procedure Jacobi (n, m, r); value n, m;
integer n, m, r;
comment Jacobi computes the value of the Jacobi symbol \((n/m)\),
where \(m\) is odd, by the law of quadratic reciprocity. The parameter \(r\) is assigned one of the values \(-1, 0,\) or \(1\) if \(m\) is odd. If \(m\) is even, the symbol is undefined and \(r\) is assigned the value 2.
For odd \(m\), the routine provides a test of whether \(m\) and \(n\) are relatively prime. The value of \(r\) is 0 if and only if \(m\) and \(n\) have a nontrivial common factor. In the special case where \(m\) is prime,
\(r = -1\) if and only if \(n\) is a quadratic nonresidue of \(m\);
begin
 integer s;
 Boolean p, q;
Boolean procedure parity (x); value x; integer x;
comment The value of the parity function is true if \(x\) is odd, false if \(x\) is even;
begin
 parity := x ÷ 2 × 2 ≠ x
end parity;
if ¬ parity (m) then begin r := 2; go to exit end;
p := true;
loop: n := n − n ÷ m × m;
 q := false;
 if n ≤ 1 then go to done;
even: if ¬ parity (n) then
begin
 q := ¬ q;
 n := n ÷ 2;
 go to even
end n now odd;
if q then if parity ((m↑2 − 1) ÷ 8) then p := ¬ p;
if n = 1 then go to done;
if parity ((m − 1) × (n − 1) ÷ 4) then p := ¬ p;
 s := m; m := n; n := s; go to loop;
done: r := if n = 0 then 0 else if p then 1 else −1;
exit: end Jacobi

© ACM, 1962. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in Communications of the ACM 5:6, pages 345–346, June 1962 (http://dl.acm.org/citation.cfm?doid=367766.368172).