfI. Solution

qo = (t/l , z/7, VT)yt =-L5/"1

I. Payoff values to

I) 2a+26-3

2) a-b-2

3) -a - 2

matrix (the roirls and the coltunns

the solutions of the tlto olaYers

are active, the solutj-on is for:nd

-20-
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Matrix 3

B

123

I. Payoff values to A

1) eOOx + )OAy + )
2) 30e( - 1O0y + 103
3)-ZOOx-20Oy+3O3

ff. Equal payoff values

t=2)y=x/\+L/I+
t=3) y =' -W5 + 3/5
Z=3)y--$y+Z

III. Solution

po = (t/3, t/1, t/3)
v = 509/3

I. Payoff val-ues to B

r)-rooa-300b-193
z)-zooa + 100b - 103
3) l00a + 2oob - 303

II. Eqlra1 payoff values

1=2) b = a/lt
1=3)b=-l+a/i*z/5
e=3)b=-Js+2

l-II . lio-Lut'L on

no = 1Bf z:r, z/zL, LL/IL)
ut = _5og/3

Srcept for the fact that this matrix lacks symmetryr its solution

is simi-lar to that of Matrjx 2 and is also derived by Theorem B.

203 h03 103

303 3 103

3. r03 303

-22-
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Matnix h

B

123
t

A2
3

I. Payoff values to A

1)ax+y+2
2) v+3
3)-a.-y+h

II. Equal paYoff values

1=2) x = L/z
t-=3)X=-2x+1
Z*ili=-x+L/2

III. Solution

p0 = (x, 1-2x, x)
v.3

I. Payoff values to B

1) -2a-b-2
2) _b_3
3J 2a+b-h

ff. Eq'rs,l payoff values

t=2) a - t/Z
1=3)b=-ls+1.
2=3)b=-a+L/2

Iff. Solution

q0 = (a, I-2a, a)
yt=r]

Tn ttris matrix, the value along the li-ne representirg v1=v3 is

constant and, since both endpoints of the Line segment are possible

solution points, every point rlong the line represents a solution'

Thus, a general j:rstead of a specific so}rtion results' To transforrt

this general solution to a specific one, vafure5 can be substit'uted fcn

x and a in p0 a'd q0 as long as x and I luta greater t'Lran or eqral to

zero and less tlras or equal to one-ha1f. Theorems 8, tl+, anO $ apply

to this solution.

h 3,. 2

3 l+ 3

2 3 h

-2b-
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I,fstri:c 5

B

123
1

A2
3',

I. Payoff values to A

1)-5x-5y+B
z) x+ W

. 3) 3x-3y+3
If, Equrl pryoff values

I=Z)y=4rylla+L
I-3)y--Bx/3+5/3
z=3)y-x/5+3/5

IIf. Solution

f. Payoff values to B

1) 3a+5u-5
2) -2t - 2b
3)-5a+3b-3

II. Eqrnl payoff values

1=2)b-4e/7*6/t
1=3)b=-l+a+3/z
2=3)b*3lS+3/5

IIf. Solution

qo = (o, 6/7, L/7)
yr = -LZ/?

po - (z/7, 5/7, o)
v - r2/7

t{ot all strategies in this ns.trix are actlve, and its solution i.s

therefore ldenbieal to ttrat of a square subnatrjx conbained wit'bin it.

It may be norbed that the origtnal essr:mption of er 1 pqyoff values being

e$ral- is falsc. Horever, as was ncntioned in the text, thj-s situation

is obvious on the graph as, in one instance, ttte equations inberscct

rithort ttre rarge of possible va-lues fe x and Xr ard j.n ttra other

instance, an endpoint of a llne effords a better solutlm then thc

intersectd.on of the thee lines. Theorem 9 was used to fi:td tltc

solution.

3 I 6

2 2 o

I 0 3

-26-
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I
A2

3

Matrk 6

B

123r
3 2 Ir

0 b t
t 3 h

I. Fayoff values to A r. Payoff, values to B

1) Y-y+! 1) a+2b-h
ii **y+3 2) a-3b-l
ji -3y +-l+ 3) :a i b - l+

'*ff.-. -fduef psyoff values rl. Equrl payoff values

r=z) x - 3rJz -r l:;] i :t/:

fII. -'C'6j:ft1-iiii' III. Ilo.Lution

po * (V5, !5, o) qo - (z/5,t l/5, o)
'o - fr/'5 vt - -L2/5

fhis nstr.lx is si.eilar to Matrix 5 fn tfret nstt, r1'l itc strategiss

arc aetive. Frora ttp netrlx lt ic evident that Bts st'ratery 3 is

inferior to striitegy 1, as be loses nore no nattcr r&et gtrrtGry a

plalp. [?rar.cf6.c, tlrc peydf velusc for these two streteglea cennot

bc eqlrl cithout giving a negative value to an 4try Lu tht probabillty

vaetor. Slnoc ttris is i.urpossible, Theorcn gmrst be onployed to find

tbe solutd.on.

-28-
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Matrix 7

B

t
A2

3

f. Fayoff values to A

1)-x+)y+2
z) x-by+5
3) x+lY+!
l+)'sc-hy*5

If. Equal PaYoff values

r=2)y=2x/7+.3/T
t=3)y=-y+I/Z
r=l+) X = V7
Z-3) y = V9
Z=h) x * L/Z
l=h)y=-a/9*5/g

IIf. Solution

po - (r/rg, Vg, t/z)
- v - 5g/LB

I. Payoff values to B

1) a-hb-2
2) a+5b-6
3)-a-.l+u-r

II. Eqg'ra} PaYoff values

1-2) b = \/g
t=3) a = t/Z
2=3)b--za/g^5/g

III. Solution

qo = (t/2, )+/9, r/18, o)
yr = _59/LB

The method of solution of this matrix is sini-lar to that used in

the terb of the report. Note that by Theorem 16, the endpoi:rts of

vlrvl-1r v2Gv[r and v3-v1* d.o not have to be checked for possible solution

points.

I 6 2 5

5 I 6 2

2 9 1 6

-30-



31

ldatrix 7

v
Hlayer A

Scale - 5l+:1

Hlayer B

0

Scale - 18:1



T 3 5 3 I

h 2 0 0 2

1 2 I l+ l+

Matri:c B

B

r23l+5
1

A2
3

I. Payoff values to A

t)3y+1 l+) -x-l+Y+fr
ii'"*.i S')'3x-zY+l+
3)Lx-Y+1

fI. Equal PaYoff values

r-2) x -x/3*L/3 2=\) Y =-{z+-t/z
1=1i; - ;' z=5) u = -27 + )'
r=h) y = -x/7. + 3/7. t=tri "" = -l^x/3 + L
Lti y= -i*/5i't/S 3=5.)Y= -rx+7
A-ti y o J:c - I l+=5) Y - x

IfI. Solution

po - (318, i/8, Vl+)
v - I7/B

Ascanbeseenfromthismatrix,thenr:rnberofeqretionstobe

graphed lncreases l|-ith th8 nurnber of strategies available to Player B'

In gernral, ntren B has m strategies, I + ? +''' + n-I equations

result. Thls faat dos lnesent a drar'foack to the method stren B posscsses

anr:rnberofstrate8jesrbutequallycomplexsituationsarisewiththc

use of orbher methods of solution'

'32-



As A sins the same amount against Bls strategies 1, 3, \, and 5r

there are a total of four possible sub-natrices for use in ca-lcirlating

Brs optimal strategy. However, only tlto of these submatrices are

actually optinal; these beir:g the ones containing strategies Ir 3r and

[, and I, l+, and l. The reason the other tuo cqnbinations of the

strategies do not offer opti:inal solutions is that orrly two of Brs

strategies ere active in then utrile three of Als 8tr6r

Since the so.Lutions for the two optj.na-l strategies are siJtil€r

to others presented in this eppendlx, they themselves are nsb jncluded.

However, the results of these solutions give B optima-l strategies of

qo * (L7 h2, o, 3/32, 318, o) and

ql = (n/32, o' 9/32, o, 3/B).

The garae value fe B is vl = 47f9.

-32t'
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1

A2
3

Matrix 9

B

r23l+
1 3 t 1

1 2 0 b

l+ 3 0 3

I. Payoff values f' PaYoff va'lues

1)-3x-3y+l+ r)-l+u-r
Ai 4*t" ? 3a+hb-l+
ti r; - 3) -a+Jb-Jr'
h)-2x+y+3

II. Eqnsl payoff values ff' Equal payoff values

1-2) y - 4xf.z + t/,2 l=z) 6 - 4af} * 3/B

r=3)y=443+U3 r=3) b=ah+z/7
r=h) y * -x/ti* :r7+ 2=3) b - -[a + I
Z-j)y=-fu+3
2=b)y=x
3=LlY-7x-3

flf. Solution IIf' Solution

p0 = (.t3,/zg, b/ze, L2/2il 
x? 

== wrt\io, 
e/ze, t /ze)

'v - 65/29

Note the use of Theorem t6 in eljmi-nating the need fcnr checki::g three

of the equations.

-3Lr-
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125
2 I b

1 2 l+

2 I 0

Matrix 10

B

1

A2

I. Payoff values to .0.

1) -Y+2
2) -x+X+1
3) lrx + l+y

If. Equal pqyoff values

I. Payoff values to B

1) 2a+hb-h
2) 3a+2b-)+
3)-2a-b

fI. 'Equal pryoff values

1=2) b = e/2
1=3)b--l$/5*V5
z=3)b=-5a/3+v3

rII. Solution

g _ 0/2, L/2, o)
yr = -3/2

t=2)y=x/2+t/2
t=3)y=-W5+2/5
z=3)y=-5rJ3+t/3

III. Solution

po = (0, t/2, t/z)
v-3/Z

fhis matrix shows the need for one more theorem. fhis theorem uould

state that iJ two or more posslble solution poinbs not lfrng on the same

or j:rtersecti-ng line segmenbs exlsted, each one must have at least one

strategy j:r cornnon wi-th one of the obhers. Once ttre tllth of this theorern

is esbablished., matrices such as this one nay be solved by finding the

equation of the line joiaing the two points and deterrnini-ng how the payoff

value varies along it. .Anothen theorem seems to suggest itsel-f that would

sirnplify this case even motre; nanely, that if two such possible solution

points erj.st, they must lie on either the arces or the l.ins 3+1/E1r
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Glossary

Actlve stratery - a stratery that ls utilized in a playerrs optimal mix

Game theory - The mathematical theory d.ealing with d"ecision making

lllxed. strategp - a stratery composed of other strategies comloined. in

a certain ratlo

gptimaf - best; an opti:nal mixture of strategies is that mlxture r.rhich

r,rins more for its user than any other

?0, eO - optirnal strategies for A and' B respectiveJ.y

Payoff - the arnount ',ron b1r a player as a result of a certaj.n course of

aetion 1n a galre

Probabllity vector - a vector having on-ly non-negative entries i+ith a

sum of one

Siratery - a complete set of 1:l-es as to how one player sbould' make his

decisions in a game

subgarne or submatrix - the garne or matrix obtained- by d-elettng one or

more strategies from either playerts set of strategies in a particular

game

V, V' - th.e deslred- payoff value in a ga'me in vector forrn

vector - an ordered. co]-lectlon of nunbers written in a rov or a column

-Jo-
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