
60

Debugging Larch Shared
Language Specifications

Stephen J. Garland and John V. Guttag

July 4, 1990

Systems Research Center

DEC’s business and technology objectives require a strong research program. The Systems
Research Center (SRC) and three other research laboratories are committed to filling that need.

SRC began recruiting its first research scientists in l984—their charter, to advance the state of
knowledge in all aspects of computer systems research. Our current work includes exploring
high-performance personal computing, distributed computing, programming environments,
system modelling techniques, specification technology, and tightly-coupled multiprocessors.

Our approach to both hardware and software research is to create and use real systems so
that we can investigate their properties fully. Complex systems cannot be evaluated solely in
the abstract. Based on this belief, our strategy is to demonstrate the technical and practical
feasibility of our ideas by building prototypes and using them as daily tools. The experience we
gain is useful in the short term in enabling us to refine our designs, and invaluable in the long
term in helping us to advance the state of knowledge about those systems. Most of the major
advances in information systems have come through this strategy, including time-sharing, the
ArpaNet, and distributed personal computing.

SRC also performs work of a more mathematical flavor which complements our systems
research. Some of this work is in established fields of theoretical computer science, such as
the analysis of algorithms, computational geometry, and logics of programming. The rest of
this work explores new ground motivated by problems that arise in our systems research.

DEC has a strong commitment to communicating the results and experience gained through
pursuing these activities. The Company values the improved understanding that comes with
exposing and testing our ideas within the research community. SRC will therefore report
results in conferences, in professional journals, and in our research report series. We will seek
users for our prototype systems among those with whom we have common research interests,
and we will encourage collaboration with university researchers.

Robert W. Taylor, Director

Debugging Larch Shared Language Specifications

Stephen J. Garland and John V. Guttag

July 4, 1990

iii

John Guttag and Stephen Garland were supported in part by the Advanced Research Projects
Agency of the Department of Defense, monitored by the Office of Naval Research under
contract N00014-89-J-1988, and by the National Science Foundation under grant CCR-
8910848. Authors’ address: MIT Laboratory for Computer Science, 545 Technology Square,
Cambridge, MA 02139. E-mail: garland@lcs.mit.edu, guttag@lcs.mit.edu

cDigital Equipment Corporation 1990

This work may not be copied or reproduced in whole or in part for any commercial purpose.
Permission to copy in part without payment of fee is granted for nonprofit educational and
research purposes provided that all such whole or partial copies include the following: a notice
that such copying is by permission of the Systems Research Center of Digital Equipment
Corporation in Palo Alto, California; an acknowledgment of the authors and individual
contributors to the work; and all applicable portions of the copyright notice. Copying,
reproducing, or republishing for any other purpose shall require a license with payment of fee
to the Systems Research Center. All rights reserved.

iv

Abstract

The Larch family of specification languages supports a two-tiered definitional approach to
specification. Each specification has components written in two languages: one designed for a
specific programming language and another independent of any programming language. The
former are called Larch interface languages, and the latter the Larch Shared Language (LSL).

The Larch style of specification emphasizes brevity and clarity rather than executability. To
make it possible to test specifications without executing or implementing them, Larch permits
specifiers to make claims about logical properties of specifications and to check these claims
at specification time. Since these claims are undecidable in the general case, it is impossible
to build a tool that will automatically certify claims about arbitrary specifications. However, it
is feasible to build tools that assist specifiers in checking claims as they debug specifications.
This paper describes the checkability designed into LSL and discusses two tools that help
perform the checking.

This paper is a revised and expanded version of a paper presented at the April 1990 IFIP
Working Conference on Programming Concepts and Methods [7].

Index terms. Formal specifications, Larch, programming, theorem proving, validation.

v

Contents

1 Introduction 1

2 The Larch family of specification languages 2

3 Semantic checks in the Larch Shared Language 3

4 Proof obligations for LSL specifications 6

5 Translating LSL traits into LP 9

6 Proof mechanisms in LP 13

7 Checking theory containment 15

8 Checking consistency 21

9 Extended example 22

10 Conclusions 28

References 32

vi

1 Introduction

Proponents of formal specifications argue that the susceptibility of formal specifications to
machine analysis and manipulation increases their value and reduces their cost. The Larch
project [9, 10, 11, 12] seeks to support this position by building and using tools that facilitate
the construction of formal specifications for program modules.

It is not sufficient for specifications to be precise; they should also accurately reflect the
specifier’s intentions. Without accuracy, precision is useless and misleading. Mistakes
from many sources will crop up in specifications. Any practical methodology that relies
on specifications must provide means for detecting and correcting their flaws, in short, for
debugging them. Parsing and type-checking are useful and easy to do, but don’t go far enough.
On the other hand, we cannot prove the “correctness” of a specification, because there is no
absolute standard against which to judge correctness. So we seek tools that will be helpful in
detecting and localizing the kinds of errors that we commonly observe.

The Larch style of specification emphasizes brevity and clarity rather than executability, so
it is usually impossible to validate Larch specifications by testing. Instead, Larch allows
specifiers to make precise claims about specifications—claims that, if true, can be verified at
specification time. While verification cannot guarantee that a specification meets a specifier’s
intent, it is a powerful debugging technique; once we have removed the flaws it reveals, we
have more confidence in the accuracy of a specification.

The claims allowed in Larch specifications are undecidable in the general case, so it is
impossible to build a tool that will automatically certify an arbitrary specification. However, it
is feasible to build tools that assist specifiers in checking claims as they debug specifications.

This paper describes how two such tools fit into our work on LSL, the Larch Shared Language.
LP (the Larch Prover) is our principal debugging tool. Its design and development have been
motivated primarily by our work on LSL, but it also has other uses (for example, reasoning
about circuits and concurrent algorithms [6, 19]). Because of these other uses, and because we
also intend to use LP to analyze Larch interface specifications, we have tried not to make LP
too LSL-specific. Instead, we have chosen to build a second tool, LSLC (the LSL Checker), to
serve as a front-end to LP. LSLC checks the syntax and static semantics of LSL specifications
and generates LP proof obligations from their claims. These proof obligations fall into three
categories: consistency (that a specification does not contradict itself), theory containment
(that a specification has intended consequences), and relative completeness (that a set of
operators is adequately defined).

Section 2 provides a brief introduction to Larch. Sections 3 and 4 describe the checkable
claims that can be made in LSL specifications. Sections 5 through 8 describe how LP is
used to check these claims. Section 9 contains an extended example illustrating how LP is
used to debug LSL specifications. The concluding section summarizes the current state of our
research and plans.

1

add Window D proc (v : View;w : Window; c : Coord) signals (duplicate)
modifies v
ensures v0 D add W.v;w; c/

except when w 2 v signals duplicate ensures v0 D v

Figure 1: Sample Larch/CLU Interface Specification

2 The Larch family of specification languages

The Larch family of specification languages supports a two-tiered definitional approach to
specification [12]. Each specification has components written in two languages: one designed
for a specific programming language and another independent of any programming language.
The former are called Larch interface languages, and the latter the Larch Shared Language
(LSL).

Larch interface languages are used to specify the interfaces between program components.
Each specification provides the information needed to use the interface and to write programs
that implement it. A critical part of each interface is how the component communicates
with its environment. Communication mechanisms differ from programming language to
programming language, sometimes in subtle ways. We have found it easier to be precise about
communication when the interface specification language reflects the programming language.
Specifications written in such interface languages are generally shorter than those written
in a “universal” interface language. They are also clearer to programmers who implement
components and to programmers who use them.

Each Larch interface language deals with what can be observed about the behavior of
components written in a particular programming language. It incorporates programming-
language-specific notations for features such as side effects, exception handling, iterators, and
concurrency. Its simplicity or complexity depends largely upon the simplicity or complexity of
the observable state and state transformations of its programming language. Figure 1 contains
a sample interface specification for a CLU procedure in a window system.

Larch Shared Language specifications are used to provide a semantics for the primitive terms
used in interface specifications. Specifiers are not limited to a fixed set of primitive terms, but
can use LSL to define specialized vocabularies suitable for particular interface specifications.
For example, an LSL specification would be used to define the meaning of the symbols 2 and
addW in Figure 1, thereby precisely answering questions such as what it means for a window
to be in a view (visible or possibly obscured?), or what it means to add a window to a view
that may contain other windows at the same location.

The Larch approach encourages specifiers to keep most of the complexity of specifications in
the LSL tier for several reasons:

ž LSL abstractions are more likely to be re-usable than interface specifications.

2

LinearContainer .E;C/: trait
introduces

new: ! C
insert: C; E ! C
next: C ! E
rest: C ! C
isEmpty: C ! Bool
2 : E;C ! Bool

asserts
C generated by new, insert
C partitioned by next, rest, isEmpty
forall c: C, e; e0: E

next.insert .new; e// DD e
rest.insert .new; e// DD new
is Empty.new/
:is Empty.insert .c; e//
:.e 2 new/
e 2 insert .c; e0/ DD e D e0 j e 2 c

implies
forall c: C, e: E

is Empty.c/) :.e 2 c/
converts 2, is Empty

Figure 2: Sample LSL Specification

ž LSL has a simpler underlying semantics than most programming languages (and hence than
most interface languages), so that specifiers are less likely to make mistakes.

ž It is easier to make and check claims about semantic properties of LSL specifications than
about semantic properties of interface specifications.

This paper concentrates on the problem of debugging LSL specifications.

3 Semantic checks in the Larch Shared Language

A precise definition of the Larch Shared Language, including associated semantic checks, is
contained in [9, 11]. This section informally describes LSL and these checks by considering
claims that specifiers can make about some sample traits—LSL’s basic units of specification.

A trait specifies the properties of a collection of operators. The trait LinearContainer in
Figure 2, for example, specifies properties common to a number of abstract data types in
which objects (of some sort C) contain elements (of some sort E) in a definite order. Types

3

exhibiting these properties include stacks, queues, priority queues, sequences, and vectors.
The trait can be used in specifying additional generic operators for these data types, and it can
be specialized to specify particular data types.

The asserts clause associates a multisorted first-order theory with a trait. The axioms in the
theory consist of the equations following the quantifier forall in the asserts clause (equations
of the form t DD true are abbreviated to t), an induction scheme associated with each
generated by, and an axiom associated with each partitioned by. For example, the theory
of LinearContainer is axiomatized by its six equations, an axiom schema obtained from the
generated by,

. �.new/ ^ .8c : C/.8e : E/ [�.c/) �.insert .c; e//] /) .8c0 : C/�.c0/;

which can be instantiated with any first-order formula �, and an axiom obtained from the
partitioned by,

.8c; c0 : C/ . [.is Empty.c/, is Empty.c0//^
.next .c/ D next .c0//^ .rest.c/ D rest.c0//

Ł) c D c0
Ð

The theories of LSL traits are closed under logical consequence.

The semantics of LSL is based on first-order logic rather than on initial or final algebras, for
two reasons. First, it is important that we be able to construct and reason about specifications
incrementally. By treating the assertions of a trait as axioms in a first-order theory, we ensure
that adding assertions (even about new operators) to a trait does not remove facts from its
associated theory. Because the initial and final algebra interpretations of sets of equations
are not monotonic in this sense, they provide less suitable semantics than does first-order
logic. Second, the generated by and partitioned by constructs in LSL, which have natural
interpretations in first-order logic, provide greater flexibility for axiomatizing traits than do
the initial or final algebra interpretations.

Semantic claims in LSL

Semantic claims about LSL traits fall into three categories: consistency, theory containment,
and relative completeness. Consistency is always required, that is to say, no LSL theory
should contain the inconsistent equation true DD f alse. Claims in the other two categories
are made by specific LSL constructs.

The implies clause adds nothing to the theory of a trait. Instead, it makes a claim about
theory containment. It enables specifiers to include information they believe to be redundant,
either as a check on their understanding or to call attention to something that a reader might
otherwise miss. The redundant information is of two kinds: statements like those in asserts
clauses and converts clauses that describe the extent to which a specification is claimed to be
complete.

The initial design of LSL incorporated a built-in notion of completeness. We quickly
concluded, however, that requirements of completeness are better left to the specifier’s
discretion. Not only is it useful to check certain aspects of completeness long before a

4

Priorit y Queue.E; Q/: trait
assumes TotalOrder .E/
includes LinearContainer .E; Q/
asserts forall q: Q, e: E

next.insert .q; e// DD
if is Empty.q/ then e
else if next.q/ < e then next(q) else e

rest.insert .q; e// DD
if is Empty.q/ then new
else if next.q/ < e then insert .rest.q/; e/ else q

implies
forall q: Q, e: E

e 2 q) :.e < next .q//
converts next, rest, is Empty, 2 exempting next .new/, rest.new/

Figure 3: LSL Specification for a Priority Queue

specification is finished, but most finished specifications are left intentionally incomplete
in places. LSL allows specifiers to make checkable claims about how complete they intend
specifications to be. These claims are usually more valuable when a specification is revised than
when it is first written. Specifiers don’t usually make erroneous claims about completeness
when first writing a specification. On the other hand, when editing a specification, they
frequently delete or change something without realizing its impact on completeness.

The converts clause in LinearContainer claims that the trait contains enough axioms to define
2 and isEmpty. Exactly what it means to “define” an operator was one of the more delicate
design issues for LSL and has been changed in the most recent version of the language.
This converts clause claims that, given any fixed interpretations for the other operators, all
interpretations of 2 and isEmpty that satisfy the trait’s axioms are the same.

The converts clause in PriorityQueue (Figure 3) involves more subtle checking. The
exempting clause indicates that the lack of equations for next.new/ and rest.new/ is
intentional: the operators next and rest are only claimed to be defined uniquely relative
to interpretations for the terms next.new/ and rest.new/. Section 7 describes the checking
entailed by the converts clause in more detail.

Checking composed LSL specifications

There are two mechanisms for combining LSL specifications. Both are defined as operations
on the texts of specifications, rather than on theories or models [3, 17]. For both mechanisms,
the theory of a combined specification is axiomatized by the union of the axiomatizations for
the individual specifications; each operator is constrained by the axioms of all traits in which
it appears. Trait inclusion and trait assumption differ only in the checking they entail.

5

TotalOrder .E/: trait
introduces

< : E; E ! Bool
> : E; E ! Bool

asserts forall x; y; z: E
:.x < x/
.x < y & y < z/) x < z
x < y j x D y j y < x
x > y DD y < x

implies
TotalOrder .E; > f or <; < f or >/
forall x; y: E :.x < y & y < x/

Figure 4: LSL Specification for Total Orders

The trait PriorityQueue, which includes LinearContainer, further constrains the interpretations
of next, rest, and insert. Its assumes clause indicates that its theory also contains that of
the trait TotalOrder shown in Figure 4. The use of assumes rather than includes entails
additional checking, namely that the assumption must be discharged whenever PriorityQueue
is incorporated into another trait. For example, checking the trait

NatPriorityQueue: trait
includes PriorityQueue(Nat, NatQ), NaturalNumber

involves checking that the assertions in the traits PriorityQueue, LinearContainer, and
NaturalNumber together imply those of TotalOrder(Nat).

Figure 5 summarizes the checking (beyond consistency) that LSL requires for the sample traits
introduced in this section.

4 Proof obligations for LSL specifications

An LSL specification generally consists of a hierarchy of traits, some of which include, assume,
or imply others. We use the LSL Checker (LSLC) to check the syntax and static semantics of
the traits, to formulate the proof obligations required to check the semantic claims in the traits,
and to discharge some of these proof obligations. This section describes how LSLC extracts
the proof obligations. The next several sections describe how we use LP to discharge those
proof obligations that LSLC cannot discharge “by inspection.”

As LSLC extracts proof obligations from a specification, it checks for cycles in the trait
hierarchy. Let <C be the transitive closure of the relation defined by setting S < T iff T
includes or assumes S. Let)C be the transitive closure of the relation defined by setting
S) T iff S implies T . Then LSLC checks the following two conditions.

6

NatPriorityQueue
Check assumption of T otalOrder.Nat/ by PriorityQueue.
Use the assertions of all traits except TotalOrder.

PriorityQueue NaturalNumber
Check implications. Check : : :
Use the assertions of PriorityQueue and the Use : : :
theories of LinearContainer and TotalOrder.

LinearContainer TotalOrder
Check implications. Check implications.
Use local assertions. Use local assertions.

Figure 5: Summary of Required Checking

Condition 1: <C is a strict partial order.

Condition 2: There are no traits S and T such that both S <C T and S)C T .

These conditions ensure that the traits can be checked separately. The soundness of separate
checks is shown by induction on the trait hierarchy defined by Condition 1, which must be
satisfied. If Condition 2 is also satisfied, then the implications of traits below a trait T in the
hierarchy can safely be used when checking T .

Note that)C need not be a strict partial order. In some specifications, we may want to assert
that two traits S and T are equivalent, that is to say, that S implies T and T implies S. It may
even be the case that S and T are the same trait, as in TotalOrder (see Figure 4), where we
wish to assert that >, like <, is a total ordering relation.

LSLC extracts six sets of propositions (equations, generated by clauses, and partitioned by
clauses) from each trait T in a trait hierarchy, as follows.

ž The assertions of T consist of the propositions in the asserts clauses of T and of all traits
(transitively) included in T .

ž The assumptions of T consist of the assertions of all traits (transitively) assumed by T .

ž The axioms of T consist of its assertions and its assumptions.

ž The immediate consequences of T consist of the propositions in T ’s implies clause and the
axioms of all traits that T explicitly implies.

ž The explicit theory of T consists of its axioms, the propositions in its implies clause, and
the explicit theories of all traits S such that S <C T or T)C S. (The explicit theory of T ,
unlike the theory of T as defined in Section 3, is a finite set and is not closed under logical
consequence.)

7

LSL Traits

LSLC (The LSL Checker) Diagnostics

Axioms : : : Obligations

User LP (The Larch Prover)

Success Diagnostics

Figure 6: Using LSLC and LP to Check LSL Traits

ž The lemmas available for checking T , when Condition 2 is satisfied, consist of the explicit
theories of all traits S such that S <C T .

To check a hierarchy of traits, we must prove that the axioms of each trait T are consistent,
and we must discharge the following proof obligations:

ž T ’s immediate consequences must follow from its axioms. If Condition 2 is satisfied, it is
sound to use the lemmas available for T when performing this check.

ž T ’s converts clauses must follow from its explicit theory. (The preceding proof obligation
ensures that T ’s explicit theory follows from its axioms.)

ž The assumptions of each trait explicitly included in T must follow from T ’s axioms.

LSLC can discharge some proof obligations “by inspection,” for example, because a
proposition to be proved occurs textually among the facts available for use in the proof.
At other times, LSLC must formulate commands for LP that initiate a proof of the proposition.
Sometimes LP will be able to carry out the required proof automatically; sometimes it will
require user assistance. Figure 6 shows how LSLC and LP can be used together to check LSL
traits.

Consider, for example, the traits PriorityQueue, which assumes TotalOrder, and NatPri-
orityQueue, which includes both PriorityQueue and NaturalNumber. If NaturalNumber
explicitly includes or implies TotalOrder, or if the assertions of TotalOrder are among the
axioms of NaturalNumber, then LSLC can discharge the assumption required for including
PriorityQueue in NatPriorityQueue. On the other hand, if NaturalNumber simply asserts
some properties of the binary relations< and>, then LSLC will formulate LP commands that
initiate a proof of the conjecture that these properties imply the assertions of TotalOrder.

8

By providing a small set of axioms for a trait T , a specifier can make it easier to check traits
that imply T or that include a trait that assumes T . By providing a large set of implications
for T , a specifier can make it easier to reason about T and, in particular, to check traits that
include or assume T , without at the same time making it harder to check traits that imply T or
that include a trait that assumes T .

5 Translating LSL traits into LP

The basis for proofs in LP is a logical system. This section contains an overview of the
components of a logical system in LP and discusses their relation to the components of an
LSL trait. The following sections discuss how these components are used by LP to discharge
proof obligations associated with LSL traits.

A logical system in LP consists of a signature (given by declarations) and equations, rewrite
rules, operator theories, induction rules, and deduction rules (all expressed in a multisorted
fragment of first-order logic). These systems are closely related to LSL theories, but are
handled in somewhat different ways, both because axioms in LP have operational content as
well as semantic content and because they can be presented to LP incrementally, rather than
all at once.

Declarations

Sorts, operators, and variables play the same roles in LP as they do in LSL. As in LSL,
operators and variables must be declared, and operators can be overloaded. There are a few
minor differences: Sorts must be declared in LP and LP doesn’t provide scoping for variables.
LP’s syntax for terms is not yet as rich as LSL’s, but we plan to rectify that; this paper uses
LSL’s term syntax throughout.

LSLC produces the LP declarations shown in Figure 7 from the introduces and forall clauses
in the trait LinearContainer.

Equations and rewrite rules

Like LSL, LP is based on a fragment of first-order logic in which equations play a prominent
role. Some of LP’s inference mechanisms work directly with equations. Most, however,
require that equations be oriented into rewrite rules, which LP uses to reduce terms to normal
forms. It is usually essential that the rewriting relation be terminating, that is no term can be
rewritten infinitely many times. LP provides several mechanisms that automatically orient
many sets of equations into terminating rewriting systems. For example, in response to the
commands

declare sort G

9

declare sorts E;C
declare variables c, c0: C, e, e0: E
declare operators

new: ! C
insert: C; E ! C
next: C ! E
rest: C ! C
isEmpty: C ! Bool
2 : E;C ! Bool

..

Figure 7: LP Declarations Produced by LSLC from LinearContainer

declare variables x; y; z: G
declare operators e: ! G, i: G! G, Ł : G;G ! G
assert

.x Ł y/ Ł z DD x Ł .y Ł z/
e DD x Ł i.x/
e Ł x DD x
..

that enter the usual first-order axioms for groups, LP produces the rewrite rules

.x Ł y/ Ł z! x Ł .y Ł z/
x Ł i.x/! e
e Ł x ! x

It automatically reverses the second equation to prevent nonterminating rewriting sequences
such as e ! e Ł i.e/ ! i.e/ ! i.e Ł i.e// ! i.i.e// ! : : : The discussion of operator
theories below treats the issue of termination further.

A system’s rewriting theory (that is to say, the propositions that can be proved by reduction
to normal form) is always a subset of its equational theory (that is to say, the propositions
that follow logically from its equations and from its rewrite rules considered as equations).
The proof mechanisms discussed in Section 6 compensate for the incompleteness that results
when, as is usually the case, a system’s rewriting theory does not include all of its equational
theory. In the case of group theory, for example, the equation e DD i.e/ follows logically
from the second and third axioms, but is not in the rewriting theory of the three rewrite rules
(because it is irreducible and yet is not an identity).

LP provides built-in rewrite rules to simplify terms involving the Boolean operators :, & ,
j,), and ,, the equality operator D, and the conditional operator if. These rewrite rules
are sufficient to prove many, but not all, identities involving these operators. Unfortunately,
the sets of rewrite rules that are known to be complete for propositional calculus require
exponential time and space. Furthermore, they can expand, rather than simplify, propositions

10

that do not reduce to identities. These are serious drawbacks, because when we are debugging
specifications we often attempt to prove conjectures that are not true. So none of the complete
sets of rewrite rules is built into LP. Instead, LP provides proof mechanisms that can be used to
overcome incompleteness in a rewriting system, and it allows users to add any of the complete
sets they choose to use.

LP treats the equations true DD f alse and x DD t , where t is a term not containing the
variable x, as inconsistent. Inconsistencies can be used to establish subgoals in proofs by
cases and contradiction. If they arise in other situations, they indicate that the axioms in the
logical system are inconsistent.

Operator theories

LP provides special mechanisms for handling equations such as x C y DD y C x that cannot
be oriented into terminating rewrite rules. The LP command assert ac C says that C is
associative and commutative. Logically, this assertion is merely an abbreviation for two
equations. Operationally, LP uses it to match and unify terms modulo associativity and
commutativity. This not only increases the number of theories that LP can reason about,
but also reduces the number of axioms required to describe various theories, the number of
reductions necessary to derive identities, and the need for certain kinds of user interaction, for
example, case analysis. The main drawback of term rewriting modulo operator theories is that
it can be much slower than conventional term rewriting.

LP recognizes two nonempty operator theories: the associative-commutative theory and
the commutative theory. It contains a mechanism (based on user-supplied polynomial
interpretations of operators) for ordering equations that contain commutative and associative-
commutative operators into terminating systems of rewrite rules. But this mechanism is
difficult to use, and most users rely on simpler ordering methods based on LP-suggested
partial orderings of operators. These simpler ordering methods do not guarantee termination
when equations contain commutative or associative-commutative operators, but they work
well in practice. Like manual ordering methods, which give users complete control over
whether equations are ordered from left to right or from right to left, they are easy to use.
In striking contrast to manual ordering methods, they have not yet caused difficulties by
producing a nonterminating set of rewrite rules.

Induction rules

LP uses induction rules to generate subgoals to be proved for the basis and induction steps in
proofs by induction. The syntax for induction rules is the same in LP as in LSL.1 Users can
specify multiple induction rules for a single sort, for example, by the LP commands

1The semantics of induction is stronger in LSL than in LP, where arbitrary first-order formulas cannot be
written.

11

declare sorts E; S
declare operators
fg: ! S
f g: E ! S
[: S; S! S

insert: S; E ! S
..

set name setInduction1
assert S generated by fg, insert
set name setInduction2
assert S generated by fg, f g, [

and can use the appropriate rule when attempting to prove an equation by induction; for
example,

prove x � .x [y/ by induction on x using setInduction2

In LSL, the axioms of a trait typically have only one generated by for a sort. It is often useful,
however, to put others in the trait’s implications.

Deduction rules

LP subsumes the logical power of the partitioned by construct of LSL in deduction rules,
which LP uses to deduce equations from other equations and rewrite rules. Like other formulas
in LP, deduction rules may be asserted as axioms or proved as theorems. While the partitioned
by in the trait LinearContainer can be expressed by an equation, in general a partitioned by
is equivalent to a universal-existential axiom, which can be expressed as a deduction rule in
LP. For example, the LP commands

declare sorts E; S
declare operator 2: E; S ! Bool
declare variables e: E, x; y: S
assert when . f orall e/ e 2 x DD e 2 y yield x DD y

define a deduction rule equivalent to the axiom

.8x; y : S/ [.8e : E/.e 2 x , e 2 y/) x D y]

of set extensionality, which can also be expressed by assert S partitioned by 2 in LP, as in
LSL. This deduction rule enables LP to deduce equations such as x DD x [x automatically
from equations such as e 2 x DD e 2 .x [x/.

Deduction rules also serve to improve the performance of LP and to reduce the need for user
interaction. Examples of such deduction rules are the built-in &-splitting law

12

declare variables p, q: Bool
when p & q DD true yield p DD true, q DD true

and the cancellation law for addition

declare variables x; y; z: Nat
when x C y DD x C z yield y DD z

LP automatically applies deduction rules to equations and rewrite rules whenever they are
normalized. The sample proof in Section 7 illustrates the logical power of deduction rules, as
well as the benefits of applying them automatically to the case and induction hypotheses in a
proof.

6 Proof mechanisms in LP

This section provides a brief overview of the proof mechanisms in LP. The next two sections
discuss how they are used to check semantic claims about LSL specifications.

LP provides mechanisms for proving theorems using both forward and backward inference.
Forward inferences produce consequences from a logical system; backward inferences produce
lemmas whose proof will suffice to establish a conjecture. There are four methods of forward
inference in LP.

ž Automatic normalization produces new consequences when a rewrite rule is added to a
system. LP keeps rewrite rules, equations, and deduction rules in normal form. If an
equation or rewrite rule normalizes to an identity, it is discarded. If the hypothesis of a
deduction rule normalizes to an identity, the deduction rule is replaced by the equations
in its conclusions. Users can “immunize” equations, rewrite rules, and deduction rules to
protect them from automatic normalization, both to enhance the performance of LP and to
preserve a particular form for use in a proof. Users can also “deactivate” rewrite rules and
deduction rules to prevent them from being automatically applied.

ž Automatic application of deduction rules produces new consequences after equations and
rewrite rules in a system are normalized. Deduction rules can also be applied explicitly, for
example, to immune equations.

ž The computation of critical pairs and the Knuth-Bendix completion procedure [13, 16]
produce consequences (such as i.e/ DD e) from incomplete rewriting systems (such as the
three rewrite rules for groups). We rarely complete our rewriting systems, for the reasons
discussed in [5]. However, we often make selective use of critical pairs. As discussed in
Section 9, we also use the completion procedure to look for inconsistencies.

ž Explicit instantiation of variables in equations, rewrite rules, and deduction rules also
produces consequences. For example, in a system that contains the rewrite rules
a < .b C c/! true and .b C c/ < d ! true, instantiating the deduction rule

13

when x < y DD true, y < z DD true yield x < z DD true

with a for x, bC c for y, and d for z produces a deduction rule whose hypotheses normalize
to identities, thereby yielding the conclusion a < d ! true.

There are also six methods of backward inference for proving equations in LP. These methods
are invoked by the prove command. In each method, LP generates a set of subgoals to be
proved, that is, lemmas that together are sufficient to imply the conjecture. For some methods,
it also generates additional axioms that may be used to prove particular subgoals.

ž Normalization rewrites conjectures. If a conjecture normalizes to an identity, it is a theorem.
Otherwise the normalized conjecture becomes the subgoal to be proved.

ž Proofs by cases can further rewrite a conjecture. The command prove e by cases t1; : : : ; tn

directs LP to prove an equation e by division into cases t1; : : : ; tn (or into two cases, t1 and
:t1, if n D 1). One subgoal is to prove t1 j : : : j tn. In addition, for each i from 1 to n,
LP substitutes new constants for the variables of ti in both ti and e to form t 0i and e0i , and it
creates a subgoal e0i with the additional hypothesis t 0i ! true. If an inconsistency results
from adding the case hypothesis t 0i , that case is impossible, so e0i is vacuously true.

Case analysis has two primary uses. If the conjecture is a theorem, a proof by cases may
circumvent a lack of completeness in the rewrite rules. If the conjecture is not a theorem,
an attempted proof by cases may simplify the conjecture and make it easier to understand
why the proof is not succeeding.

ž Proofs by induction are based on the induction rules described in Section 5.

ž Proofs by contradiction provide an indirect method of proof. If an inconsistency follows
from adding the negation of the conjecture to LP’s logical system, then the conjecture is a
theorem.

ž Proofs of implications can be carried out using a simplified proof by cases. The command
prove t1) t2 by) directs LP to prove the subgoal t 02 using the hypothesis t 01 ! true,
where t 01 and t 02 are obtained as in a proof by cases. (This suffices because the implication
is vacuously true when t 01 is false.)

ž Proofs of conjunctions provide a way to reduce the expense of equational term rewriting.
The command prove t1 & : : : & tn by & directs LP to prove t1; : : : ; tn as subgoals.

LP allows users to determine which of these methods of backward inference are applied
automatically and in what order. The LP command

set proof-method & ,), normalization

directs LP to use the first of the three named methods that applies to a given conjecture.

14

set name TotalOrder
declare sort E
declare variables x; y; z: E
declare operators < , > : E; E ! Bool
assert
:.x < x/
.x < y & y < z/) x < z
x < y j x D y j y < x
x > y DD y < x
..

Figure 8: The File TotalOrder Assertions.lp

Proofs of interesting conjectures hardly ever succeed on the first try. Sometimes the conjecture
is wrong. Sometimes the formalization is incorrect or incomplete. Sometimes the proof
strategy is flawed or not detailed enough. When an attempted proof fails, we use a variety
of LP facilities (for example, case analysis) to try to understand the problem. Because many
proof attempts fail, LP is designed to fail relatively quickly and to provide useful information
when it does. It is not designed to find difficult proofs automatically. Unlike the Boyer-Moore
prover [1], it does not perform heuristic searches for a proof. Unlike LCF [15], it does not
allow users to define complicated search tactics. Strategic decisions, such as when to try
induction, must be supplied as explicit LP commands (either by the user or by a front-end
such as LSLC). On the other hand, LP is more than a “proof checker,” since it does not require
proofs to be described in minute detail. In many respects, LP is best described as a “proof
debugger.”

7 Checking theory containment

The proof obligations triggered by implies and assumes clauses in an LSL trait require us
to check theory containment, that is to check that claims follow from axioms. This section
discusses how LSLC formulates the proof obligations for theory containment for LP, as
well as how we use LP to discharge these obligations. The next section discusses checking
consistency.

Proving an equation

The proof obligation for an equation is easy to formulate. Consider, for example, the proof
obligations that must be discharged to check the trait TotalOrder shown in Figure 4. Figure 8
displays the LP commands that LSLC extracts from this trait in order to axiomatize its
theory, and Figure 9 displays the LP commands that LSLC extracts in order to discharge

15

execute TotalOrder Assertions
set name TotalOrder Consequences
% Prove implication of TotalOrder with > for <,< for>
prove :.x > x/

qed
prove .x > y & y > z/) x > z

qed
prove x > y j x D y j y > x

qed
prove x < y DD y > x

qed
% Prove implied equation
prove :.x > y & y > x/

qed

Figure 9: The File TotalOrder Obligations.lp

its proof obligations. The execute command obtains the axioms for TotalOrder from the
file TotalOrder Assertions.lp. The prove commands initiate proofs of the five immediate
consequences of TotalOrder. LP can discharge all proof obligations except the last without
user assistance. The user is alerted to the need to supply assistance in the last proof by a
diagnostic (“incomplete proof”) printed in response to the last qed command. At this point,
the user can complete the proof by entering the commands

critical-pairs TotalOrder with TotalOrder
qed

Proofs of equations require varying amounts of assistance. For example, when checking that
LinearContainer implies is Empty.c/) :.e 2 c/, the single LP command

resume by induction on c

suffices to finish the proof.

When checking that PriorityQueue implies

e 2 q) :.e < next .q//;

more guidance is required. This proof also proceeds by induction. LP proves the basis subgoal
without assistance. For the induction subgoal, LP introduces a new constant q0 to take the
place of the universally-quantified variable q, adds

e 2 q0) :.e < next .q0//

as the induction hypothesis, and attempts to prove

e 2 insert .q0; v/) :.e < next .insert .q0; v///;

16

prove e 2 q) :.e < next .q// by induction on q
resume by case is Empty.q0/

% Handle case is Empty.q0/

critical-pairs caseHyp with LinearContainer
% Handle case :is Empty.q0/

resume by case v0 < next.c0/

% Handle case v0 < next.c0/

resume by case e0 D v0

% Case e0 D v0 succeeds
% Handle case e0 6D v0

complete
% Handle case :.v0 < next .c0//

resume by case e0 D v0

% Case e0 D v0 succeeds
% Handle case e0 6D v0

critical-pairs impliesHyp with inductHyp

Figure 10: Guidance for Proof of PriorityQueue Implication

which reduces to
.e D v j e 2 q0/)
:.e < .i f is Empty.q0/ then v else i f v < next .q0/ then v else next.q0///

LP now assumes the hypothesis of the implication, introducing new constants e0 and v0 to
take the place of the variables e and v, and attempts to prove the conclusion of the implication
from this hypothesis. At this point, further guidance is required. The command

resume by case is Empty.q0/

directs LP to divide the proof into two cases based on the boolean expression in the first if. In
the first case, is Empty.q0/, the conclusion reduces to :.e0 < v0/. The command

critical-pairs caseH yp with LinearContainer

leads LP to deduce:.e 2 q0/ from the first implication of LinearContainer (which is available
for use in the proof because LinearContainer is below PriorityQueue in the trait hierarchy).
With this fact, LP is able to finish the proof in the first case automatically: it applies a
built-in deduction rule to conclude e 2 q0 ! f alse, uses this rewrite rule and another built-
in deduction rule to derive e0 ! v0 from the hypothesis of the implication, and uses this
rewrite rule to help simplify the conclusion of the implication to an identity. The second case,
:is Empty.q0/ requires more user assistance. Figure 10 shows the entire proof script.

17

Proving a “partitioned by”

Proving a partitioned by clause amounts to proving the validity of the associated deduction
rule in LP. For example, LSLC formulates for LP the proof obligations associated with the
partitioned by in the implies clause of Figure 11 as

execute Set Assertions
prove S partitioned by �

and LP translates the partitioned by into the deduction rule

when . f orall z/ x � z DD y � z; z � x DD z � y yield x DD y

(This deduction rule contains two hypotheses because� is a binary operator; either hypothesis
is sufficient, but at present there is no way to indicate this in LSL or LP.)

LP generates a subgoal for proving the deduction rule by introducing two new constants, x0

and y0 of sort S, assuming x0 � z DD y0 � z and z � x0 DD z � y0 as additional hypotheses,
and attempting to prove the subgoal x0 DD y0. LP cannot prove x0 DD y0 directly because
the equation is irreducible. The user can guide the proof by typing the command

instantiate z by feg in whenHyp

which yields the lemma e 2 x0 DD e 2 y0, after which LP automatically completes the proof
by applying the deduction rule associated with the assertion S partitioned by 2.

Proving a “generated by”

Proving a generated by clause involves proving that the set of elements generated by the
given operators contains all elements of the sort. For example, LSLC formulates for LP the
proof obligation associated with the generated by in the implies clause of Figure 11 as

execute Set Assertions
prove S generated by fg, f g, [

LP then introduces a new operator isGenerated : S! Bool, adds the hypotheses

isGenerated .fg/
isGenerated .feg/
.isGenerated .x/& isGenerated .y//) isGenerated .x [y/

and attempts to prove the subgoal isGenerated .x/. User guidance is required to complete
the proof, for example, by entering the commands

resume by induction x
complete

18

Set.E/: trait
introduces
fg: ! S
insert: S; E ! S
f g: E ! S
[: S; S! S
2 : E; S ! Bool
� : S; S! Bool

asserts
S generated by fg, insert
S partitioned by 2
forall s; s0: S, e; e0: E
feg DD insert .fg; e/
s [fg DD s
s [insert .s0; e/ DD insert .s [s0; e/
:.e 2 fg/
e 2 insert .s; e0/ DD e 2 s j e D e0

fg � s
insert .s; e/ � s0 DD s � s0 & e 2 s0

implies
S generated by fg; f g;[
S partitioned by �
forall s; s0; s00: S, e; e0: E

e 2 fe0g DD e D e0

insert .s; e/ DD s [feg
insert .insert .s; e/; e0/ DD insert .insert .s; e0/; e/
:.insert .s; e/ D fg/
e 2 .s [s0/ DD e 2 s j e 2 s0

.s0 [s00/ � s DD s0 � s & s00 � s
converts f g, [, 2, �
converts insert, 2, �

Figure 11: An LSL Trait for Finite Sets

19

directing LP to use the induction scheme obtained from the assertion

S generated by fg, insert

and then to run the completion procedure to draw the necessary inferences from the additional
hypotheses.

Proving a “converts”

Proving that a trait converts a set of operators involves showing that the axioms of the trait
define the operators in the set relative to the other operators in the trait. For example, to show
that LinearContainer converts isEmpty and 2, we must show that, given any interpretations
for fg and insert, there are unique interpretations for isEmpty and 2 that satisfy the assertions
of LinearContainer. Equivalently, we must show that the theory of LinearContainer together
with the theory of LinearContainer(is Empty 0 for is Empty, 20 for 2) imply the equations
is Empty 0.c/ DD is Empty.c/ and e 20 c DD e 2 c.

LSLC formulates this proof obligation for LP by making two copies of the file Lin-
earContainer.lp, which contains the explicit theory of LinearContainer; in the second copy,
LinearContainer Converts.lp, all occurrences of isEmpty and 2 are replaced by is Empty 0 and
20. By producing these two files, LSLC can formulate the proof obligation with the following
LP commands:

execute LinearContainer
execute LinearContainer Converts
prove is Empty 0.c/ DD is Empty.c/

qed
prove e 20 c DD e 2 c

qed

The only user guidance required to prove this converts clause is a command to proceed by
induction on c.

The proof obligation for the converts clause in PriorityQueue is similar. Here we must show
that given any interpretations for fg and insert, as well as for the exempted terms next .new/
and rest.new/, there are unique interpretations for next, rest, isEmpty, and 2 that satisfy the
assertions of PriorityQueue. As before, LSLC formulates this proof obligation for LP by
making the required copy of PriorityQueue.lp and by generating the following LP commands:

execute PriorityQueue
execute PriorityQueue Converts
assert next 0.new/ DD next .new/
assert rest 0.new/ DD rest.new/
prove next 0.q/ DD next 0.q/

20

qed
prove rest 0.q/ DD rest.q/

qed
prove is Empty 0.q/ DD is Empty.q/

qed
prove e 20 q DD e 2 q

qed

Again, the only user guidance required to complete the proofs are commands to proceed by
induction on q.

8 Checking consistency

Checks for theory containment fall into the typical pattern of use of a theorem prover. The
check for consistency is harder to formulate because it involves nonconsequence rather than
consequence. We are still evaluating several approaches to this check. It seems probable
that techniques for detecting when this check fails will be more useful than techniques for
certifying that it succeeds.

A standard approach in logic to proving consistency involves interpreting the theory being
checked in another theory whose consistency is assumed (for example, Peano arithmetic) or
has been established previously [18]. In this approach, user assistance is required to define the
interpretation. The proof that the interpretation satisfies the axioms of the trait being checked
then becomes a problem of showing theory containment, for which LP is well suited. This
approach is cumbersome and unattractive in practice. More promising approaches are based
on metatheorems in first-order logic that can be used for restricted classes of specifications.
For example, any extension by definitions (see [18]) of a consistent theory is consistent.

For equational traits (that is to say, traits with purely equational axiomatizations, of which there
are relatively few), questions about consistency can be translated into questions about critical
pairs. In some cases, we can use LP to answer these questions by running the completion
procedure or by computing critical pairs. If these actions generate an inconsistency, the axioms
are inconsistent; if they complete the axioms without generating the equation true DD f alse,
then the trait is consistent. This proof strategy will not usually succeed in proving consistency,
because many equational theories cannot be completed at all, or cannot be completed in
an acceptable amount of time and space. However, it has proved useful in debugging
specifications, both for equational and non-equational traits.

In general, we can use LP’s forward inference mechanisms to search for the presence of
inconsistencies in a specification. The completion procedure can search for inconsistencies
automatically, and we can instantiate axioms by “focus objects” (in the sense of McAllester
[14]) to provide the completion procedure with a basis for its search. Even though unsuccessful
searches do not certify that a specification is consistent, they increase our confidence in a
specification, just as testing increases our confidence in a program.

21

Until recently, LSL allowed for another kind of claim that also involved a check for
nonconsequence, namely a claim that one trait incorporated another without further
constraining the meanings of its operators. However, none of our approaches to certifying or
falsifying claims about “conservative extension” have proved practical. Without any promising
means of checking them, we are inclined to consider claims about module independence as
comments rather than as checkable claims, and have therefore removed from LSL the imports
construct, which made such claims.

9 Extended example

To illustrate our approach to checking specifications in a slightly more realistic setting, we
show how one might construct and check some traits to be used in the specification of a simple
windowing system [8]. These are preliminary versions of traits that would likely be expanded
as the specifications (including the interface parts) are developed.

The first three traits declare the signatures of some basic operators.

Coordinate: trait
introduces

origin: ! Coord
� : Coord ;Coord ! Coord

asserts forall cd: Coord
cd � cd == origin

Region(R): trait
assumes Coordinate
introduces

2 : Coord ; R! Bool
% cd 2 r is true if point cd is in region r
% Nothing is assumed about shape or contiguity of regions

Displayable(T): trait
assumes Coordinate
includes Region(T)
introduces

[]: T;Coord ! Color
% t[cd] represents the appearance of object t at point cd

The proof obligations associated with these traits are easily discharged. When LP’s completion
procedure is run on Coordinate, it terminates without generating any critical pairs. Since
Coordinate has no generated by or partitioned by clauses, this is sufficient to guarantee that
it is consistent. When checking the inclusion of Region by Displayable, Region’s assumption
of Coordinate is discharged syntactically, using Displayable’s assumption of the same trait.

22

The next trait defines a window as an object composed of content and clipping regions,
foreground and background colors, and a window identifier. 2 is qualified by a signature in
the last line of the trait because it overloaded, and it is necessary to say which 2 is converted.

Window: trait
assumes Coordinate
includes Region, Displayable(W)
asserts

W tuple of cont, clip: R, fore, back: Color, id: WId
forall w: W , cd: Coord

cd 2 w DD cd 2 w:clip
w[cd] DD i f cd 2 w:cont then w: f ore else w:back

implies converts [], 2: Coord ;W ! Bool

There are three proof obligations associated with this trait. The assumptions of Coordinate
in Region and Displayable are syntactically discharged using Window’s assumption. The
converts clause is discharged by LP without user assistance. The other proof obligation is
consistency. As discussed in the previous section, we use the completion procedure to search
for inconsistencies. Running it for a short time neither uncovers an inconsistency nor proves
consistency.

The View trait (Figure 12) defines a view as an object composed of windows at locations.
There are several proof obligations associated with this trait. Once again, the assumptions
of Window and Displayable are discharged syntactically by the assumption in View. Once
again, using the completion procedure to search for inconsistencies uncovers no problems.
However, checking the converts clause turns up a problem. The conversion of inW and both
2’s is easily proved by induction over objects of sort V. However, the inductive base case for

[] does not reduce at all, because emptyV [cd] is not defined. This problem can be solved
either by defining emptyV [cd] or by adding

exempting forall cd: Coord emptyV [cd]

to the converts clause. We choose the latter because there is no obvious definition for
emptyV [cd]. With the added exemption, the inductive proof of the conversion of [] goes
through without further interaction.

When we attempt to prove the first of the explicit equations in the implies clause of View, we
run into difficulty. After automatically applying its proof method for implications, LP reduces
the conjecture to

if .cd 00 � cd0/ 2 w0:clip
then if .cd 00 � cd0/ 2 w0:cont

then w0: f ore else w0:back
else v0[cd 00]

== v0[cd 00]

23

View: trait
assumes Coordinate
includes Window, Displayable(V)
introduces

emptyV:! V
addW: V;Coord ;W ! V
2 : W; V ! Bool

inW: V;W I d;Coord ! Bool
asserts

V generated by emptyV, addW
forall cd , cd 0: Coord, v: V, w, w0: W, wid: WId

:.cd 2 emptyV/
cd 2 add W.v; cd 0;w/ DD .cd � cd 0/ 2 w j cd 2 v

:.w 2 emptyV /
w 2 add W.v; cd 0;w0/ DD w:id D w0:id j w 2 v

add W.v; cd 0;w/[cd] DD
if .cd � cd 0/ 2 w then w[cd � cd 0] else v[cd]

% In view only if in a window, offset by origin
:inW.emptyV;wid; cd/
inW.add W.v; cd;w/;wid; cd 0/ DD

.w:id D wid & .cd � cd 0/ 2 w/ j inW.v;wid; cd 0/

implies
forall cd; cd 0: Coord , v; v0: V , w: W

% Adding a new window does not affect the appearance
% of parts of the view lying outside the window
:inW.add W.v; cd;w/;w:id; cd 0/)

add W.v; cd;w/[cd 0] D v[cd 0]

% Appearance within a newly added window is independent
% of the view to which it is added.
inW.add W.v; cd 0;w/;w:id; cd/)

add W.v; cd 0;w/[cd] D add W.v0; cd 0;w/[cd]
converts inW , 2: Coord; V ! Bool, 2: W; V ! Bool,

[]: V;Coord ! Color

Figure 12: Sample View Specification

24

and reduces the assumed hypothesis of the implication to

:..cd0 � cd 00/ 2 w0:clip/

At this point, we ask ourselves why the hypothesis is not sufficient to reduce the conjecture
to an identity. The problem seems to be the order of the operands of �. This leads us to look
carefully at the second equation for inW in trait View. There we discover that we have written
cd � cd 0 when we should have written cd 0 � cd , or, to be consistent with the form of the other
equations, reversed the role of cd and cd 0 in the left hand side of the equation. After changing
this axiom to

inW.add W.v; cd 0;w/;wid; cd/ DD .w:id D wid&.cd�cd 0/ 2 w/ j inW.v;wid; cd/

the proof of the first implication goes through without interaction.

The second conjecture, after LP applies its proof method for implications, reduces to

if .cd0 � cd 00/ 2 w0:clip
then if .cd0 � cd 00/ 2 w0:cont

then w0: f ore else w0:back
else v0[cd0]

==
if .cd0 � cd 00/ 2 w0:clip

then if .cd0 � cd 00/ 2 w0:cont
then w0: f ore else w0:back

else v0[cd0]

We resume the proof by dividing it into two cases based on the Boolean expression in the
outermost if’s. When this expression is true, the conjecture reduces to true; when it is false,
the conjecture reduces to

v0[cd0] DD v0[cd0]

Since v0 is a variable and v0 a fresh constant, we know that we are not going to be able to
reduce this to true. This does not necessarily mean that the proof will fail, since we could
be in an impossible case (that is to say, the current hypotheses could lead to a contradiction).
However, examining the current hypotheses,

inW.v0;w0:id; cd 00/ % Implication hypothesis
:..cd0 � cd 00/ 2 w0:clip/ % Case hypothesis

gives us no obvious reason to believe that a contradiction exists.

This leads us to wonder about the validity of the conjecture we are trying to prove, and to ask
ourselves why we thought it was true when we added it to the trait. Our informal reasoning
had been:

25

1. The hypothesis of the conjecture, inW.add W.v; cd 0;w/;wid; cd/, guarantees that
coordinate cd is in window w in the view add W.v; cd 0;w/.

2. If w is added at the same place in v0 as in v, cd must also be in add W.v0; cd 0;w/.

3. Furthermore cd � cd 0 will be the same relative coordinate in w in both add W.v; cd 0;w/
and add W.v0; cd 0;w/.

4. Therefore the equation

inW.add W.v; cd;w/;wid; cd 0/ DD
.w:id D wid & .cd � cd 0/ 2 w/ j inW.v;wid; cd 0/

in trait View should guarantee the conclusion.

The first step in formalizing this informal argument is to attempt to prove

inW.add W.v; cd 0;w/;w:id; cd/) .cd � cd 0/ 2 w

as a lemma. LP reduces this conclusion of this implication to

(cd0 � cd 00/ 2 w0:clip

using the normalized implication hypothesis

.cd0 � cd 00/ 2 w0:clip j inW.v0;w0:id; cd 00/

Casing on the first disjunct of the hypothesis reduces the conjecture to false under the same
implication and case hypotheses as above.

We are thus stuck in the same place as in our attempted proof of the original conjecture. This
leads us to question the validity of the first step in our informal proof, and we discover a flaw
there: when v contains a window with the same id as w, the implication is not sound. The
problem is that we implicitly assumed the invariant that no view would contain two windows
with the same id , and our specification does not guarantee this. To correct this problem, we
try adding an additional operator

numW : V;W I d ! Nat

and three additional axioms

numW.emptyV;wid/ DD 0
numW.add W.v; cd 0;w/;wid/ DD

numW.v;wid/C .i f w:id D wid then 1 else 0/
numW.v;wid/ � 1 % New invariant

26

to the trait View. Unfortunately, when we run LP’s completion procedure on the revised
specification of View, we quickly get an inconsistency. There are several ways around this
problem, among them:

1. Trait View could be changed so that addW chooses a unique id whenever a window is added.

2. Trait View could be changed so that addW is the identity function when the id of the window
to be added is already associated with a window in the view.

3. The preservation of the invariant could be left to the interface level.

27

CartesianView: trait
includes View, NaturalNumber
asserts

Coord tuple of x: Nat , y: Nat
forall cd , cd 0: Coord

origin DD [0;0]
cd � cd 0 DD [cd:x � cd 0:x; cd:y � cd 0:y]

implies converts origin, �

Figure 13: Sample Cartesian View Specification

The third alternative is consistent with the interface specification given in Section 2, and is the
one chosen here. This causes us to weaken the second implication of trait V iew to:

forall cd; cd 0: Coord , v; v0: V , w: W
% Appearance within a newly added window is independent
% of the view to which it is added, provided that the window
% is not already present in the view.
.:.w 2 v/& :.w 2 v0/& inW.add W.v; cd 0;w/;w:id; cd//
) add W.v; cd 0;w/[cd] D add W.v0; cd 0;w/[cd]

which is proved with a small amount of user interaction.

Finally, in Figure 13, we introduce a coordinate system. LP uses the facts of the trait
NaturalNumber (not shown) to automatically discharge the assumption of Coordinate that has
been carried from level to level. LP requires no assistance to complete the proof that the
coordinate operators are indeed converted.

Of course, for expository purposes, we have used an artificially simplified example. We
also deliberately seeded some errors for LP to find. However, most of the errors discussed
above occurred unintentionally as we wrote the example, and we did not notice them until we
actually attempted the mechanical proofs. With larger specifications, we expect bugs to be
more frequent and harder to find.

10 Conclusions

The Larch Shared Language includes several facilities for introducing checkable redundancy
into specifications. These facilities were chosen to expose common classes of errors. They
give specifiers a better chance of receiving diagnostics about specifications with unintended
meanings, in much the same way that type systems give programmers a better chance of
receiving diagnostics about erroneous programs.

A primary goal of Larch is to provide useful feedback to specifiers when there is something

28

wrong with a specification. Hence we have designed LP primarily as a debugging tool. We
are not overly troubled that detecting inconsistencies is generally quicker and easier than
certifying consistency.

We expect to discover flaws in specifications by having attempted proofs fail. LP does not
automatically apply backwards inference techniques, and it requires more user guidance than
some other provers. Much of this guidance is highly predictable, e.g, proving the hypotheses
of deduction rules as lemmas. Although it is tempting to supply LP with heuristics that would
generate such lemmas automatically, we feel that it is better to leave the choice to the user.
At many points in a proof, many heuristics will apply. In our experience, choosing the next
step in a proof (for example, a case split or proof by induction), or deciding that the proof
attempt should be abandoned, often depends upon knowledge of the application. LP cannot
reasonably be expected to possess this knowledge, especially when we are searching for a
counterexample to a conjecture, rather than attempting to prove it. In some cases, LSLC may
be able to use its knowledge of the structure of specifications to generate some of the guidance
(for example, using induction to prove a converts clause) that users must currently provide to
LP.

The checkable redundancy that LSL encourages in specifications also supports regression
testing as specifications evolve. When we change part of a specification (for example, to
strengthen the assertions of one trait), it is important to ensure that the change does not have
unintended side-effects. LP’s facilities for detecting inconsistencies help us discover totally
erroneous changes. Claims about other traits in the specification, which imply or assume the
changed trait, can help us discover more subtle problems. If some of these claims have already
been checked, LP’s facilities for replaying proof scripts make it easy to recheck their proofs
after a change—an important activity, but one that is likely to be neglected without mechanical
assistance.

We are encouraged by our early experience in using LP to check LSL specifications, but
it is clear that more work must be done on both LSLC and LP before non-experts can use
them cost-effectively. We plan to investigate having LSLC discharge more proof obligations
textually and to provide more guidance for LP in discharging the others. We plan to enhance
LP to include many of the syntactic amenities present in LSL and to provide further facilities
for proof management. More fundamentally, we plan to enhance the logic of LP, enabling it
to reason about formulas with embedded quantifiers. Finally, we plan to continue improving
the performance of LP, while reducing the amount of guidance it requires, particularly when
we use it to reason about theories that include standard subtheories, such as the Booleans or
the natural numbers.

Acknowledgments

We wish to thank Andres Modet and Martı́n Abadi for their help in understanding the semantics
of Larch and in designing several semantic checks. Andres Modet was responsible for the first
implementation of LSLC, and James Rauen and Alexander Esterkin for the second. James

29

Saxe and Jørgen Staunstrup provided helpful comments and suggestions based on their use of
LP.

30

References

[1] Boyer, R. S. and Moore, J S. A Computational Logic, New York, Academic Press, 1979.

[2] Boyer, R. S. and Moore, J S. A Computational Logic Handbook, New York, Academic
Press, 1988.

[3] Burstall, R. M. and Goguen, J. A. “Putting Theories Together to Make Specifications,”
Proceedings of the Fifth International Joint Conference on Artificial Intelligence, 1977,
1045–1058.

[4] Garland, S. J. and Guttag, J. V. “Inductive Methods for Reasoning about Abstract
Data Types,” Proceedings of the 15th ACM Conference on Principles of Programming
Languages, 1988, 219–228.

[5] Garland, S. J. and Guttag, J. V. “An Overview of LP, The Larch Prover,” Proceedings of
the Third International Conference on Rewriting Techniques and Applications, Chapel
Hill, N.C., Lecture Notes in Computer Science 355, Springer-Verlag, 1989, 137–151.

[6] Garland, S. J., Guttag, J. V. and Staunstrup, J. “Verification of VLSI Circuits Using LP,”
Proceedings of the IFIP WG 10.2 Conference on the Fusion of Hardware Design and
Verification, North Holland, 1988.

[7] Garland, S. J. and Guttag, J. V. “Using LP to Debug Specifications,” Proceedings of the
IFIP TC2/WG2.2/WG2.3 Working Conference on Programming Concepts and Methods,
Elsevier, 1990.

[8] Guttag, J. V. and Horning, J. J. “Formal Specification as a Design Tool,” Proceedings of
the 7th ACM Symposium on Principles of Programming Languages, 1980, 251–261.

[9] Guttag, J. V. and Horning, J. J. “Report on the Larch Shared Language,” Science of
Computer Programming 6:2 (Mar. 1986), 103–134.

[10] Guttag, J. V. and Horning, J. J. “A Larch Shared Language Handbook,” Science of
Computer Programming 6:2 (Mar. 1986), 135–157 (revision to appear).

[11] Guttag, J. V., Horning, J. J., and Modet, A. “Revised Report on the Larch Shared
Language,” Digital Equipment Corporation Systems Research Center Report 58, May
1990.

[12] Guttag, J. V., Horning, J. J. and Wing, J. M. “An Overview of the Larch Family of
Specification Languages,” IEEE Software 2:5 (Sept. 1985), 24–36.

[13] Knuth, D. E. and Bendix, P. B. “Simple Word Problems in Universal Algebras,” in
Computational Problems in Abstract Algebra, J. Leech (ed.), Pergamon Press, Oxford,
1969, 263–297.

31

[14] McAllester, D. A. “Ontic: A Knowledge Representation System for Mathematics”, MIT
Artificial Intelligence Laboratory Technical Report 979.

[15] Paulson, L. C. Logic and Computation: Interactive Proof with Cambridge LCF,
Cambridge University Press, Cambridge, 1987.

[16] Peterson, G. L. and Stickel, M. E. “Complete Sets of Reductions for Some Equational
Theories,” JACM 28:2 (Apr. 1981), 233–264.

[17] Sannella, D. and Tarlecki, A. “On Observational Equivalence and Algebraic Specifica-
tion,” Mathematical Foundations of Software Development, Lecture Notes in Computer
Science 186 (1985), 308–322.

[18] Shoenfield, J. R. Mathematical Logic, Addison-Wesley Publishing Company, 1967.

[19] Staunstrup, J., Garland, S. J., and Guttag, J. V. “Compositional verification of VLSI
circuits,” Proceedings of an International Workshop on Automatic Verification of Finite
State Systems, Grenoble, France, June 1989, Lecture Notes in Computer Science,
Springer-Verlag.

32

