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SECOND-ORDER CARDINAL
CHARACTERIZABILITY

STEPHEN J. GARLAND*

Scott [13] has pointed out that a close relationship exists between the axio-
matizations of set theory and of the theory of types. In this paper we examine the
relationship between the model theory of set theory and the model theory of a
particular piece of the theory of types, namely pure second-order logic. It will be
seen that set-theoretical techniques play a key role in the study of second-order
definability, while various considerations in this study raise problems concerning
the foundations of set theory. ‘

The axiom of choice is assumed throughout the following discussion, which
can be formalized in Godel-Bernays set theory. Greek letters o, f8, y, d range over
ordinals; k, A, u range over cardinals, which are initial ordinals ; k* is the cardinal
successor of a cardinal x, while k + 1 is its ordinal successor. Since an ordinal o
equals the set of its predecessors, the structure {a, e n axa) (hereafter denoted
by “(a, €)”) is a well-order structure of type a. For any sets 4 and B, 4B is the set
of all functions from A into B, and card(A) is the cardinal equinumerous with A.

1. Second-order languages. We shall consider primarily pure second-order
relational languages with identity. It is well known that every second-order
sentence is logically equivalent to a full prenex sentence, i.e., to a prenex sentence
in which all relation quantifiers precede any individual quantifier. Among the
quantifier interchange rules which allow economical translations of sentences
into full prenex sentences, the following consequence of the axiom of choice is
particularly useful: for any formula ¢, any individual variable v, any n-ary
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128 STEPHEN J. GARLAND

relation variable R, and any (n + 1)-ary relation variable S, AvVR¢ is logically
equivalent to VSAvy, where  is obtained from ¢ by replacing each subformula
of the form Ry, ... v, by Svv, ... v,.

Prenex sentences fall into a natural prefix classification: a full prenex sentence is
VI (“exists-one-n"") or A! (‘“‘all-one-n’) iff it begins respectively with an existential
or a universal relation quantifier and has n homogeneous blocks of relation
quantifiers. By associating with each sentence its class of models we induce a
classification of the second-order definable classes of structures. A class of structures
is QL (““diamond-one-n”) iff it is both V! and Al. Thus we have the following
hierarchy of definable classes of structures:

Vi Vi
Y N 2 N
o1 O3 F
N 4 < Z
AL A3

We use the V-A-< notation to distinguish this hierarchy in pure logic from the
analogous analytical hierarchy

I z;
& N & N
Af A} A3
N & N &
I} I

of sets definable over the structure {w, €) in an applied second-order language
for number theory, since we feel that the X-T1-A notation is overworked and since
we shall have occasion to refer to both hierarchies.

The influence of the axioms for set theory on the properties of the analytical
hierarchy have been studied by several authors (for example, see Addison [1]
or Moschovakis [11]). Their results carry over in a sense to the pure second-order
hierarchy for languages which contain a binary relation parameter, since the
class of isomorphs of (w, €) is A} definable. However, these results do not apply
to weaker second-order languages, and in particular to the parameter-free
language. It is this language which will be our primary object of study.

2. Characterizable cardinals. Since any model of a parameter-free sentence
¢ is determined up to isomorphism by the cardinality of its universe, instead of
discussing the class of models of ¢ it suffices to discuss the spectrum of ¢, i.e., the
class of all cardinals k such that the structure {x) is a model of ¢. In the case that
the spectrum of ¢ contains a single cardinal x, we say that ¢ characterizes k.
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Which cardinals are characterizable by sentences in the various second-order
prefix classes? Using the compactness and Lowenheim-Skolem theorems, it is
easy to see that the spectrum of a propositional combination of V! sentences
contains an infinite cardinal iff it contains all infinite cardinals; hence the only
cardinals characterizable by propositional combinations of V! sentences are the
finite cardinals. On the other hand, we shall see that many infinite cardinals are

1 characterizable. We note first that the following notions are definable using
only one relation quantifier :

(1) for any set A4, card(4) = N, iff there is an unbounded ordering of 4 [an V!
condition];

(2) for any sets A, B, card(A) = card(B) iff there is a one-one function on A4
onto B [an V! condition]; and

(3) for any binary relation R, R is a well-ordering iff R is a linear ordering and

1 VX[X # & =3Ixe XVye X{y,x) ¢ R]
[an A} condition].

LEMMA 2.1. If {1:1 < x} is a O} spectrum, then so are {1:1 < x} and {k}.
ProOF. Note that, for any set A, card(4) < k iff
3R[R well orders A & Vx(card(R™'{x}) = card(A) or card(R™*{x}) < k)]

-

Alby (3) Viby (2) &1 by hypothesis
——t—— ——t—
iff VB[Bc A = card(B) = card(A) or card(B) < k].

Hence {1:4 < k}isa O} spectrum, asis {x} sinceitequals {1:1 £ k} ~ {1:1 < k}.

By (1), the set of finite cardinals is an A} spectrum. Hence one can show by
induction using Lemma 2.1 that, for any n < o, {1:4 < N, } is a $} spectrum and
N, is O} characterizable. What about X,? It too is {3} characterizable. To see
this, let W(4, R, S) be the following ¢ } condition on a set 4, a binary relation R,
and a set S:

R well-orders 4 & Vx(card(A) # card(R™!{x}))
& Vx[xe S < card(R™'{x}) =2 N,
& Vy({(y, x) € R = card(R™*{x}) # card(R™'{y}))]

(ie., R and S “code” the set of infinite cardinals less than card(4)). Then, for any
set 4, card(4) < N, iff

(4a) JRIS[P(4, R, S) & card(S) < N,] iff

(4b) VRVS[W(4, R, S) = card(S) < N,].
Since (4a) and (4b) are V1 and Al conditions respectively, &, is <} characterizable
by Lemma 2.1. Continuing in this manner, one may show that a large number of
cardinals are <} characterizable.

The extent of the class of O} characterizable cardinals is even more remarkable
in view of the following theorem and its corollary.
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THEOREM 2.2. For any second-order spectrum & which contains no finite cardinal,
(@) {2*:x e &} is an V] spectrum, and
(b) {(29* :k e £} is a O} spectrum.

COROLLARY 2.3. For any second-order characterizable cardinal k, 2* is V)
characterizable and (2)* is O} characterizable.

Part (a) of the theorem was shown by Zykov [17]. We sketch here a proof of
both (a) and (b). Let n be a positive integer. For any (n + 1)-ary relation C and any
x,let C, = {{x;,...,%,0:{X, X1,...,%,» € C}. We say that C codes a set of n-ary
relations over a set B iff

Vx[C, = B&Vyly # x&C,# J=C,# C)l.

This is clearly a first-order condition, and the condition that C codes all n-ary
relations over B is an A} condition. Note that if C codes all n-ary relations over a
set of cardinality x, then the domain of C has cardinality 2" — 1, which equals
2% if x is infinite.

For part (a), suppose that ¢ is a second-order sentence whose spectrum &
contains only infinite cardinals. Let [ be the maximum of the ranks of relation
variables occurring in ¢. Then a set 4 has cardinality 2* for some « in & iff there
is a subset B of 4 and, for each n £ I, an (n + 1)-ary relation C, such that

(5) the domain of C, has cardinality card(A4),

(6) for alln £ I, C, codes all n-ary relations over B, and

(7) @ is true when its individual variables are interpreted as ranging over B and
its n-ary relation variables are interpreted as ranging over the relations coded by
C,.
Since (5) is an V] condition, (6) is A}, and (7) is first-order (being just a relativ-
ization of @), {2*:x € &} is an V} spectrum.

Note that one cannot show in a similar fashion that {2*:xe &} is the A}
spectrum J which contains the cardinal of a set A ifffor any relations B,C,, ..., C,
over A, conditions (5) and (6) imply condition (7). Two things go wrong with such
an attempt. In the first place, 9 contains all cardinals not of the form 2* for some
cardinal . This defect could be remedied if {2*:x = 0} were an A} spectrum, but
in general it is not, as will be seen below. Under certain strong assumptions, such
as the generalized continuum hypothesis, this class is an A} spectrum (e.g,, it is
the class of successor cardinals) and so is {2*:x € &}. In the second place, 7 will
omit a cardinal 2* for some k in % if 2 = 2*for some other cardinal A not in %, This
defect can be remedied, however, as we shall do below.

The difficulties encountered in attempting to show that J = {2*:ke &}
suggest a proof of part (b). Since, for any sets 4 and B,

(8) card(4) < (2°*™BN* iff card(4) < 2°*"® iff there is a binary relation C
with domain a subset of 4 which codes a set of unary relations over B [an V !
condition],
the condition that card(4) = (2*"®)* is a O} condition by the methods in the
proof of Lemma 2.1. Now, for any ¢, %, and | as above, a set 4 has cardinality
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(2%)* for some k in & iff there are relations B, C,,. .., C, over A4 such that card(A4)
= (2°*"®)* and conditions (6) and (7) hold [an V} condition] iff for any well-
ordering R of A there is an x in A such that card(A4) = (2R "6M)* and for any
relations B, C,,...,C, over 4, if B= R™!{x} and condition (6) holds, then (7)
holds also [an A} condition]. Hence {(2¥)* :x € ¥} is a O} spectrum.

The hypothesis that & contain only infinite cardinals can be eliminated at the
expense of replacing “2%”’ by 2% in the conclusion, where [ is any sufficiently
large integer. We have not done so here in order to keep the notation simple and
since this generalization is not needed for the corollary.

As noted above, under the assumption of the generalized continuum hypothesis,
Corollary 2.3 can be strengthened to conclude that 2% is >} characterizable. This
strengthening is not possible in general, since Kunen [8] has shown that it is
consistent relative to Zermelo-Fraenkel set theory that 2% is not A} character-
izable. Hence, by our remarks above, it is also consistent relative to Zermelo-
Fraenkel set theory that {2*:x = 0} is not an A} spectrum. Kunen’s result is not
surprising if one considers the fact that the “natural’ characterizations of 2%° as,
for example, the cardinality of the power set of w or the cardinality of a least-
upper-bound complete linear ordering with a countable dense subset are all V}
characterizations.

Several questions arise as a result of these considerations. We have noticed
that it is consistent that there is a cardinal (e.g., 2¥°) which is V3 but not A} char-
acterizable. In § 3 we show that such a cardinal always exists, and that in fact
there is a genuine prefix hierarchy of second-order characterizable cardinals. On
the other hand, the general problem of which cardinals are second-order character-
izable is in a sense reducible to the problem of which cardinals are {1 character-
izable by Corollary 2.3. Furthermore, if one makes the assumption that 2%°
possesses no “‘unnatural’ characterizations, i.e., that 2% is not A} characterizable,
then our preliminary results about <>} characterizability indicate that 2% is
greater than N,. Hence we are led to a study of the >} characterizable cardinals
in an attempt to gain further insight into both the class of second-order character-
izable cardinals and the size of the continuum.

What is the extent of the class of >} characterizable cardinals? In the first
place, there are only countably many such cardinals, so that the class has an upper
bound. Also, if we replace “‘card(S) < NX,” by ‘“‘card(S) < X,” in (4a) and (4b),
then we see that N is O ! characterizable, so that the class is not an initial segment
of the sequence of cardinals. This situation leads us to ask the following two
questions:

(I) What is the smallest cardinal which is not ¢} characterizable?

(II) What is the supremum of the class of ¢} characterizable cardinals?

In order to investigate question (I), we digress in § 4 to discuss O3 character-
izable ordinals, i.e., ordinals a such that the class of isomorphs of {a,e) is a O3
class. The importance of these ordinals can be seen as follows: if in (4a) and (4b)
we replace “card(S) < N, by
(9) R n S xS has order type a
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then we can show that N, is 1} characterizable for any <} characterizable
ordinal a.

In § 5 we apply the results of § 4 to study the characterizability of cardinals in
various ) spectra. Finally, in §6, we examine the relationship between the
extent of the class of O} characterizable cardinals and the model theory of set
theory.

3. A hierarchy of characterizable cardinals. Standard universal set arguments
show that the analytical hierarchy is indeed a true hierarchy, i.e., that for alln > 0
there are X} sets which are not I1} and A} sets which are neither X! nor IT! (cf.
[14, §7.8]). These results also establish a hierarchy theorem for pure languages
which contain, say, one individual and one binary relation parameter. In this
section we strengthen this result to establish a hierarchy of second-order character-
izable cardinals, employing in our proof a method which is similar to the use of
universal set arguments in number theory.

We show first, by way of illustration, that for any n > O thereisa '}, , charac-
terizable cardinal which is not V! characterizable. Call a cardinal x weakly V!
characterizable iff x is the smallest cardinal in some V! spectrum, and let x, be
the smallest infinite cardinal which is not weakly V! characterizable. Then x, is
obviously not V! characterizable, so it remains to show that x, is O}, | character-
izable.

For any cardinal x and any sentence ¢, define the k-spectrum of ¢ to be the set
of all cardinals less than x in the spectrum of ¢.

LEMMA 3.1. For any n > 1 there is an \V/} sentence , involving a binary relation
parameter < and individual parameters 4, m such that, for any infinite cardinal x and
any set S of cardinals, S is the k™ -spectrum of an V! sentence iff there is an m in ©
such that

S={Alx+ L Am)E=y,}

Proor. The proof proceeds by an evaluation of the complexity of the truth
definition for V! sentences. Assume that these sentences are in a language which
has the connectives ~ and A, the quantifier V, the identity symbol =, the in-
dividual variables v, for i in w, and the j-ary relation variables R, ; for i,j in w.
Let {@2:mew) be a recursive enumeration of all first-order formulas in this
language and, for each n > 0, let (¢} :me w) be a recursive enumeration of all
prenex V! formulas which contain no free individual variables.

We define first an A} class &, of structures such that for any infinite cardinal x
and any cardinal A £ k,<{k + 1,6, A, w, +,-,7, B, R, T) € %, if and only if

(1) w = w, ie., w is the e-least element of x + 1 with an e-predecessor but no
immediate e-predecessor [a first-order condition],

(2) + and - are the relations of addition and multiplication on w [a first-order
condition since +, - are implicitly definable over <, €)],

(3) y is the maximum of A and w [a first-order condition],

(4) Bisasubset ofy x w x A which codes all finite sequences of elements of 4,



SECOND-ORDER CARDINAL CHARACTERIZABILITY 133

ie., if B, is {¢m, B>: <o, m, B> € B} for any a in y, then \_J}{"A:ne w} = {B,:a €y}
[an A! condition],

(5) Ris a subset of w x @ x y x w x A which codes fixed relations R; ; < /4
for any i, j in o, where R;; = {<0g,...,0;_;>: A < yVk < j{i, j, B, k, o) € R}
[a first-order condition], and

(6) T is a subset of w x 7y such that, for any m < w and any a < y, {m,a>e T
iff @ is satisfied in (A1) when v, is interpreted as B,(i) and R, ; is interpreted as R, ;,
i.e., iff the domain of B, includes every integer i such that v; has a free occurrence
in @° and

(a) @y isv; & v;and B,(i) = B,(j), or

(b) @3 is R, ;s for some sequence s of j variables vy,,...,v,_,, and
(By(s00)), ..., B(s(j — 1)) e R, or

(¢) 92 is ~2 and (m,a) ¢ T, or

(d) @2 is @2 A 2. and (m',a), (m",a) €T, or

() @2 is Vo,pl and there is a § in y such that B,(j) = By(j) for all j # i, i is
in the domain of B;, and {(m’, B> € T [a first-order condition since the recursive
enumeration of the first-order formulas is definable over {w, +, - >].

Now for each n > 0 we define a ), | class %, such that for any 4, k as above,
<k + 1,6, 4,w, +,-,7,B,R, T) is in ¥, if and only if conditions (1) through (5)
hold and

(7) Tis a subset of w x y such that, for any m < w and any o < y, {m,0> € T
iff @7, is satisfied in (1) when R, ;isinterpreted as R, j,i.e.,iff @}, isVR; ;, --- VR, ;,
~ @t ! and there are R', T’ such that {x + 1,€,A,w, +,-,7,B,R, T>€%,_,,
{m',ay¢ T',and R; ; = R; ; whenever {i,j> ¢ {{iy,j,),..., iy, 1>}

Finally, for any n > 1, let , be an V] sentence such that, for any k, 4 as above
and any m in o, {x + 1,€, 4, m) is a model of ¥, iff there are a, w,y in ¥ + 1 and
relations +,-, B, R, T such that

e + 1,6, 4,w, +,-,9,B,R,T)E%,_,,
@} is a sentence VR, ; ...VR, ;, ~ ¢h ', and
{m',a>¢T.

Using Lemma 3.1 we can construct a {,, , class € such that, for any cardinal x,

e+ Lede¥iff k =k, ie., iff k =2 N,

Vm < o[{k + l,e,k,m) = ~y,or Il < ki + 1,6, A, m) = ]
Al V!

and

Vi<kIm<ole+ Leim)E=y, & -Ju < Ak + 1L, u,m) = 4,].
Vl ~ /\1

Furthermore, the class 2 of all structures {4, R) isomorphic to {card(4) + 1,€)

is a {1} class since {4, R) € & iff

(10) A is infinite, R well-orders A with a last element y, and, for any x # yin A,
card(A) # card(R™{x}).

©
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Thus «, is &L, characterizable as the cardinality of any set 4 such that

(11) for some R, {A, R> € @ n € [an V] condition] or

(12) Aisinfinite and, for any R, if (4, R)> € 2 then {4, R} € ¥ [an A} condition].

Hence we have shown that there is a )}, characterizable cardinal which is
not V! characterizable.

The above construction can be modified to show that there is an A, character-
izable cardinal which is not V! characterizable. In order to do this, we first
strengthen Lemma 3.1 by using the techniques in the proof of Theorem 2.2.

LEMMA 3.2. For any n > 1there is an V) sentence ., and an \} sentence y,, such
that, for any infinite cardinal x and any 4, if 2* < x then, for any m in w, {x + 1,€,A,m)>
is a model of 1, iff it is a model of ¥, iff it is a model of ;.

PROOF. In a manner similar to that used in the proof of Lemma 3.1, we define
an A} class €, of structures such that, for any infinite cardinal x and any 4 such
that 2* <k, <k + 1,&, A4, w, +,-,9, B,R, T) is in %, iff conditions (1) through (4)
hold and

(13) Risasubset of k x w x w x y x w x A which codes all w-sequences of
finitary relations over A (such an R exists since 2* < k); i.e., if

Ry = {<ags. .. 05, >:36 < yVk < j{B,i,j, 6,k o € R},

then for any R’ as in (5) there is a § in x such that, for all i,j in o, R; ; = Ry, ;
[an A! condition]; and

(14) Tisasubset of ® x Kk x w x ysuch that, for any m, nin w, any f < k, and

any a <y, <{n, f,m,a) € T iff

(@) n = 0 and ¢} is satisfied in {(A) when v, is interpreted as B,(i) and R, ;is
interpreted as Ry ; ; [a first-order condition as in (6)], or

(b) n > 0 and ¢, is satisfied in (A1) when R, ; is interpreted as Ry ; ;, i.c., ¢},
isVR, ; ...VR, ; ~ ¢h "' and there is a f’ in k such that <n — 1,8/, m’,a)¢ T
and Ry ;; = Ry, ; whenever {i,j>¢{{i;,j>,...,<i,jy>} [a first-order condi-
tion].

Now for any n > 1, let i/, be an V. sentence and ¥, be an A} sentence such that,
for any k, A as above and any m in w, {x + 1, €, 4, m) & , iff there are a, B, w, y,
+,-,B,R, Tsuchthat (x + 1,€,A,w, +,-,7,B,R, T)isin %, and {(n, f,m,a> e T,
and <k + 1, €, A4, m) = ¢, iff, for any o, B, w,y, +,-,B,R, T, if <k + 1, €, 4, w,
+,,9% B, R TYe®,, then {n,,mayeT

In order to apply Lemma 3.2, let

S = {k:Vi< k(2" < x)}

and define «, to be the smallest member of ¥ which is not weakly V} character-
izable. By § 2(8), ¥ is a >} spectrum since for any set A4, card(4) e & iff

(15) for any B < A, if card(B) # card(A), then 2°2® < card(A) iff

(16) there is a well-ordering R of 4 such that for any x in A4, if card(R™'{x})
# card(A), then 2°2"® ') < card(A).

Using Lemma 3.2 and the fact that . is a O} spectrum, we can replace the V!
clauses in (8) and (9) by 3 clauses to obtain an A} class €' such that, for
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any cardinal k, (x + 1,e) e @ iff k = x,. Hence, by (12), , is A, character-
izable. _

By similar modifications of (8) and (9) using *‘universal” A! sentences in addition
to the “‘universal” V! sentences i, we obtain the following hierarchy theorem.

THEOREM 3.3. For any n > 1 there is a O} characterizable cardinal which is
neither \/}_ | nor Al_ | characterizable, an \/} characterizable cardinal which is not
A} characterizable, and an A} characterizable cardinal which is not V! character-
izable.

In conclusion, we mention an open problem concerning the notion of a k-
spectrum. It follows immediately from Theorem 3.3 that for any n > 1 there is a
cardinal x such that there is an V! k-spectrum which is not an A} x-spectrum.
What is the least such cardinal k? In particular, is the least such x always w?
Asser [2] raised this ‘“‘spectrum problem” for n = 1 and k = w: Bennett [3]
considered it for arbitrary n, but could not show that there was any second-order
w-spectrum which was not already an V} w-spectrum. Both authors were in-
vestigating w-spectra in response to the problem raised by Scholz [12] of character-
izing the class of V! w-spectra.

4. Characterizable ordinals. As in our study of characterizable cardinals, we
shall be interested in determining both the smallest ordinal not characterizable
in 3 given manner and also the supremum of the set of ordinals characterizable in
that manner. The first problem leads to a study of the characterizability of count-
able ordinals, while the second turns out to be equivalent to its version for cardinal
characterizability (cf. Theorem 4.1).

For any linear ordering R, let |R| be the order type of R, and for any x in the
field of R, let R | x be the initial segment of R determined by x, ie., {{y,z):
{y,z) € R & {z, x) € R}. Note that the following conditions are V| definable:

(1) for any linear orderings R, S, |R| = |S| iff there is an order-preserving map
of the field of R onto the field of S, and

(2) for any linear ordering R and any well-ordering S, |R| < |S| iff [R| = |S | x|
for some x in the field of S.

THEOREM 4.1. For any n > 1 and any cardinal k, x is V} (or A}) characterizable
iff the order structure {x, €) is V} (or \}) characterizable.

Proor. If k is characterizable, then {k, €) is characterizable as that well-order
structure (A4, R) such that card(4) = k and for any x, card(4) # card(R™'{x}).
Conversely, if (x, € is V! characterizable, then k is obviously V} characterizable ;
if (x, €) is A! characterizable, then x is A! characterizable as the cardinality of a
set A such that, for any well-ordering R of A4, if card(4) # card(R™'{x}) for any x
in A4, then |R| = k.

By the compactness theorem, the only V} characterizable ordinals are the
finite ordinals. Hence at least an A! sentence is needed to characterize an infinite
ordinal, and such a sentence characterizes {w, €) (cf. § 2(3) and § 3(1)). Though we
shall be interested primarily in the ¢! characterizability of countable ordinals,
we shall return to the A} characterizable ordinals later.
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The characterizability of countable ordinals is closely related to the definability
of sets of well-orderings of w in second-order number theory, as the following
theorem shows. For any countably infinite ordinal o, let WO, be the set of all
well-orderings of w with order type a.

THEOREM 4.2. For any n > 1 and any countably infinite ordinal a, a is V! (or A})
characterizable iff WO, is a £} (or a T1}) set.

ProoFr. If ais V! or A} characterizable by a sentence ¢, then ¢ also defines WO,
asa X! or aIl} set. Conversely, if WO, is £}, then <{a, €) is V! characterizable as
that well-order structure {A, R) such that there exist an x in A and relations
+, -, S on A such that

(3) |R | x| = w [a first-order condition by § 3(1)],

(4) + and - are the relations of addition and multiplication on R™!{x} [a first-
order condition by § 3(2)],

(5) S is an ordering of R™*{x} with |S| = |R| [an V| condition], and

(6) Sis “in” WO, [an V]! condition since WO, is X1].

Also, if WO, is 1}, then {a, €) is Al characterizable as that well-order structure
(A, R) such that card(4) = X, [an A} condition] and, for any x, +, -, S satisfying
conditions (3) through (5), condition (6) holds.

Later we shall extend Theorem 4.2 to A} characterizability, but first we derive
some of its consequences. For any n > 0 let §, be the least ordinal which is not
the order type of any A} well-ordering of w, and let J,,, = sup {4, :n € w}.

THEOREM 4.3. For any n > 0 and any infinite ordinal o, if & < &, then WO, is a
Al set.

PROOF. Let S be a Al well-ordering of w with order type a. Then
WO, = {R:3T(T = S & |T| = |R|)}

= {R:VT(T = S = |T| = R))},
so that W0, is a A} set.
The converse of Theorem 4.3 is true for n = 1 since W0, is not a £} set for any
o = &, (otherwise, by standard arguments, every I1} set would also be Z!; cf.
[14, p. 184)): it is also true for n = 2 whenever the set of A} relations is a basis for
the set of all ! sets of relations.

COROLLARY 4.4. For any countable ordinal a, o is 3 characterizable'iff o is V1
characterizable iff « < 0,.

Proor. If WO, is a X} set, then it contains a A} well-ordering by the basis
theorem for £} (cf. [14, p. 190]). Hence the corollary follows from Theorems 4.2
and 4.3.

Having determined which countable ordinals are V! and V) characterizable,
we now turn to A} and A} characterizability. We shall show that the A} character-
izable ordinals are cofinal with the V} characterizable ordinals and that §, is
A} characterizable. In order to do this, we shall use several facts relating A}
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definability to implicit I1} definability. For any n > 0, call a subset 4 of w a I1} (or
a X)) singleton iff {4} is a 1} (or a X}) set. It is easy to see that A is a Z, singleton
iff Aisa Al set(cf. [14, p. 188] where the proof of a weaker result actually establishes
this fact). Suzuki [16] showed that a subset of w is A} iff it is hyperarithmetical (i.e.,
A}-definable) in a I1} singleton.

Indices can be assigned to IIj singletons by applying the Novikov-Kondé-
Addison uniformization theorem [14, p. 188] to a universal IT} set P! which enu-
merates all IT] sets of subsets of w [14, p. 175] to obtain a IT} set P such that a subset
A of w is a T} singleton iff, for some e in w, (e, A)> € P. We note in passing that the
set of I} singletons is thereby a IT} set and that, by the basis theorem for X},
there is a A} set which is not a T} singleton ; hence we obtain an alternate proof of
Suzuki’s [16], Corollary 2. More to the point, the set {e:34{e, A) € P} of indices of
I1} singletons is a X} set. To each index e in this set I we assign an ordinal |e| as
follows. Since P is 1], there is a recursive set Q such that for any e, A the set

Qe,A = {<m9 n> :<e5 Aa m, n> € Q}

is a linear ordering and is furthermore a well-ordering iff (e, A) € P (cf. Kleene
[6, XXII]). For any e in I, let |e| equal |Q, ,| for the unique A such that (e, 4) € P.

LEMMA 4.5. {|e|:e € I} is cofinal with §,.

PRrOOF. For any e in I, the unique well-ordering R such that R = @, , for some
A has order type |e| and, being a X} singleton, is a A} well-ordering; hence [e| < &,.
Conversely, suppose that {|e|:e € I} is bounded by |R| for some A} well-ordering
R. Then, for any I1} singleton A and any index e of 4,

{4} = {B:1Q. 5l < IRI},

so that A4 is a X! singleton relative to R and hence hyperarithmetical in R. Now the
hyperjump of R is also a A} set, and so by Suzuki’s theorem it must be hyper-
arithmetical in some I} singleton and thereby hyperarithmetical in R, which is
impossible. Hence no such R exists.

We now extend Theorem 4.2 to A} characterizability.

THEOREM 4.6. For any countably infinite ordinal o, « is A} characterizable iff WO,
is a T set.

ProOF. Necessity is proved as in Theorem 4.2. Sufficiency is also proved in the
same manner once we replace the A} condition on (4, R) that card(4) = R,
by membership of {4, R) in an A] class of countable well-order structures con-
taining <a, €). Since WO, is I1}, « is less than &, by the basis theorem for £}. By
the lemma, there is an e in I such that a < |e|. Then an infinite well-order structure
{4, R) has order type less than |e| iff there do not exist any x, +, -, S, B satisfying
(3) and (4) such that |Q, 5| < |S| < |R], so that the class of all such structures is an
Al class as desired.

In order to apply Theorem 4.6 to describe the class of Al characterizable
ordinals, we first prove several lemmas.
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LEMMA 4.7. For any e in I, WO, is a T1] set.

"Proor. For any ein I and any R, Ris in WO, iff R is a well-ordering and there
exists an A such that |R| = |Q, ,|. But there exists an A4 such that |[R| = |Q, ,| iff
there exists a unique such A iff there exists such an 4 with {4} Z{ in R iff there
exists an 4 hyperarithmetical in R [a 1] condition by the methods of Kleene [7]]
such that Q, , is a well-ordering and neither |R| < |Q, 4| nor |Q, , < R| [a II]
condition by (2)]. Hence WO, is a I} set.

For any set W of countably infinite ordinals and any n > 0, call W a I1} (or a
=,) set of ordinals iff {R:|R|e W} is a I1} (or a X}) set.

LEMMA 4.8. {|e|:e € I} is a X} set of ordinals.

ProOF. Let W = {le|:eeI}. Then {R:|R|e W} equals {R:3e3A4 (R is a well-
ordering and |R| = |Q, 4)}.

LEMMA 4.9. {0:w < a < 6, & WO, is not T1}} is a £} set of ordinals cofinal
with d,.

PRrOOF. Let R, be any Al well-ordering of w. The following three conditions are
all 1 conditions on any well-ordering R :

(7) WOg, is not IT} iff 13eVS(R| = |S| <> e, S) € P});

(8) IRol < IR|1ff AS(S = R, &S| < [R);

(9) |R| < 9, iff dedA(Ce, AD e P & |R| < |Q, 4.

By (7), (8), and the basis theorem for £}, for any a < J, there is a f§ such that
a < f < d, and WOy is not IT}, so the set of ordinals in question is cofinal with
8,. It is a X! set by (7) through (9) and § 2(3).

Noting that condition (7) is still Z} if P is replaced by any A} enumerating set,
we see that the lemma can be generalized to show, for example, that the set of
infinite « < &, such that WO, is not a Boolean combination of IT! sets is a X}
set of ordinals cofinal with d,. Theorem 4.6 together with Lemmas 4.5, 4.7, and
4.9 shows that the set of Al ordinals is split into two cofinal subsets, one containing
precisely the ordinals « such that a is A! characterizable. The following theorem
establishes the order types of these cofinal subsets. Call a countably infinite ordinal
o X} regular iff any cofinal X} subset of a has order type a.

THEOREM 4.10. 8, is X1 regular.

PRrOOF. Let W be a cofinal £} subset of 3, and let W' = {R:|R| € W}. Suppose
that the order type of W is |R,| for some A} well-ordering R,. For any ternary
relation S and any n, let S, = {(i,j>:{(n,i,j> €S} and let Z be

{S:VnS,e W & VmVn({m,n)> € Ry = |S,| < |S,)}

Then Z is a X} set and hence contains a A} member S. By construction, {|S,|:n € w}
is cofinal in W and hence also in §,. But then the ordering

{a,b) < {c,dy<>a<c or (a=c&{(b,dyeS,)
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of pairs of integers is a A} well-ordering with order type at least &,, which is
impossible.

By the remarks preceding Theorem 4.10, and by Lemmas 4.8, 4.9, and Theorem
4.10, we obtain the desired description of the class of A} characterizable ordinals.

THEOREM 4.11. The countable A} characterizable ordinals form a cofinal subset
of 6, with order type d,, and the complement of this set relative to 8, is also a cofinal
subset of 6, with order type 9, .

Finally, we show that there is a countable A} characterizable ordinal which is
not V} characterizable.

THEOREM 4.12. 8, is A} characterizable.

PRrOOF. By (9), {a:a = 0,} is a IT} set of ordinals. Since the set of countable A!
characterizable ordinals is cofinal in J,, the set of limits of countable sequences
of these ordinals contains 4, . But this set is a I1} set, since it equals {R:Vn WO gin
is IT{}, which is IT} by (7). Hence WO, is a I1} set, and 8, is A} characterizable by
Theorem 4.2.

5. Characterizability of cardinals in >} spectra. In the manner indicated at
the end of § 2, our results about ordinal characterizability enable us to show that
N, is O2 characterizable for any o < d,. The same techniques also enable us to
establish a more general result: by replacing the N function, which enumerates
the class of all infinite cardinals, by the enumerating function F of an arbitrary
1 spectrum, we shall show that F, is a >} characterizable cardinal for any O}
characterizable ordinal a. Consequently, by showing that several common classes
of cardinalsare >} spectra, we shall obtain <> ; characterizations for many cardinals
which are not “‘too far out” in these spectra.

While ordinal characterizability will play a key role in what follows, in some
cases it can be replaced by a weaker notion, for if F enumerates a class of cardinals,
then in general F, will be much larger than card(x) and the “‘extra room™ in a
structure of cardinality F, may allow us to define-a O3} well-ordering with order
type o even though a is not a {} characterizable ordinal. Accordingly, for any
ordinal « and any cardinal x, call o > }-definable over universes of power at least k
iff there is an V3 sentence ¥ and an A} sentence ¥’ such that for any structure
{4, R) with card(4) = k,{4,R> = y iff (A,R) = ¢’ iff |[R| = o. It is easy to
see that an ordinal a is O} characterizable iff it is O} definable over all universes
of power at least card («). Using the techniques of § 2, one can extend this result as
follows.

THEOREM 5.1. For any second-order characterizable ordinal o, a is O} definable
over universes of power at least 2°*79®,

Proor. Suppose that ¢ is a second-order sentence which is true in a structure
{B, R) iff {B, R) is isomorphic to {a, €). As in the proof of Theorem 2.2, let [ be
the maximum of the ranks of relation variables occurring in ¢, and let  be an
V3 sentence such that {4, R) = y iff there are relations B,C,,...,C, over A
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such that B is the field of R and conditions (6) and (7) of § 2 hold ; likewise, let '
be an Al sentence such that {4, R) = v iff, for all relations B,C,,...,C, over
A such that Bis the field of R and condition (6) of § 2 holds, condition (7) also holds.
Then  and ' define a over universes of power at least 2°2®),

COROLLARY 5.2. For any a < 0, a is O3 definable over universes of power at
least 2%

ProofF. The corollary follows immediately from Theorems 4.2, 4.3, and 5.1.

Theorem 5.1 together with our results on ordinal characterizability will be the
principal tools for obtaining ! characterizations of cardinals. Before proceeding
in this direction, we obtain a useful “converse’” to Lemma 2.1.

LEMMA 5.3. For any <} characterizable cardinal k, {1:1 < k} and {A:1 < «}
are O} spectra.

ProoF. For any set A4, card(4) < « iff there does not exist a subset B of A with
cardinality x [an A} condition since k is V} characterizable] iff there is a well-
ordering of A in which no proper initial segment has cardinality x [an V} condition
since x is A} characterizable]. The rest of the lemma follows from Lemma 2.1.

THEOREM 5.4. Let F enumerate a ) spectrum in increasing order. For any ordinal
o in the domain of F, if there is a {) characterizable cardinal k < F, such that o is
{1 definable over universes of power at least x, then F, is a } characterizable
cardinal.

PROOF. Let F enumerate a © } spectrum %. In the definition of the {} condition
W(A4,R,S) in §2, replace “card(R™'{x}) = NX,” by “card(R™'{x})e &¥”; also, in
(4a) and (4b) of § 2, replace “‘card(S) < N,”” by condition (9) of § 2. By Lemma 5.3,
{A:4 = k}isa )} spectrum, and hence F, is )} characterizable as that cardinal in
{A:4 = x} satisfying the modified conditions (4a) or (4b).

COROLLARY 5.5. Let F enumerate a >} spectrum in increasing order. Then, for
any ordinal a in the domain of F,

(@) if ais O} characterizable, then so is F, ;

(b) if « < &,, then F, is O} characterizable; and

(c) if 2% < F, and o« < &), then F, is O} characterizable.

ProoF. Part (a) is immediate, (b) follows from (a) and Corollary 4.4, and (c)
follows from the theorem and Corollaries 2.3 and 5.2.

In order to apply Corollary 5.5, we now show that several classes of cardinals
are O} spectra.

LEMMA 5.6. For any class & of infinite cardinals, & is a O} spectrum iff there is
an V1 class € of structures (A, R, S) such that, for any ordinal a and any S < «,
o, &,SY€eCiff S=F na

Proor. If & is a O} spectrum, let € be the O} class of structures (4, R, S)
such that, for any x, x € § iff card(R™!{x}) e & and, for any y, if (y, x> € R, then



SECOND-ORDER CARDINAL CHARACTERIZABILITY 141

card(R™!{y}) < card(R~*{x}). Conversely, if € is an V} class, then & is O} since
for any set A4, card(4) e & iff there are relations R, S and an x € 4 such that R
well-orders A, card(4) = card(R™*{x}), {4, R,S) € %, and x € S [an V} condition]
iff A is infinite and for any R, S, x, if R well-orders A4, x is the R-least element of 4
such that card(4) = card(R™'{x}),and {4, R, S) € %, then x € S [an A} condition].

THEOREM 5.7. The classes of infinite cardinals, limit cardinals, regular cardinals,
successors of beths, weakly inaccessible cardinals, and inaccessible cardinals are all
O} spectra.

Proor. The infinite cardinals form an V1 spectrum by § 2(1). Let € be the class of
structures {4, R, §) such that, for any x, x € § iff R™*{x} is infinite and

Vy[{y, x) € R = 3z({y, z), {z,x) € R & card(R™*{z}) < card(R™'{x}))];

% is a Oj class and hence the class of limit cardinals is a  } spectrum by the lemma.
Next let € be the class of structures (4, R, §) such that, for any x, x € S iff R~ '{x}
is infinite and for every subset C of R™'{x}, if

VyKy, x) e R = 3z({y,z),{z, x)e R& ze ()],

then card(C) < card(R™*{x}); € is a {; class and hence the class of regular
cardinals is a O} spectrum by the lemma. Using § 2(8) and the definition

1, =sup{2?:f <al UN,

of the beth function, one can show that there is an V1 class € of structures {4, R, )
such that {a, €, S) € € iff there is a binary relation T such that S is the range of T
and T= {{B,2;>:1; < a}; hence the successors of the beths form a O}
spectrum by the lemma. The rest of the theorem follows now, since a cardinal x is
weakly inaccessible iff it is an uncountable regular limit cardinal, and is inaccessible
iff it is weakly inaccessible and V4 < k (2* < x) [a O} condition by § 3(15), (16)].

COROLLARY 5.8. (a) For any a < §,, ¥, and the ath weakly inaccessible cardinal
(if it exists) are O characterizable.

(b) For any O} characterizable cardinal k, R, is OL characterizable.

(c) For any o < 8, if 2% < R, then N, is O} characterizable.

(d) For any a < §4,, 1, and the ath inaccessible cardinal (if it exists) are O}
characterizable.

Proor. The proof is immediate from Theorem 4.1, Corollary 5.5, and Theorem
5.7.

As noted before, Corollary 5.8 shows that cardinals which are not “too far out”
in several ¢} spectra are ) characterizable. Characterizations of cardinals
“farther out” in these spectra can be obtained also by utilizing various operators
to “throw away” large numbers of cardinals in these spectra in such a manner
that the remaining cardinals still form {3 spectra to which Corollary 5.5 can be
applied. We shall examine two such operators: the fixed point operator F and the
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Mabhlo operator M (cf. Lévy [9]), where, for any class # of ordinals,
FF = {ae F :F n a has order type a},

and
MZF = {ae ¥ : every closed, unbounded subset of a intersects & }.

Call an operator T on the collection of all classes of ordinals into itself a thinning
iff, for any class # of ordinals and any ordinal a,

T na=T(F na)<c F.

Obviously both F and M are thinnings. For any thinning T, define the graph of
T to be the class of all structures {4, R, C, D) such that

(1) R well-orders A, and

(2) “D=TC”,ie,{|R | x|:xeD} = T{R | x|:x e C}.
A thinning is said to be an V' thinning if its graph is an V} class. We shall show that
F and M are V! thinnings, and that V! thinnings preserve ! spectra.

THEOREM 5.9. The fixed point operator and the Mahlo operator are \/} thinnings.

Proor. It suffices in each case to show that condition (2) is an V} condition.
First, “D = FC’ holds iff

Vx(xeD<xeC&IR | x| = (RN C x C) I x|),

which is a ¢! condition by § 4(1). Second, a subset X of an ordinal « is closed iff
VB < asup (X n f)e X and is unbounded iff sup {f + 1:f€ X} = a. Since these
are both first-order conditions, “D = MC”’ is a {} condition.

THEOREM 5.10. For any V3 thinning T and any ) spectrum & containing only
infinite cardinals, TS is a O} spectrum.

PRrOOF. By Lemma 5.6 there is an V} class € such that a structure {4, R, D) is
in ¥ iff there exists a subset C of A such that (4, R, C, D) is in the graph of T and

Vx(xeC<|R | x|e & n |R|).

Hence, for any ordinal e and any S € «, {2, €,S) e iff S=T(¥ na)=TS na,
so that T is a O} spectrum by Lemma 5.6.

It follows from Theorem 5.10 and previous results, for example, that the first
fixed point of the N function is >} characterizable, as is the first fixed point in the
enumeration of fixed points of the ¥ function, and so on. In general, as we shall
now show, iterating an V1 thinning « times, where « is a {} characterizable
ordinal, still preserves ! spectra. For any thinning T and any class # of ordinals,
let

T°% = & ifa =0,
=TMN{T*#F:p<a} ifa>0.
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LEMMA 5.11. For any thinning T, any class & of ordinals, and any ordinals a, 5,
if « £ P, then TF na) = THF N a).

PROOF. Suppose not, and let a be the least ordinal such that for some = « and
somey < a,yisin TXF N a)but not THF n «). Then T**{(F Ny + 1) = [since
YET(F na) S T N F n)] T" " (Fny)u {y} =[ by the minimality of o]
TF ny)u {y} = [sinceye TH(F na) = THF na)] T(F ny + 1). Hence

TF ny+ )=T(Fny+1)=THF Ay + 1),

contradicting the choice of y.

THEOREM 5.12. For any V3 thinning T and any &) characterizable ordinal o, T*
is an V3 thinning.

PROOF. Again we must show that condition (2)isan V1 condition. But “D = T*C”
holds iff thereisan S = A x A such that

(@ Vx(R [ x| = 0=S5""{x} = C),

(b) V(IR [ x| > 0= <A, R,M{S™{y}:{y,x>eR}, S {x}> is in the graph

of T),
and either
() (R | x| = a& D = S~ '{x}),ie,a < |R|and “D = T*C,” or
(d) 7 IR x| =« & <A, R,(M{S *{y}:ye A},D) egraph T, ie,a 2 |R| and
“D = TRC = T*C.”

For any cardinal x and any ordinal a, call k a fixed point of order a of the N
function iff « is in F*{A:4 = N,}, and a Mahlo cardinal of order o iff xe
M?*{2:2 regular}. The following result is a direct consequence of Corollary 5.5 and
Theorems 5.7, 5.10, and 5.12.

COROLLARY 5.13. For any ordinals o and B, if « and B are O} characterizable
(in particular, if a, f < 8,), then the ath fixed point of order B of the N function
and the ath Mahlo cardinal of order B (if it exists) are L characterizable.

By considering definability of ordinals over universes of at least a given power
(cf. Theorem 5.4) one can strengthen Corollary 5.13 to show that, for any a,
B < &, the ath Mahlo cardinal of order f (if it exists) is {} characterizable
provided that the continuum is not extraordinarily large. Even more is possible,
since it should be apparent that many results in this section and in the previous
sections can be strengthened or generalized considerably if one considers not only
second-order definability but also arbitrary higher-order definability. We have
avoided such considerations primarily because they complicate the statement and
proofs of our results without adding much in the way of ideas or consequences not
already present in our study of second-order logic. However, it is probably
appropriate at this point to indicate the form such generalizations take.

For any n < w, an nth order logic is that fragment of the simple theory of types
which utilizes variables of type at most n, and 47, is the least ordinal which is not
the order type of a well-ordering of w definable in nth order arithmetic. In the
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same manner in which Montague [10] extended Zykov’s theorem to higher types,
one can extend Theorem 2.2 to show that, for any nth order characterizable
cardinal x, (2" " is O} characterizable, where

2%% =k and 20" =227

Among the many possible generalizations of other results are those of Corollaries
5.8 and 5.13 which show that,forany nand any «, f < 47, N, is O} characterizable
if 3, < N,, 2, is {1 characterizable, and the ath Mahlo cardinal of order B (if
it exists and is larger than 1,) is $} characterizable.

6. Characterizability and the model theory of set theory. We have already seen
in § 2 that the ) characterizability of a particular cardinal (namely, 2%°) is both
consistent and independent relative to Zermelo-Fraenkel set theory. What can
be said about the size of the continuum if 2%° is not A} characterizable? Kunen’s
result [8] shows that 2¥° may still be less than X, while Corollary 5.8 shows that
it must be at least ¥X;,. Since d, is an A} characterizable ordinal by Theorem 4.12,
an examination of the proof of Theorem 5.4 shows that X;, is A} characterizable,
and hence 2% must be greater than N, if it is not A} characterizable. In fact, the
results of §4 and § 5 can be extended to show that if 2%° is not A} characterizable,
then not only is it not among the first §, members of any O} spectrum, but also
it is not among the first ¢, members of any A} spectrum, where o, > J, is the
least ordinal which is not the order type of a £} well-ordering of a subset of w.
Thus if the power of the continuum does not satisfy a fairly weak describability con-
dition, then it is already excluded from being equal to a large number of cardinals.

The answers to questions (I) and (II) raised in § 2 are also influenced by the
model theory of set theory. We have seen that the smallest cardinal which is not
Q] characterizable lies between X;, and X, and that if the continuum hypothesis
holds then this cardinal is at least as large as X, . How large can this cardinal be?
Scott and Kunen observed in a conversation with the author that given any
countable standard model M of Zermelo-Fraenkel set theory (ZF) and any
ordinal a < Q™ there is a countable standard model 9 of ZF with the same
ordinals as M such that cardinals are absolute from 9 to N and, for any f < a,
N, is O} characterizable in 9 (the “trick” is to have 2% = N, in R, where f is
an increasing function in MM such that {{x,y>:3I2*3" = f(n + 1) — f(n)} is a
well-ordering of w with order type «). Thus the answer seems to be ‘““as large as
possible.” How small can the cardinal be? We do not know if it is consistent
relative to ZF that X;, is not V} characterizable.

Turning now to question (II), it appears that we must answer it in the same
fashion. For given any countable standard model M of ZF and any cardinal « in
M, there is a countable standard model M of ZF with the same ordinals as M
such that cardinals are absolute from 9 to 9 and (2%)* > « (cf. Cohen [4, § 8]);
thus the supremum of the cardinals which are >} characterizable in R is greater
than x. It follows that an upper bound to the countable class of { } characterizable
cardinals is not definable in any fashion which is absolute for models of ZF with
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the same cardinals;e.g., it is not arithmetical in the aleph function, that is, definable
in a first-order language with variables ranging over the ordinals and with con-
stants denoting the aleph function and the operations of ordinal addition and
multiplication.

The answer to question (I1) is affected by still other considerations. Suppose that
we start with a model of ZF in which there is no inaccessible cardinal and extend
it to one containing an inaccessible. Then we have changed the supremum of the
class of {1} characterizable cardinals by Corollary 5.8(d). If we add cardinals
whose existence cannot be proved from the existence of an inaccessible cardinal
(e.g., Mahlo cardinals), then we may raise the supremum still further. Even though
Mabhlo cardinals are the largest ““large cardinals” which we can show to be !
characterizable, we can add larger cardinals yet and still affect the supremum,
as the following examples show.

Hanf and Scott [5] call a cardinal k A! describable iff there is an A} class € and
an R € k x k such that (k,R>e® but {AL,Rn 1 x A)¢ ¥ for all 1 < k; they
call k A} indescribable iff it is inaccessible and not A} describable. They show that
any A! indescribable cardinal is weakly compact, and that the existence of Al ,
indescribable cardinals does not follow from the existence of A, indescribable
cardinals for any n. The smallest A} indescribable cardinal is not V}, ; character-
izable since a straightforward coding argument shows that any V!, ,
characterizable cardinal is A} describable. However, by the techniques of § 3,
the class of A! indescribable cardinals is an A!,, spectrum, and so the smallest
Al indescribable cardinal «, if it exists, is at least second-order characterizable as
the smallest member of a second-order spectrum; hence (2%)* is {} character-
izable, so that {1:4 <2} is a ) spectrum by Lemma 5.3 and « is A,
characterizable as the unique A} describable cardinal in {1:1 < 2*}.

An alternative proof of the A} characterizability of the first A} indescribable
cardinal « is as follows. For any set A and any n, let [A]" = {B:B < A & card(B)
= n}. Silver [15] showed that « is the smallest cardinal A such that A — (1)?, ie.,
such that for every function f from [4]? into {0, 1} there is a subset 4 of 4 such that
card(A) = 4 and f is constant on [4]?; from this definition, it is apparent that
{A:A > (4)*} is an A} spectrum, and that x is A} characterizable as above. The
same method shows that the class of Ramsey cardinals, i.e., cardinals x such that
Kk — (k)<%, is also an Al spectrum, and that the smallest Ramsey cardinal, if it
exists, is A} but not V} characterizable.

It is even possible to add cardinals which are not second-order characterizable
at all (e.g., the first measurable cardinal) to a model of set theory and still affect the
supremum of the class of {1 characterizable cardinals, since, as noted at the end
of § 5, (22" is ! characterizable for any third-order characterizable cardinal .
Is there a cardinal so large that adding it to a model of ZF does not affect the
supremum of the class of { } characterizable cardinals? This question is admittedly
rather vague, though we would like to know whether, in view of the above results,
there is any precise sense in which an “‘absolute” upper bound can be placed on
the class of ©1 characterizable cardinals.
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In conclusion, we note that the richness of the class of {2} characterizable
cardinals suggests that efforts towards a better understanding of higher-order
model theory might begin most profitably with an attempt to isolate natural
subclasses of >} and to analyze the structure of these classes.
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