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GENERALIZED INTERPOLATION THEOREMS 

STEPHEN J. GARLAND' 

Chang [1], [2] has proved the following generalization of the Craig interpolation 
theorem [3]: For any first-order formulas p and & with free first- and second-order 
variables among vi, * * *, vn, R and v1, ** *, vn, S respectively, and for any sequence 
Q9. e ., Qn of quantifiers such that Qj is universal whenever vi is a second-order 
variable, if 

k Qiv *... Qnv,1(3Rp -. VSO), 

then there is a first-order formula 0 with free variables among vl, * , vn such that 
1 Qlv. . . Qvnv(2Rp-+ 0) A (e 8-+VS)]. 

(Note that the Craig interpolation theorem is the special case of Chang's theorem in 
which Q19,.., Qn are all universal quantifiers.) Chang also raised the question 
[2, Remark (k)] as to whether the Lopez-Escobar interpolation theorem [6] for the 
infinitary language L.1. possesses a similar generalization. In this paper, we show 
that the answer to Chang's question is affirmative and, moreover, that several 
interpolation theorems for applied second-order languages for number theory also 
possess such generalizations. 

Maehara and Takeuti [7] have established independently proof-theoretic inter- 
polation theorems for first-order logic and L,, which have as corollaries both 
Chang's theorem and its analog for L.1,. Our proofs are quite different from theirs 
and rely on model-theoretic techniques stemming from the analogy between the 
theory of definability in L.1. and the theory of Borel and analytic sets of real 
numbers, rather than the technique of cut-elimination. In addition, we are able to 
show that slight variants of the seemingly more general results of Takeuti and 
Maehara can in fact be derived from Chang's theorem and its L1,. analog without 
the use of proof theory. 

?1. Preliminaries: languages. L., is the usual pure first-order relational lan- 
guage with identity, while L.1, is the infinitary language obtained from L,. by 
allowing conjunctions and disjunctions of countably infinite sets of formulas. 
L 2) and L 2,0 are the second-order languages obtained from Lw and L,,,, by the 
addition of relation variables and quantifiers. Sentences in any of these languages 
have no free first- or second-order variables, but may have countably many indi- 
vidual or finitary relation parameters. 

The class of existential L 2 (or L 21) formulas is the smallest class containing 
all L,, (all Ll,,,) formulas and closed under (infinitary) conjunction, (infinitary) 
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disjunction, quantification over individual variables, and existential quantification 
over relation variables. Similarly, the class of universal L2,, (or L2 I) formulas is the 
smallest class containing all L., (all Lw1ck) formulas and closed under (infinitary) 
conjunction, (infinitary) disjunction, quantification over individual variables, and 
universal quantification over relation variables. Note that the negation of an 
existential formula is logically equivalent to a universal formula. 

The following two lemmas prove to be convenient in the study of classes of 
structures definable in L 2 since they enable one to concentrate on definable 
classes of countably infinite structures. 

LEMMA 1. For any L.1.,, sentence 'p there is an L,,1,, sentence (p1 with no infinite 
models and an L2 sentence g2 with nofinite model such that 'p is logically equivalent 
to T1 V T2s 

PROOF. For each n we construct an L,,1.0 sentence api which has as models those 
models of 'p with cardinality at most n by replacing the m-ary relation quantifiers in 
'p by finite disjunctions or conjunctions over the set of all m-ary relations over n 
(= {i: i < n}). In more detail, let vo,.* *, n -v1 be individual variables not occurring 
in 'p and let 'pn be the L..,(, sentence 

3vo.... .3nvI[Vn V vn Z vi A 
ton 

where 4n is obtained from 'p by replacing each m-ary relation quantified subformula 
3RT by a disjunction V.9 smnP, where mn is the set of all functions from m into n and 
As is obtained from b by replacing each atomic subformula RvO ... vm_1 by 

V A vatV Vf(t). 
feR f<m 

Then let 'p, be Vn.< ,, and let 'P be 

'p A A 
- -3vo ... 3vn 1VVn V vn vf. 

n<W t<an 

(A simpler proof exists if ' contains only finitely many parameters since then there 
are only countably many finite models of 'p.) 

LEMMA 2 (DOwNwARD LOWENEIM-SKOLEM THEOREM FOR EXISTENTIAL L,, 
SENTENCES). An existential L2 ,"sentence has a model if and only if it has a countable 
model. 

PROOF. A straightforward argument by induction shows that for any existential 

L241, sentence 9p, the L,,,,, sentence b which is obtained from 'p by replacing all 
bound relation variables in 'p by distinct new relation parameters and "erasing" all 
relation quantifiers possesses the following property: any model of # is also a model 
of 'p and any model of 'p has an expansion which is a model of b. Hence the lemma 
follows from the downward Lowenheim-Skolem theorem for L010.. 

The precise manner in which Lemmas 1 and 2 enable one to reduce questions 
about L2 .-definable classes of structures to questions about L2 .-definable classes 
of countably infinite structures will be apparent in the proofs of Theorems 6 and 7. 
As preparation for these theorems, we review some known properties of the last- 
mentioned classes of structures in the remainder of this section and then establish 
some further properties in ?2 from which the interpolation theorems for L2 ,1, will 
follow in ?3. 
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For any sentence A, any countably infinite model of p is isomorphic to a model of 
w with universe the set w of natural numbers (in fact, there may be many such 

models with universe w, all of which are isomorphic). Hence if one considers p as a 
sentence in an applied language in which the universe of any structure is w, then p 
defines a subset of a space T which is a countable Cartesian product of copies of the 
type 0 space co and of the type 1 spaces Pacw, where for any x, Px is the power set 
{y: y c x} of x; T itself is said to be a type 0 space if all its factor spaces are type 0 
and a type I space otherwise. For example, if p involves a binary relation parameter 
R and two individual parameters a, and a2, then p defines the subset 

{<R. a,, a2>: <w, R, a,, a2> 1 A} 

of the space (p2W) X W x w. Furthermore, any such subset of a space Tis invariant 
under the permutations of T induced by permutations of o since any permutation 
of co is an isomorphism between models of 'p. 

All such spaces T possess natural topologies, namely the product topologies 
induced by the discrete topologies on {0, 1} and w. With this topology, all type 1 
spaces are homeomorphic, as are all type 0 spaces. Furthermore, any atomic L 
sentence defines an invariant subset of T which is both open and closed, while an 
arbitrary Lst, sentence defines an invariant Borel set, i.e. an invariant set in the 
smallest class of sets containing the open sets which is closed under complemen- 
tation (relative to T) and countable union. By a remark of Ryll-Nardzewski (cf. 
Scott [9] or Lopez-Escobar [6, Theorem 5.3]), it follows from the interpolation 
theorem for L<,c, that any invariant Borel subset of T is definable by an L.,,,, sen- 
tence. To see this, suppose that A is an invariant Borel subset of T. Then A is 
definable by an L,,1, sentence 'p(R) which involves an additional binary relation 
parameter R to be interpreted as the usual ordering of w. Let +(R) be the L0,1, sen- 
tence which asserts that R is an C-type ordering of the universe. Since A is invariant, 
the following sentence is valid: 

([(R) A 0(R)] -> [4(S) ->. T(S)]. 

By the interpolation theorem for L there is an Lt,0, interpolant 0 which involves 
neither R nor S; this sentence 0 defines A. 

The connection between L.,W-definable sets and Borel sets extends to a connec- 
tion between existential L ,2 .-definable sets and analytic sets. A subset of T is 
analytic if and only if it is the projection of a Borel subset of T x T' for some space 
T'. Since the class of invariant analytic sets is closed under countable unions and 
intersections as well as projections, any existential L2,,,-sentence defines an 
invariant analytic set. Conversely, if A is an invariant analytic subset of T. then A is 
definable by an existential L2 l,-sentence p(R) which involves an additional binary 
relation parameter R as above, so that A is also definable by the existential L2 1f,- 
sentence 3R(p(R) A +(R)) with no additional parameters (R is now a relation 
variable) where if also is as above. 

?2. Interpolation theorems for analytic sets. In this section we establish several 
interpolation theorems for analytic sets together with analogs of these theorems for 
invariant analytic sets. As noted by various authors, some of these theorems follow 
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from known interpolation theorems for Ls1l,; for example, the Luzin separation 
theorem (see below) and its corollary for invariant sets is a consequence of the 
Lopez-Escobar interpolation theorem while the Novikov generalized separation 
theorem and its corollary follow from a result of Makkai [8] which we establish 
later as Theorem 7. Our purpose in proving these results first, without reference to 

L,,,,,, is to show that the reverse situation is also possible, i.e. that interpolation 
theorems for LCO C,, can be derived from results in descriptive set theory about 
analytic sets together with the fact proved in ?1 that every invariant Borel set is 
definable by a sentence of L.,, If another proof of this fact could be given which 
does not use the Lopez-Escobar interpolation theorem, then one could obtain all 
the interpolation theorems for L,,1,, mentioned in this paper (including Lopez- 
Escobar's) as corollaries of theorems in descriptive set theory; at worst, one need 
prove only one interpolation theorem for LC1s in order to derive the others using 
the tools of descriptive set theory. 

We begin by deriving corollaries for invariant sets from two classical theorems of 
descriptive set theory. 

THE LUZIN SEPARATION THEOREM [5, p. 485]. For any disjoint analytic sets A and 
B, there is a Borel set C such that A c C c -UB. 

COROLLARY 3. For any disjoint analytic sets A and B, if either A or B is invariant 
then there is an invariant Borel set C such that A C C C - B. 

PROOF. By symmetry, it suffices to consider the case in which B is invariant. By 
the Luzin Separation Theorem there is a Borel set C0 such that A c C0 c -UB. 
The invariant closure 

C= {x: for some permutation 7T of w, 77X E CO} 

of CO is an analytic set and also a subset of B since B is invariant. Hence we may 

iterate the above procedure, first with Co* in place of A, in order to obtain a sequence 

CO, C1,*.* of Borel sets and their invariant closures C*, C*, E such that 

A ' Co C C* C Cl ' C* -B. 

Let C = U{C,,: n 2 0}. Then C is an invariant Borel set and A c C c -B. 

THE NovIKov GENERALIZED SEPARATION THEOREM [5, p. 510]. For any collection 
{An,: n e w} of analytic sets with empty intersection, there is a collection {B,,: n e W} 

of Borel sets with empty intersection such that A,, a B,, for all n. 
COROLLARY 4. For any collection {A,,: n E w} of invariant analytic sets with 

empty intersection, there is a collection {B,,: n e w} of invariant Borel sets with empty 
intersection such that A. a B,, for all n. 

PROOF. By the Novikov Generalized Separation Theorem there is a collection 

{C,,: n e w} of Borel sets with empty intersection such that A,, a C,, for all n. By 

Corollary 3, there is, for each n, an invariant Borel set B,, such that A,, B, ' C,. 

Hence {B,,: n E co} has empty intersection. 
The following theorem is the descriptive set-theoretic analog of Chang's theorem 

for L.. from which we shall derive the L.,10, analog of Chang's theorem in ?3. In 

order to keep the notation simple, we write "2" for "K<xl, * * *, x,,>" and use the 

quantifiers "3" and "V" from the formal language L.. informally with their 

usual meanings. 
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THEOREM 5. Let T = T1 x ... x Tn be a topological space and let Q, . * * , Qm 
be a sequence of quantifiers such that Qt is universal whenever Tj is a type 1 space. For 
any analytic subsets A and B of T, if 

QiXi...* Qn,,Vn(y E A => x" , B) 
then there is a Borel subset C of T such that 

(1) QiXi ...QnXn(! c-A =-xJ e C), 

(2) dxj .. * *xn(.V e C =>. i 0 B). 

Furthermore, if either A or B is invariant, then there is an invariant such C. 
PROOF. We proceed by induction on the number of existential quantifiers among 

Q1i * * * , Qn. If all the Qi are universal, then the conclusion follows from the Luzin 

Separation Theorem and Corollary 3. For the induction step, suppose that 

(a) Vxi . Vxm XmQm +- xm +n * * * QnXm(g E A => x 2 B) 

and let P be 
{<Xi, **Xm> Qm+lXm+l * QnXn(Z c A => X' 5 B)}. 

Then P is a co-analytic set (i.e., the complement of an analytic set) since QL is uni- 
versal whenever Tj is a type 1 space. Furthermore, 

(b) Vx *... Vxmi - 3xn<xl, * * *, xm> e P. 

Hence by the Novikov-Kondo uniformization theorem [10, p. 188] there is a co- 
analytic set P* such that 

(c) P* c P 
and 
(d) Vxj ... Vx,, - 13 ! x,,<xl, *, x> E P* 

Since xm is existentially quantified in (a), it is an element of kW for some k by the 
hypothesis on Qm. Furthermore, by (d), 

<Xi, * * Xm> E P* VuV C k(A(<xl,* Xm_ 1, U> C p* => U = Xm), 

so that P* is also an analytic set. By (c), 

VXi .. *VXm[<Xl **,Xm> P* => Qm + X + 1**... QnXn(- e A -> x ,B)], 

and hence 

(e) Vx1* .. VXmQm+.Xm+1' * QnXn(<X , Xm> C P* & x E A => x B). 

Since {x.: <x1, * ? *, xm> E P* & X E A} is analytic and the quantifier prefix in (e) has 
one fewer existential quantifier than the prefix in (a), the induction hypothesis may 
be applied to obtain a Borel set C (which is invariant if B is, and also if A is as can be 
seen by transposing the condition on P* to the other side of the conditional in (e)) 
such that 

(f) VXi **VXmQm+lXm+l. **QnXn(<Xl, Xm> e P* & x E A => x E C), 

(g) Axle * * 8xn(x- e C ` 
0 xB). 

By (d) and (f), 

(h) VXj ... Vxm.- 13xmQm+ x + 1.. QnXpn(X A => EC). 

The desired conclusion is given by (g) and (h). 
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An alternative conclusion to Theorem 5 is the existence of a possibly nonin- 
variant Borel set C satisfying (1) and 

(2t) QiXi...* QnXnX~ C C =:> x" 5 B) 
which is a cylinder over the universally quantified xi's. To see this, notice that in- 
stead of introducing P* in the proof one could have used a Borel Skolem function to 
eliminate the existentially quantified variable xm. For example, if 

Vx13X2VX3(<X1, X2, X3> E A => <X1, X2, X3> 0 B) 

and x2 ranges over w then there is a Borel function F (i.e., the graph of F is a Borel 
set) such that 

VX1VX3(<X1, F(x1), X3> E A > <xi, F(x1), X3> 0 B) 

(in fact, F is precisely that function with graph P* as defined above). Since 

{<X1, X3>: <x1, F(xl), X3> E A} and {<xl, X3>: <x1, F(xj), X3> E B} 

are analytic sets, there is a Borel subset C of T1 x T3 such that 

VX1VX3(<X1, F(x1), X3> E A > <xl, X3> E C) 

and 
VXlVX3(<Xl, X3> E C =- <x1, F(xj), X3> 0 B). 

Hence 

Vxl3x2Vx3[(<xl, X2, X3> e A => <x1, X3> e C) 

(i) & (<X1, X3> e C > <X1, X2, X3> 0 B)]. 

It may not be possible to find an invariant such C, however, even if both A and B 
are invariant. For example, if 

A = B = {<X1, X2, X3>: X2 = X3 6}, 

then no invariant C satisfies (i). 

?3. Interpolation theorems for LW1G,. The following L,,,, analog of Chang's 
theorem for L.,,, follows easily from the results of the previous sections. 

THEOREM 6. For any existential L2 formulas p and b with freefirst- and second- 
order variables among vi, * *, vw, andfor any sequence Q1, * * Qn of quantifiers such 
that Qi is universal whenever Vt is a second-order variable, if 

F Q1V1...* QnVn(P -* -nA 

then there is an L.,. formula 6 with free variables among v, * *, vn such that 

( 1) 1= Q1V1 ... QnVn(P ff), 

(2) 0 VV1 ... VVnO( -- ?) 

PROOF. Since p and b are existential, they define invariant analytic subsets A and 
B of an appropriate topological space T (we regard the free variables of 'p and b as 
parameters). By Theorem 5 there is an invariant Borel set C "separating" A and 
B. Let 6' be an L,,1,, sentence which defines C as a subset of T and which further- 
more has no finite models; then let 6 be 6' v 9', where 'p' is the L,,10 sentence 
corresponding to 9' by Lemma 1 (here we reconvert the parameters introduced 
above to variables). Since the sentences in (1) and (2) are equivalent to universal 
L2 1, sentences, (1) and (2) hold by the choice of 6 and Lemmas 1 and 2. 
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Although Chang stated the conclusion of his theorem as 

Q1v.* Qnvn4( KP- ) A (G -4.- -,)] 

to accentuate the similarity with Craig's theorem, his proof actually establishes the 
stronger conclusions expressed by (1) and (2). The apparent lack of symmetry in 
the quantifier strings which appear in (1) and (2) disappears when one realizes that 
they can be interchanged by applying the theorem to & my rather than to ' 

As mentioned before, Maehara and Takeuti have given proof-theoretic demon- 
strations of interpolation theorems for L.,, and L,,C,, which include Chang's 
theorem and Theorem 6 as special cases. We show now that their theorems can be 
derived using Chang's theorem and Craig's theorem for L.,.,, and using Theorem 6 
and the following inconsistency theorem due to Makkai for L,,< Since the proof 
is so natural, we deduce Makkai's theorem from Corollary 4; Makkai [8] 
gives a different proof and observes that Corollary 4 follows from his theorem. 

THEOREM 7 (MAKKAI [8]). For any inconsistent collection {pn: n E w} of exis- 
tential L2 1, sentences there is an inconsistent set {i4n: n E w} of Lw, sentences such 
that h Pn A-On for any n. 

PROOF. Each sentence 'pn defines an invariant analytic subset An of a topological 
space T. Since {pf: n ec w} is inconsistent, {An: n ec w} has empty intersection. 
Hence by Corollary 4 there is a collection {Bn: n E w} of invariant Borel sets with 
empty intersection such that An a Bn for all n. For each n, let ln be an Lc,,c, sentence 
with no finite models which defines By as a subset of T, and let An be tO& V mn, 

where 'Pn, 1 is the L.,l, sentence obtained from 'pn by Lemma 1. Then {Qn: n E w} is 

inconsistent and F Pn A- On for all n by Lemmas 1 and 2 since (p, -A n is equivalent 
to a universal sentence. 

In order to state the result of Maehara and Takeuti, we define, for any L., 
(or L2 1s) formula p, the class of universal L., (or LC01f) formulas relative to p to be 
the smallest class containing 'p and all Lo,, (or LC,1,) formulas which is closed under 
(infinitary) conjunction, (infinitary) disjunction, quantification over individual 
variables, and universal quantification over relation variables. Note that for any 
p and 0 there is a natural one-one correspondence between the class of universal 
formulas relative to p and the class of universal formulas relative to i0 In fact, to 
any universal formula ?(w~) relative to p corresponds the universal formula D(b) 
relative to b obtained by "substituting" sb for p in ?(p). Note also that if @(p) is 
universal relative to a universal formula 'p, then @(v) is also universal. 

LEMMA 8. For any formulas 'p, &, and any formula 1(Dp) universal relative to'p, 

if F 'p -> b then F (D(p) -- ((0). 
PROOF. The proof is a straightforward induction on the construction of 40(p), 

since p has only positive occurrences in ?D(p). 
THEOREM 9 (MAEHARA AND TAKEUTI [7]). For any universal L (or L' 1W) formula 

'p and any L , (or L.,1.) sentence PD(p) universal relative to p, ift '@(qp) then there is an 
L, (an LJ1() formula 0 with free variables among those of 'p such that k (D(O) and 
k 0 -> P. 

PROOF. We show by induction on the construction of @(g9) that for any L,,,,, 
(or L<,,>,J) formula b, if ( - 4(p), then there is an L, (an La,1,,) formula 0 with 
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free variables among those of 'p such that --. 4(6) and k 6 -* '. This clearly is 
sufficient. In order to treat L and L simultaneously, we let w be either 2 or W 
in the following seven cases. 

Case 1. 'p does not occur in 4(gp). Let 6 be any logically false formula. Then 
4>(gp) equals 4(6) and k 6 -- 'p. 

Case 2. (D('p) is 'p. Then k b -? 'p and we may let 6 be any interpolating formula 
with free variables among those of 'p. 

Case 3. 44(p) is An w<,I('p). Then for any n < w, k -+ '.(Dpq)). Hence, by the 
induction hypothesis, there are L.,,, (or L,1@) formulas fn such that k b -+ 4>(Djn) 
and 1 6n -u. p. Let 6 be Vn,,<w6n Since 1 6n ,-+ 6 for any n, 1 Pn(6n) ---> On(6) by 
Lemma 8. Hence 1 b --> 4P(6) and 1 6 -+ 'p. 

Case 4. 4)('p) is Vn<An(p). By Craig's theorem for L or by Theorem 7 for 
Lcoiw there is a collection {ni: n < w} of L (or Lwo) formulas such that F Vn < win 
and k Ob -* (b --> 4n(9p)) for any n < w. By the induction hypothesis, there are L,,,, 
(or L.1.,) formulas 6n for each n < w such that k On (I --> 1,n(6n)) and 1 6n -+ (P. 
Let 6 be Vn < 6,n. As in Case 3, 1 0 ->(. O(() and 1 6 -. 

Case 5. 4?((p) is VvF'('p). We may assume that the individual variable v does not 
have a free occurrence in .. Then k . -+ 4V(g) and by the induction hypothesis 
there is an Leo, (or an LC,,,) formula 6 such that i 4 4'(0) and 1 6 -p. Hence 

-* VvVD(O). 

Case 6. ?(gp) is 3vV('p). Again we may assume that the individual variable v 
does not have a free occurrence in .. Then 1 3v[/ -? F'(wD)]. By Chang's theorem for 
L,,, or by Theorem 6 for L,1,,, there is an L., (or an 4Ki,) formula O' such that 
1 3-v(O -?.4') and V Vv(o' -4 )'(g)). By the induction hypothesis, there is an L,,, 
(or an L,,,o,) formula 6 such that 1 Vv(o' -* V'(0)) and 10 -* '. Then 1 3 v/' 
3v@'(0) and V . -+. 3v+' since v has no free occurrence in.4. Thus 1 . - 3vV(0). 

Case 7. 0('p) is VR4)'('). The proof is the same as in Case 5. 
Having derived Theorem 9 from Chang's theorem and Theorem 6, we note that 

these two theorems are indeed special cases of Theorem 9: if 4)(0) is the sentence 
Q1v1.. * Qnvn(-,'p -. 0) for some universal formulas 'p and . and 1'(0), then there 
is a first-order formula 6 with free variables among v, - *, vn such that 
k Q1v1... Qnvn(-n' -i 6) and i 6 -+ >. Since the proof of Theorem 9 requires only 
the special case of Chang's theorem or Theorem 6 in which the quantifier prefix 
consists of universal quantifiers followed by a single existential quantifier, one 
could separate the proofs of these theorems into an examination of the special prefix 
followed by an argument by induction. (An even more special case of Chang's 
theorem is due to Kueker [4].) 

From the L2 lg version of Theorem 9 follow generalized separation theorems for 
analytic sets and for invariant analytic sets in the usual manner. It should also be 
noted that these theorems, as well as the results of ?2, have effective versions in 
which codes for the Borel sets asserted to exist can be computed effectively from 
codes for the given analytic sets. 
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