Using Transformations and Verification in Circuit Design

James B. Saxe¹
Stephen J. Garland²,³
John V. Guttag²,³
James J. Horning¹

Abstract

In this paper, we show how machine-checked verification can support an approach to circuit design based on transformations. This approach starts with a conceptually simple (but inefficient) initial design and uses a combination of ad hoc and algorithmic transformations to produce a design that is more efficient (but more complex).

We present an example in which we start with a simplified CPU design and derive an efficient pipelined form, including circuitry for reverting the effects of partially executed instructions when a successful branch is detected late in the pipeline. The algorithmic stage of our derivation applies a transformation, retiming, that has been proven to preserve functional behavior in the general case. The ad hoc stage requires special justification, which we supply in the form of a machine-checked formal verification.

1 Introduction

This paper presents an integrated approach to designing and verifying circuits. In this approach one starts with a straightforward circuit design, whose semantics are easily understood. This design is then improved—under some measure such as cost, efficiency, or functionality—by a series of transformations. Each transformation may serve either to effect an improvement directly or to enable further transformations.

The transformations used are of two kinds: algorithmic and ad hoc. An algorithmic transformation is one that can be mechanically applied to any circuit satisfying some mechanically-checkable preconditions, and that is guaranteed to have a specific effect—or, more commonly, lack of effect—on the functional behavior of any circuit to which it is applicable. When we apply an ad hoc transformation, on the other hand, we must produce a specific proof that

¹DEC Systems Research Center; 130 Lytton Avenue; Palo Alto, CA 94304.
²Laboratory for Computer Science; Massachusetts Institute of Technology; Cambridge, MA 02139
³John Guttag and Stephen Garland were supported in part by the Advanced Research Projects Agency of the Department of Defense, monitored by the Office of Naval Research under contract N00014-89-J-1888, and by the National Science Foundation under grant CCR-8910848.
transformed circuit’s behavior has some desired relation to that of the original circuit. Doing
this is often difficult, and is the main subject of this paper.

Three main factors must be considered when doing such proofs:

1. The cost of performing the proof. The primary cost of verification is people time, not
machine time. Often, the most important factor in determining the cost is how much and
what kind of work must be redone when changes are made to the circuit design or to the
properties to be proved.

2. The soundness of the proof. A proof can increase one’s confidence that some property
holds; it cannot provide a guarantee. Proofs, like circuits, can have bugs in them.

3. The relevance of the proof. For a proof to be relevant it must be based upon a set of axioms
that accurately models the circuit about which properties are being proved. Furthermore,
the theorem that is proved must accurately model some property that it is desirable for
the circuit to have.

We attack the first problem in two ways. First, by making use of algorithmic transfor-
mations, we reduce the difficulty of the proofs to be done. Second, we provide a theorem
prover, LP, that provides assistance in finding proofs. Nevertheless, the cost is still high,
in part because it requires someone who understands both the circuit design and the proof
technology to develop the proof.

LP also plays a major part in attacking the soundness issue. In verifying circuits (or
programs) the mass of detail that must be managed increases the likelihood of error. Expe-
rience [3, 2, 7] indicates that when a proof is not machine checked, it is highly likely that
cases are omitted, undocumented assumptions are relied upon, and clerical errors are made.
Even machine checked proofs may not be sound; there is always the chance that the program
doing the checking is flawed.

The relevance issue is the hardest to deal with. We cannot prove theorems about physical
devices such as circuits, only about abstractions of such devices. The relevance of our
proofs rests in part on how accurately the abstractions model the circuits. Of course, this
problem is not limited to verification. The same problem arises in other kinds of analysis,
e.g., simulation. One way to increase the likely relevance is to develop a suite of tools for
specification, simulation, verification, and fabrication, all using a common source language.
Driving all tools off the same source files, would increase the likelihood that results from
tools such as simulators and verifiers will be about the circuit that actually gets built.4

A key technical question to resolve in building such tools is exactly what proof obli-
gation is entailed when verifying an ad hoc transformation. This question is particularly
complicated in our setting. While using the same language for expressing specifications and
implementations facilitates hierarchical decomposition, it raises several problems in defining
what it means for an implementation to satisfy its specification. In particular,

4The work presented in [8] has similar goals. However, it starts from a different design method, one in
which specifications and implementations are written in distinct languages. This leads to significant technical
differences.

2
1. Must the implementation take the same number of clock cycles as the specification to perform each function?

2. Which of the components appearing in the specification must also appear in the implementation? That is to say, which parts of the implementation are part of its interface to the outside world, and which parts are purely implementation artifacts?

3. Once one has defined the interface of the specification, what aspects of the I/O behavior of the specification must be preserved in the implementation?

Section 2 discusses the first two of these problems. The third is addressed by using a non-deterministic language for describing circuits. In this language, each description describes not a single circuit but an equivalence class of circuits. One circuit implements another if all possible behaviors of the implementation are possible behaviors of the specification.

In the remainder of this section we first use algorithmic and ad hoc transformations to refine an implementation of a small CPU. Little text is devoted to justifying the algorithmic transformation used, since it is described elsewhere [6]. In contrast, the ad hoc transformation requires considerable justification. We present a machine-checked proof of its soundness later in this paper.

1.1 An example circuit

In this section, we give an example of an optimized circuit designed by applying both ad hoc and algorithmic transformations to a simple initial design. We describe the circuits by the use of (a) informal explanatory text, (b) diagrams, and (c) equations suitable for use in formal verification. We also explain how to get from (b) to (c).

1.1.1 Specification of a minimal processor

Figure 1 shows an initial (“specification”) design for a stripped-down computer. In the diagram, lines represent data paths, rectangles represent registers (clocked memory elements), and other shapes represent combinational logic elements.

Registers are presumed to be driven by a global clock, not shown in the diagram. At each tick of the global clock, each register begins to assert at its output whatever value was present at its input just before the clock tick. The changes in the register outputs then propagate through the combinational logic to produce new register inputs, which will be captured at the next tick of the clock.

An execution history of a circuit consists of a sequence of values for each data path in the circuit. By convention, we use the label of a data path to denote the sequence of values that appear on it in this history. Similarly, we use the same label for a register and its output
data path. The notation \(P.t \) denotes the stable value on data path \(P \) at the end of time step \(t \).

Each circuit element places a constraint on execution histories, which can be expressed as an equation relating values on the data paths it connects. Combinational elements constrain values at the same time step, while registers constrain values at consecutive time steps.

In each clock cycle, our example computer executes one instruction of the form “destination register becomes function of source register; branch on zero to target instruction.” The next few paragraphs follow the instruction execution process in detail, giving both informal commentary and equations. We use here a subset of the notations used by the Larch Prover (LP) [1], but systematically elide details needed by LP, such as declarations. These will be discussed in the Section 3.

At the beginning of time step \(t \), an instruction address, \(S{\\text{P}ct{\text{r}}}.t \) (the “S” is for specification) is clocked out of the program counter (the rectangle in the upper right hand corner of the diagram). We model the program itself as a block of combinational logic (think of it as a ROM) which takes addresses as input and produces instructions as output. Thus the instruction fetched in time step \(t \) is

\[
S{\\text{Instr}}.t = \text{program}(S{\\text{P}ct{\text{r}}}.t)
\]

The instruction is then decoded into its four components, namely the read address, the write address, the ALU operation, and the branch target.

\[
\begin{align*}
S{\text{RA}}.t &= \text{getRA}(S{\\text{Instr}}.t) \\
S{\text{WA}}.t &= \text{getWA}(S{\\text{Instr}}.t) \\
S{\text{Op}}.t &= \text{getOp}(S{\\text{Instr}}.t) \\
S{\text{BT}}.t &= \text{getBT}(S{\\text{Instr}}.t)
\end{align*}
\]

The read address \(S{\text{RA}}.t \) is used to read a data value \(S{\text{RD}}.t \) from the register file (modeled as a single large register \(S{\text{RF}} \)):

\[
S{\text{RD}}.t = \text{select}(S{\text{RF}}.t, S{\text{RA}}.t)
\]

Using the read data and the operation part \(S{\text{Op}}.t \) of the current instruction, the ALU computes result \(S{\text{WD}}.t \) (for “write data”):

\[
S{\text{WD}}.t = \text{ALU}(S{\text{Op}}.t, S{\text{RD}}.t)
\]

This result is stored back into the register file at the write address:

\[
S{\text{RF}}.(t+1) = \text{assign}(S{\text{RF}}.t, S{\text{WA}}.t, S{\text{WD}}.t)
\]

Meanwhile, the result is also compared to zero. According to the result \(S{\text{BC}}.t \) (for “branch control”) of this comparison, the new value of the program counter is either set to the branch target or computed by incrementing the current program counter:

\[
S{\text{BC}}.t = (S{\text{WD}}.t) = \text{zero}
\]

\footnote{Since we will not have occasion, in this paper, to reason about two specific execution histories of the same circuit at the same time, this convention introduces no ambiguity}
SNext.t == incr(SPctrl.t)
SPctrl.(t+1) == if(SBC.t, SBT.t, SNext.t)

where if(B, E1, E2) is read “if B then E1 else E2.” The if and “=” operators are among the few built-in operators of LP. The others are the boolean operators “&” (and), “|” (or), “==” (implies), “<=>” (iff), not, true, and false. For technical reasons, LP uses two different symbols = and == to denote comparison for equality. The symbol == is used only as the top level consecutive in equations; syntactically it binds more loosely than = and other infix operators.

The machine communicates to the external world by making all writes to the register file visible at an external interface:

WA_out.t == SWA.t
WD_out.t == SWD.t

Since these interface signals are common to the “specification” circuit described here and the “implementation” circuit described below, we do not apply the convention of starting their names with $$.

The speed at which a circuit such as this can run is bounded by the requirement that all the combinational logic outputs must have time to settle to stable values in the interval between one clock tick and the next. In Figure 1 there is a long combinational path that starts at the program counter, and goes through the instruction fetch logic, then through the decode logic to select the read address, then through the register file reading logic, then through the ALU, and then through the register write logic. Another long path starts in the same way, going from the program counter through the instruction fetch and decode logic, the register read logic, and the ALU, and then continues through the zero-tester and the branch selection multiplexer. In an implementation based directly on Figure 1, one of these two long paths would probably be the critical path limiting the clock speed.

Circuits containing long combinational paths can sometimes be sped up by retiming [5, 6], a technique by which registers are removed from some points in the circuit and inserted at other points according to rules that guarantee preservation of functional behavior. Intuitively, if there are cyclic paths through the circuit on which the registers are distributed unevenly with respect to the combinational logic, retiming can distribute the registers more evenly, thus reducing the maximal combinational delays in the circuit.

Unfortunately, our example circuit in Figure 1 is not a good candidate for improvement by retiming. One of the long combinational paths mentioned above leads from the output of the program counter back to the input of the program counter. The attempt to “distribute the registers more evenly” around a cycle is not likely to be fruitful when there is only one register to distribute.

In the next section, we will transform Figure 1 by ad hoc methods to yield a new CPU, shown in Figure 2, that executes the same instruction set. The new CPU is more complicated (and probably slower) than that in Figure 1, but it has a higher ratio of registers to combinational components along its critical feedback cycles, enabling retiming to produce the faster (than Figure 1) machine shown in Figure 3.
1.1.2 An ad hoc transformation

Roughly speaking, the pipelined machine in Figure 2 works on the assumption that branches (times for which $SP_{\text{ctr}, t+1} = \text{SBT}_t$) are less common than straight line execution ($SP_{\text{ctr}, t+1} = \text{incr}(SP_{\text{ctr}, t})$). When execution of an instruction results in a branch, the machine doesn’t “notice” the branch until several time steps have elapsed, during which it has started executing the next few instructions along the straight line path “in the shadow of the branch.” Upon detection of the branch condition, the effects of the shadowed instructions are undone and program execution continues along the branching path. The next few paragraphs describe the derivation of Figure 2 from Figure 1 in more detail.

We begin by introducing four registers IBC_3, IBC_2, IBC_1, and IBC_0, (“T” for implementation) between the zero-comparator and the branch multiplexer, thereby delaying for four clock cycles all decisions about whether or not to branch. In order to have the decision about whether to branch and the appropriate destination of the potential branch arrive at the branch multiplexer at the same time, we also introduce four registers IBT_3, IBT_2, IBT_1, and IBT_0 on the path by which branch targets are communicated from the instruction decode logic to the branch multiplexer.

If these were the only changes we made, we would have produced a machine whose instruction set differed from that of Figure 1 by having delayed branching. Whenever the machine executed an instruction that should result in a branch, the next four instructions along the straight-line execution path would be executed before control transferred to the branch target. In order to restore the semantics of Figure 1, we must introduce additional logic to ensure that no effects of these (shadowed) instructions become permanent.

In order to postpone commitment of potentially shadowed register file writes, we introduce delaying registers IWA_3, IWA_2, and IWA_1 for the write addresses, and IWD_3, IWD_2, and IWD_1 for the write data destined to the register file. Whenever a branch is taken, write suppression logic changes all queued write addresses to a special addresses, null. Writing to null causes no change to the register file.

Suppose that some instruction writes to a particular address in the register file and the next instruction in the normal execution sequence reads that same address. If both instructions turn out to be permanent (i.e., not shadowed), we want to be sure that the data read by the second instruction is the same as that written by the first, even though that data has not yet been written to the actual register file. For this purpose, we introduce a series of address-comparators and read data multiplexers (known as “read-bypass” logic) to allow the results of reading the register file to reflect any pending writes.

Finally, in the case of a branch we must suppress not only the register file writes of shadowed instructions, but also any branches which may have been initiated by shadowed instructions. The gates that drive the inputs of registers IBC_3, ..., IBC_0 serve this purpose.

The interface signals WA_{out} and WD_{out} are supplied from the head of the write queue so that shadowed writes will have had their addresses set to null before they become visible at the interface.
Although the machine in Figure 2 is pipelined, the work done for each instruction is very unevenly distributed among the stages of the pipe. If we look for the longest combinational paths in Figure 2, we will see that the minimal clock period for a circuit based directly on Figure 2 would not be much less (and might well be greater, depending on the relative speeds of register assignment and the write bypass circuitry) than the minimal clock period of a circuit based directly on Figure 1. Since the Figure 2 circuit also loses four cycles to shadowed instructions on every branch, we seem to have bought worse performance at the price of added complexity. In the next section, we show how retiming can be used to reduce the clock period by changing the distribution of registers in the circuit so as to balance the pipeline.

1.1.3 An algorithmic transformation

Figure 3 shows a circuit that results from retiming Figure 2. If the circuits of Figures 2 and 3 are run side by side with appropriately corresponding initial conditions, then each combinational element of Figure 3 will execute the same sequence of computations as the corresponding element of Figure 2, but shifted later or earlier in time by some number of clock ticks. The small numbers next to the combinational components in Figure 3 indicate their time shifts with respect to the corresponding components of Figure 2, with positive numbers denoting lags and negative numbers denoting leads.

In Figure 3 there is only a relatively small amount of combinational logic on the path from the output of any register to the input of the next register, implying that a circuit built according to Figure 3 can safely run at a much higher clock speed than one based directly on Figure 1. If the frequency of successful branches is sufficiently low, this faster clock speed will more than compensate for the cycles lost to shadowed instructions.

The retiming transformation used to produce Figure 3 from Figure 2 can be performed algorithmically [6] and is guaranteed to preserve circuit behavior [5]. The ad hoc transformation used to produce Figure 2 from Figure 1 is another matter. Our description in Section 1.1.1 of the derivation of Figure 2 constitutes an informal argument for its correctness, but is by no means a rigorous proof. A cautious designer would want more convincing evidence that our ad hoc transformation is indeed valid. In the next section, we show how the correctness of such a transformation can be proved.

2 Manual proof

Description I implements description S if any observable behavior satisfying I also satisfies S. So to demonstrate that our implementation (Figure 2) implements our specification (approximately given by Figure 1—see Section 2.3) we must demonstrate that for any legal execution history of Figure 2 there exists a corresponding legal execution history of the specification.
2.1 Overview of the proof

We start by presenting the given for the proof: the implementation equations, describing the constraints on an arbitrary legal history of the implementation implied by Figure 2 and the required properties of various legal histories such as select, assign, and kill. Then we state the goals to be proved. These are the specification equations derived from Figure 1, each of which must be satisfied. The proof proper comprises a level map, defining a specification history in terms of the implementation history, and a proof of satisfaction, showing that each goal is implied by the given plus the level map.

2.2 Givens

2.2.1 The implementation equations

Each implementation equation describes the behavior of a register and/or some combinational elements. Identifiers starting with I denote the sequences of values that appear on the correspondingly labeled data paths of Figure 2 during some arbitrary execution history; the variable t denotes an arbitrary time step, modeled as a natural number; and the infix operator “.” returns the element of its left (sequence) argument indexed by its right (time) argument.

\[
\begin{align*}
\text{INext}.t &= \text{incr(IPctr}.t) \\
\text{INinstr}.t &= \text{program(IPctr}.t) \\
\text{IBT4}.t &= \text{getBT(INinstr}.t) \\
\text{IBT3}.(t+1) &= \text{IBT4}.t \\
\text{IBT2}.(t+1) &= \text{IBT3}.t \\
\text{IBT1}.(t+1) &= \text{IBT2}.t \\
\text{IBT0}.(t+1) &= \text{IBT1}.t \\
\text{IRA}.t &= \text{getRA(INinstr}.t) \\
\text{IRD1}.t &= \text{select(IRF}.t, \text{IRA}.t) \\
\text{IRD2}.t &= \text{if}((\text{IWA1}.t)=(\text{IRA}.t), \text{IWD1}.t, \text{IRD1}.t) \\
\text{IRD3}.t &= \text{if}((\text{IWA2}.t)=(\text{IRA}.t), \text{IWD2}.t, \text{IRD2}.t) \\
\text{IRD4}.t &= \text{if}((\text{IWA3}.t)=(\text{IRA}.t), \text{IWD3}.t, \text{IRD3}.t) \\
\text{IWA4}.t &= \text{getWA(INinstr}.t) \\
\text{IWA3}.(t+1) &= \text{kill(IWA4}.t, \text{IBC0}.t) \\
\text{IWA2}.(t+1) &= \text{kill(IWA3}.t, \text{IBC0}.t) \\
\text{IWA1}.(t+1) &= \text{kill(IWA2}.t, \text{IBC0}.t) \\
\text{IRF}.(t+1) &= \text{assign(IRF}.t, \text{kill(IWA1}.t, \text{IBC0}.t), \text{IWD1}.t) \\
\text{IOP}.t &= \text{getOP(INinstr}.t) \\
\text{IWD4}.t &= \text{ALU(IOP}.t, \text{IRD4}.t) \\
\text{IWD3}.(t+1) &= \text{IWD4}.t \\
\text{IWD2}.(t+1) &= \text{IWD3}.t \\
\text{IWD1}.(t+1) &= \text{IWD2}.t \\
\text{IBC4}.t &= (\text{IWD4}.t) = \text{zero}
\end{align*}
\]
IBC3.(t+1) == (IBC4.t) & not(IBC0.t)
IBC2.(t+1) == (IBC3.t) & not(IBC0.t)
IBC1.(t+1) == (IBC2.t) & not(IBC0.t)
IBC0.(t+1) == (IBC1.t) & not(IBC0.t)
IPctr.(t+1) == if(IBC0.t, IBT0.t, INext.t)
WA_out.t == kill(IWA1.t, IBC0.t)
WD_out.t == IWD1.t

2.2.2 Required properties of components

The circuit in Figure 2, relies on certain properties of assign, select, kill, and getRA. We must state them explicitly, since we will use them in the proof. Our proof does not depend on the properties of many other operators, such as ALU and incr, and they can be regarded as parameters, or free variables, of the specification and implementation.

Writing to address null must leave the register file unchanged.

assign(x, null, y) == x

Writing to an address other than null and then reading from the same address must yield the data last written, and writing to one address must not change the contents of any other address.

select(assign(x, y1, z), y2) ==
 if((y1 == y2) & not(y2 == null), z, select(x, y2))

The kill function used in the write suppression logic is a simple conditional.

kill(x, y) == if(y, null, x)

No instruction attempts to read from the address null.

getRA(program(x)) = null == false

If such a read were attempted, it might retrieve the data word from a suppressed write recently queued by a shadowed instruction. Although this assumption seems obvious in retrospect, we overlooked it in our first attempt at a formal proof.

2.3 The goals: specification equations

The specification equations play a different role than the implementation equations. The implementation equations are assumptions of the verification; the specification equations are the theorems that we must prove to show the correctness of the implementation. More precisely, we would like to show that it is possible to choose an execution history for Figure 1 consisting of sequences SNext, SPctr, SWA, ... such that these equations hold. Such an execution history would constitute an explanation of how Figure 1 could have produced the behavior produced by Figure 2, as observed on WA_out and WD_out. Unfortunately, such an execution history may not exist.
There are several tedious reasons why there might not be an execution history of Figure 1 to explain an arbitrary execution history of Figure 2. As we modified Figure 1 to produce Figure 2, we loosened the specification in a number of ways that were implicit in the informal derivation of Section 1.1.1 but must be made explicit if we are to state (and prove) a valid theorem about the possible behaviors of the implementation. Being forced to be explicit is one of the benefits of constructing a formal proof.

If the initial contents of the implementation registers is arbitrary, there can be a startup transient of up to three clock cycles (needed to flush the initial contents of the write queue) during which the behavior of the implementation may not reflect anything allowed by the specification.\(^6\) In a real machine, of course, additional circuitry would be used to initialize the machine state. In the interests of fitting this example into a paper, however, we choose the alternate course of simply not observing the implementation during its first three cycles, by systematically using \(t+3\) rather than \(t\) in all the specification equations.

The processor drawn in Figure 1 executes an instruction every clock cycle. The Figure 2 processor, on the other hand, takes five cycles to execute any instruction that actually branches—the four extra cycles being spent on shadowed instructions. In order to allow these extra cycles, we augment the specification by introducing a sequence, \textit{Stalled}, of booleans indicating cycles on which the system is “stalled,” and modify the equations describing the register file and program counter to indicate that the registers’ contents are unchanged during such cycles.

\[
\begin{align*}
\text{SRF.}(t+4) & \equiv \text{if}(\text{Stalled.}(t+3), \\
& \quad \text{SRF.}(t+3), \text{assign}(\text{SRF.}(t+3), \text{SWA.}(t+3), \text{SWD.}(t+3))) \\
\text{SPctr.}(t+4) & \equiv \text{if}(\text{Stalled.}(t+3), \\
& \quad \text{SPctr.}(t+3), \text{if}(\text{SBC.}(t+3), \text{SBT.}(t+3), \text{SNext.}(t+3)))
\end{align*}
\]

The specification of behavior at the interface must also be modified to account for values that may be seen during stalled cycles. Specifically, the write address to the register file is required to be \texttt{null} (so that it won’t be seen at the interface as a genuine write), and the write data is irrelevant, leading to the interface equations:

\[
\begin{align*}
\text{WA}_{\text{out.}}(t+3) & \equiv \text{if}(\text{Stalled.}(t+3), \text{null, SWD.}(t+3)) \\
((\text{WD}_{\text{out.}}(t+3)) = (\text{SWD.}(t+3))) & \text{ if } (\text{Stalled.}(t+3)) \equiv \text{true}
\end{align*}
\]

The remaining specification equations simply describe constraints imposed by registers and combinational elements in Figure 1.

\[
\begin{align*}
\text{SNext.}(t+3) & \equiv \text{incr}(\text{SPctr.}(t+3)) \\
\text{SInstr.}(t+3) & \equiv \text{program}(\text{SPctr.}(t+3)) \\
\text{SBT.}(t+3) & \equiv \text{getBT}(\text{SInstr.}(t+3)) \\
\text{SRA.}(t+3) & \equiv \text{getRA}(\text{SInstr.}(t+3)) \\
\text{SRD.}(t+3) & \equiv \text{select}(\text{SRF.}(t+3), \text{SRA.}(t+3)) \\
\text{SWA.}(t+3) & \equiv \text{getWA}(\text{SInstr.}(t+3))
\end{align*}
\]

\(^6\)The transformation to Figure 3 introduces an additional start-up transient of at most one cycle, arising from the fact that some components have lags of \(-1\) time step with respect to Figure 2, which is one less than the lag (0) of the interface.
\[
\begin{align*}
\text{SOp.}(t+3) &= \text{getOP}(\text{SInstr.}(t+3)) \\
\text{SWD.}(t+3) &= \text{ALU}(\text{SOp.}(t+3), \text{SRD.}(t+3)) \\
\text{SBC.}(t+3) &= (\text{SWD.}(t+3)) = \text{zero}
\end{align*}
\]

2.4 The proof

2.4.1 The level map

We next construct a specification history to account for the observed behavior of an arbitrary implementation history. Such a history can be given by a level map—a set of equations defining a specification history in terms of a given implementation history.

Note that the definitions of the sequences, \text{SRF}, \text{SPctr}, etc., comprising the specification history must be just that—definitions. If a "level map" employs multiple or circular definitions of some component of the specification history, then it may implicitly introduce new constraints on the implementation history; it may even be outright inconsistent. Technically speaking, the theory obtained by adding the level map equations to the previously assumed theory (consisting of the implementation equations, the required operator properties, and the standard rules for arithmetic, booleans, and sequences) must be a conservative extension of the previously assumed theory. That is, any theorem that doesn't involve the newly introduced symbols, \text{SRF}, \text{SPctr}, etc., and that is provable in the new system must be provable in the old system.

\[
\begin{align*}
\text{SRF.t} &= \text{IRF.t} \\
\text{SPctr.}(t+3) &= \text{if}(\text{IBC0.t}, \text{IBT0.t}, \\
& \quad \text{if}(\text{IBC1.t}, \text{IBT1.t}, \\
& \quad \text{if}(\text{IBC2.t}, \text{IBT2.t}, \\
& \quad \text{if}(\text{IBC3.t}, \text{IBT3.t}, \\
& \quad \text{IPCtr.t}) \\
\text{SNext.t} &= \text{incr}(\text{SPctr.t}) \\
\text{SInstr.t} &= \text{program}(\text{SPctr.t}) \\
\text{SBT.t} &= \text{getBT}(\text{SInstr.t}) \\
\text{SWA.t} &= \text{getWA}(\text{SInstr.t}) \\
\text{SRA.t} &= \text{getRA}(\text{SInstr.t}) \\
\text{SOp.t} &= \text{getOP}(\text{SInstr.t}) \\
\text{SRD.t} &= \text{select}(\text{IRF.t}, \text{SRA.t}) \\
\text{SWD.t} &= \text{ALU}(\text{SOp.t}, \text{SRD.t}) \\
\text{SBC.t} &= (\text{SWD.t}) = \text{zero} \\
\text{Stalled.}(t+3) &= (\text{IBC0.t}) \mid (\text{IBC1.t}) \mid (\text{IBC2.t}) \mid (\text{IBC3.t})
\end{align*}
\]

We insure the conservativeness of our level map by enforcing a certain syntactic style. For each component sequence of the specification history, there is exactly one defining equation, with that component on its left hand side and only previously defined terms (possibly including previously defined specification history components) on the right hand side. To
illustrate these ideas in a simpler context, consider a proof in which we have introduced integers \(a \) and \(b \) but have not yet used the name \(c \). A legitimate next step would be to say,

(1) "Let \(c = a + b \)." It would not be legitimate to say (2) "Let \(c = a + a \) and also let \(c = b + b \)." Or (3) "Let \(c = a + c - b \)." We know by the syntactic form of (1)—namely, "Let \(c = \langle expression \ containing \ neither \ c \ nor \ any \ free \ variable \rangle \)—that it is conservative. Multiple definitions, such as (2), or a circular definition, such as (3), may implicitly introduce unwarranted assumptions about \(a \) and \(b \) (in these examples, the assumption \(a = b \)). As a final example consider (4) "Let \(a = b + c + 1 \)." While (4) is technically conservative, it does not have the syntactic form of a definition of \(c \). The conservativeness of (4) cannot be deduced by mere examination of its form, but depends on properties of integer addition; if the universe of discourse were the natural numbers rather than the integers, (4) would embody the assumption \(a > b \).\(^7\)

There is no set method for deriving a level map. We arrived at this one by understanding why the system in Figure 2 works and applying brain power. Note that an ill-chosen level map may result in failure to verify a correct implementation, but, so long as it is conservative, cannot lead to "verification" of an incorrect implementation.

2.4.2 Validating the specification history

All that remains is to prove that the execution history given by the level map satisfies the specification equations. There are thirteen specification equations to prove. Nine of them are simply instances of level map equations. The other four do not follow quite so trivially, but can be proved by case analysis on the values of some of the boolean signals in the specification and implementation equations. We give here a sampling of the sort of reasoning used. The non-trivial goals are:

\[
\begin{align*}
\text{SRF.}(t+4) &= \text{if(S stalled.}(t+3), \text{SRF.}(t+3), \text{assign(SRF.}(t+3), \text{SWA.}(t+3), \text{SWD.}(t+3))) \\
\text{SPcrt.}(t+4) &= \text{if(S stalled.}(t+3), \text{SPcrt.}(t+3), \text{if(SBC.}(t+3), \text{SBT.}(t+3), \text{SNExt.}(t+3))) \\
\text{WA out.}(t+3) &= \text{if(S stalled.}(t+3), \text{null, SWA.}(t+3)) \\
\text{Stalled.}(t+3) &| ((\text{WD out.}(t+3)) = (\text{SWD.}(t+3))) = \text{true}
\end{align*}
\]

We may proceed by considering first the case in which time step \(t+3 \) is a non-stalling cycle and then the case of a stalling cycle.

We consider first the non-stalling case, in which we assume

\[
\text{Stalled.}(t+3) = \text{false}
\]

This assumption lets us reduce our four goals to

\(^7\)A fine point: Since the operators \(\cdot \) and \(+ \) appear on the left hand sides of the "definitions" in our level map, the legitimacy of these definitions technically depends on certain properties of sequences and of natural numbers not explicitly stated above, specifically that every function from indices (natural numbers) to scalars is the characteristic function of some sequence, and that addition of the constant 3 to different augends gives different results.
SRF.(t+4) == assign(SRF.(t+3), SWA.(t+3), SWD.(t+3))
SPctr.(t+4) == if(SBC.(t+3), SBT.(t+3), SNext.(t+3))
WA_out.(t+3) == SWA.(t+3)
WD_out.(t+3) == SWD.(t+3)

It also allows us to make some forward inferences. By expanding the definition of **Stalled** in the level map, we have

IBC0.t == false
IBC1.t == false
IBC2.t == false
IBC3.t == false

Expanding the definition of **SPCtr** then gives

SPctr.(t+3) == IPCtr.t

from which we obtain

SNext.(t+3) == incr(SPCtr.(t+3))
 == incr(IPCtr.t)
 == INext.t

and similarly

SInstr.(t+3) == IInstr.t
SBT.(t+3) == IBT4.t
SWA.(t+3) == IWA4.t
SRA.(t+3) == IRA.t
SOp.(t+3) == IOp.t

The rest of the specification state components for time t+3 also map (in this non-stalled case) directly to particular implementation state components for time t, but the calculations necessary to confirm this take a bit more work. We start by considering the implementation equations for the registers in the branch condition pipeline IBC0, ..., IBC3. Note that\(^8\)

IBC0.(t+1) == (IBC1.t) & not(IBC0.t)
 == false & not(false)
 == false

Similarly, we obtain

IBC0.(t+2) == IBC1.(t+1) == false
IBC0.(t+3) == IBC1.(t+2) == IBC2.(t+1) == false

Since IBC0 is false at steps t through t+3, we find that the write addresses in the pipeline at time t propagate to the register file assignment logic without change:

WA_out.t == kill(IWA1.t, IBC0.t)

\(^8\)The shorthand used here, in which we write “E1 == E2 == E3 == E4” to indicate the line of reasoning “E1 == E2; E2 == E3; E3 == E4; therefore E1 == E4” is not used by LP, which does not produce—and cannot parse—any “equation” containing more than one “==” sign.
\[W_{out}(t+1) = IWA1(t+1) = IWA2(t) \]
\[W_{out}(t+2) = IWA1(t+2) = IWA2(t+1) = IWA3(t) \]
\[W_{out}(t+3) = IWA1(t+3) = IWA2(t+2) = IWA3(t+1) = IWA4(t) \]

Since we already had

\[SWA(t+3) = IWA4(t) \]

we obtain one of our four goals for the not-stalled case:

\[W_{out}(t+3) = IWA4(t) = SWA(t+3) \]

For the remaining three goals, we next consider the level map for the register file and its relation to the read-bypass equations. If we repeatedly apply the implementation equation for the implementation register file IRF to expand the level map definition for the specification register file SRF, we get

\[SRF(t+3) = IRF(t+3) \]
\[= assign(IRF(t+2), kill(IWA1(t+2), IBC0(t+2), IWD1(t+2))) \]
\[= assign(IRF(t+2), IWA1(t+2), IWD2(t+1)) \]
\[= assign(IRF(t+2), IWA3.t, IWD3.t) \]
\[= ... \]
\[= assign(assign(assign(IRF.t, IWA1.t, IWD1.t), IWA2.t, IWD2.t), IWA3.t, IWD4.t) \]

If we start expanding the definition of SRD for time step \(t+3 \), we get

\[SRD(t+3) = select(SRF(t+3), SRA(t+3)) \]
\[= select(assign(IRF(t+2), IWA3.t, IWD3.t) IRA.t) \]
\[= if((IRA.t = IWA3.t) \& \& not((IRA.t) = null), IWD3.t, select(IRF(t+2), IRA.t)) \]

Since

\[IRA.t = getRA(Instr.t) = getRA(program(IPctr.t)) \]

we know

\[(IRA.t) = null = false \]

So the above simplifies further to

\[SRD(t+3) = if((IRA.t = IWA3.t), IWD3.t, select(IRF(t+2), IRA.t)) \]

Similarly expanding the subexpression \(select(IRF(t+2), IRA.t) \), we eventually get

\[SRD(t+3) = if((IRA.t = IWA3.t), IWD3.t, \]
\[\quad if((IRA.t = IWA2.t), IWD2.t, \]
\[\quad \quad if((IRA.t = IWA1.t), IWD1.t, \]
\[\quad \quad \quad select(IRF.t, IRA.t)))) \]
The right hand side of this equation is exactly what we get by applying the implementation equations for the combinational logic that computes \(\text{IRD4}.t \). So we have

\[
\text{SRD}.(t+3) = \text{IRD4}.t
\]

which we can use to obtain

\[
\text{SWD}.(t+3) = \text{ALU}(\text{SOp}.(t+3), \text{SRD}.(t+3))
= \text{ALU}(\text{IOp}.t, \text{IRD4}.t)
= \text{IWD4}.t
\]

The equations for the write data pipeline give us

\[
\text{IWD1}.(t+3) = \text{IWD2}.(t+2) = \text{IWD3}.(t+1) = \text{IWD4}.t
\]

So we have

\[
\text{WD}_{\text{out}}.t(t+3) = \text{IWD1}.t(t+3) = \text{IWD4}.t = \text{SWD}.t(t+3)
\]

and another of our four goals is achieved.

The remaining two goals can be proved in a similar fashion. We would then turn to the stalling case, which turns out to need nested case analysis on the position of the first queued branch in the pipeline, but is basically similar. It should be clear by now why such manual proofs are extremely tedious and error-prone. Much of the detailed analysis, formula manipulation, and checking can and should be automated. The next section discusses one way to do that.

3 A formal proof

In this section, we present a slightly abridged script for a formal verification of the Figure 2 circuit using the Larch Prover (LP). While we include brief explanations of the LP commands used in this example, this section is not intended as a tutorial on LP. Readers who want to learn more are referred to [1].

3.1 Declarations

In LP, all user identifiers must be declared, with signatures, before use. Here are some examples of declarations used in our formal verification.

\[
\text{declare sort Nat} \quad \% \text{The sort of natural numbers}
\text{declare variable t: Nat} \quad \% \text{Used for time steps}
\text{declare sort}
\quad \text{RAddr,} \quad \% \text{The sort of register addresses}
\quad \text{IAddr,} \quad \% \text{Instruction addresses}
\quad \text{Data,} \quad \% \text{Data words}
\quad \text{Instr,} \quad \% \text{Instructions}
\]

15
RAAddr_seq, % Sequences of register addresses
IAddr_seq, % Sequences of instruction addresses
Data_seq, % Sequences of data words
Instr_seq % Sequences of instructions
. % .. marks the end of a multi-line LP command.
declare operator
 .: RAddr_seq, Nat -> RAddr % The name "." is overloaded to denote several
 .: IAddr_seq, Nat -> IAddr % operators for indexing sequences of different
 .: Data_seq, Nat -> Data % sorts. LP determines which one is meant
 .: Instr_seq, Nat -> Instr % on the basis of the sorts of the arguments.
 . % LP has no built-in rules about sequences.
declare variable
 xInstr: Instr % xInstr is a variable denoting an arbitrary
 . % instruction.
declare operators
 program: IAddr -> Instr % Instruction fetch. Takes an IAddr as
 . % argument and returns an Instr
 incr: IAddr -> IAddr % Increment.
declare operators
 IPctr, INext: -> IAddr_seq % Constants in LP are modeled as nullary
 IInstr: -> Instr_seq % operators. Our proof starts by picking
 . % an arbitrary "fixed" execution history.
declare operators
 0, 1, 2, 3, 4, 5, 6, 7: -> Nat
 zero: -> Data

It is important to understand the distinction between variables (such as t and xInstr) and constants (modeled as nullary operators, such as IPctr and zero). An occurrence of a variable in an LP equation indicates that the equation holds for all values of that variable’s sort. An occurrence of a constant only indicates that the equation holds for the particular value denoted by the constant.

3.2 Assertions

Having declared the necessary identifiers, we then assert the implementation equations, required operator properties, and level map definition, as described in Section 2.9 The proof also uses some simple facts about arithmetic. Normally these would come from a standard library but for the sake of completeness, we give here all those that are actually used.

9We must admit here that the conservativeness of the level map is not machine-checked. While we know how to remedy this deficiency, to do so with the current version of LP would require a style of proof rather more cumbersome, both to use and to explain, than the one we use in this paper. Instead we have chosen to rely on the syntactic conventions described in Section 2.4.1.
set order left-to-right

assert % definitions of numerals
2 == 1 + 1
3 == 2 + 1
4 == 3 + 1
5 == 4 + 1
6 == 5 + 1
7 == 6 + 1
...
assert ac + % "+" is associative and commutative

assert % implementation equations
INext.t == incr(IPctr.t)
% etc., as given in Section 2.2.1
WD_out.t == IWD1.t
...

assert % required properties of operators (Section 2.2.2)
assign(xRFile, null, xData) == xRFile
select(assign(xRFile, xRAddr, xData), yRAddr) ==
 if((xRAddr = yRAddr) & not(yRAddr = null),
 xData,
 select(xRFile, yRAddr)
)
kill(xRAddr, xBool) == if(xBool, null, xRAddr)
getRA(program(xIAddr)) = null == false
...

assert % level map
SPctr.(t+3) ==
 if(IBC0.t, IBT0.t,
 if(IBC1.t, IBT1.t,
 if(IBC2.t, IBT2.t,
 if(IBC3.t, IBT3.t,
 IPctr.t
)
)
)
)
% etc., as given in Section 2.4.1
Stalled.(t+3) == (IBCO.t) | (IBC1.t) | (IBC2.t) | (IBC3.t)
...

Much of LP's deductive system is based upon ordering equations into rewrite rules. The command "set order left-to-right" causes LP to produce rules that rewrite expressions matching the left hand sides of the above equations into corresponding instances of the right hand sides, rather than the other way around. While the left-to-right ordering rule works
for our example proof, such user-chosen orderings are potentially dangerous because they may lead to non-terminating rewriting systems. For this reason, LP includes automated strategies for producing orderings that are guaranteed to terminate. One such strategy can be caused to order all the equations above in the left-to-right direction (thereby certifying the termination of the resulting rewriting system), but only if the user supplies appropriate hints. Further discussion of such ordering hints is beyond the scope of this paper; the reader is referred to [1] for a thorough discussion of LP’s ordering facilities and the theory behind them.

3.3 Proving the specification equations

All that remains is to prove the modified specification equations from Section 2.3. LP gets the easy ones without any user guidance:

```
prove SNext.(t+3) == incr(SPctr.(t+3))
qed
prove SInstr.(t+3) == program(SPctr.(t+3))
qed
prove SBT.(t+3) == getBT(SInstr.(t+3))
qed
prove SRA.(t+3) == getRA(SInstr.(t+3))
qed
prove SRD.(t+3) == select(SRF.(t+3), SRA.(t+3))
qed
prove ((SWA.(t+3)) = getWA(SInstr.(t+3)))
qed
prove SOp.(t+3) == getOp(SInstr.(t+3))
qed
prove SWD.(t+3) == ALU(SOp.(t+3), SRD.(t+3))
qed
prove SBC.(t+3) == (SWD.(t+3)) = zero
qed
```

The `qed` command causes LP to check whether there are any outstanding unproven conjectures on its stack. If there are, LP displays an error message, and, if the failing `qed` came from a file, returns to interactive mode.

For some of the proofs LP requires a bit of assistance from the user. There are a variety of ways in which this can be provided. For this example, the only guidance needed is for the user to suggest appropriate uses of case analysis. The necessary commands exhibit several features of LP, which we will explain presently.

```
prove
  SPctr.(t+4) ==
    if(Stalled.(t+3), SPctr.(t+3), if(SBC.(t+3), SBT.(t+3), SNext.(t+3)))
  ..
```
resume by case IBC0.t
<> 2 subgoals for proof by cases
 [] case IBC0 . tc
 resume by case IBC1.tc
<> 2 subgoals for proof by cases
 [] case IBC1 . tc
 resume by case IBC2.tc
<> 2 subgoals for proof by cases
 [] case IBC2 . tc
 [] case not(IBC2 . tc)
 [] case not(IBC1 . tc)
 [] case not(IBC0 . tc)
[] conjecture
qed

The command

resume by case E

(where the case expression E is of sort boolean) causes LP to replace the goal of proving the current conjecture with two subgoals: proving the conjecture under the assumption that the case expression is true and proving the conjecture under the assumption that case expression is false. These assumptions are known as “case hypotheses” in their respective arms of the proof.

A slight technical issue arises when the case expression contains a variable. Since variables are implicitly universally quantified, the cases

IBC0.t == true % for all t

and

IBC0.t == false % for all t

do not cover all possible situations. The data path IBC0 might carry the value true on some time steps and false on others. In order to make the case analysis sound, LP replaces each variable in the case expression with a so-far-unused constant (tc in this case). All occurrences of these case variables in the conjecture are likewise replaced with the corresponding constants. The soundness of this procedure follows from the observation that, if some property can be proven for a particular time step of tc about which no special information is given, then that property must hold at every time step. Since, within any arm of the case analysis, LP is working on a conjecture in which the variable t has been replaced by the constant tc, nested resume by case commands use case expressions that likewise contain tc in place of t.

The lines beginning with boxes (□) and diamonds (<> are annotations to the proof. When LP is run with its “box-checking” mode turned on, and is reading commands from a

10LP also supports proofs by multi-way case analyses, where the set of cases examined must be proven to be exhaustive. We do not happen to use this facility in this paper.
file, it expects to see a line beginning with a diamond (and an appropriate number) every
time it introduces one or more subgoals, and it expects to see a line beginning with a box
every time a subgoal is discharged. Otherwise, it displays an error message and returns
to interactive mode. This feature, like the \texttt{qed} command described above, is quite useful
when one is replaying a slightly modified version of an old command file, since it notifies
the user of the first deviation of a proof from its expected course, rather than letting LP
run on applying additional commands in an inappropriate context. Note that if the box
and diamond lines were removed from the proof script above, it would be impossible to tell
(even using indentation as a hint) whether the cases analysis on IBC1.tc was intended to
be applied with the case IBC0.tc \texttt{== true} or within the case IBC0.tc \texttt{== false}.

The remaining pieces of the proof proceed similarly to those above. Here they are, with
the box and diamond lines omitted:

\begin{verbatim}
prove
 SRF.(t+4) ==
 \text{if}(Stalled.(t+3), SRF.(t+3), \text{assign}(SRF.(t+3), SWA.(t+3), SWD.(t+3)))
 \text{..}
 \text{resume by case IBC0.(t)}
 \text{resume by case IBC1.tc}
 \text{resume by case IBC2.tc}
 \text{resume by case IBC3.tc}
\texttt{qed}
prove WA_out.(t+3) == \text{if}(Stalled.(t+3), \text{null}, SWA.(t+3))
 \text{resume by case IBC0.(t)}
 \text{resume by case IBC1.tc}
 \text{resume by case IBC2.tc}
\texttt{qed}
prove
 (Stalled.(t+3)) \text{ ||} ((WD_out.(t+3)) = (SWD.(t+3))) \text{\% "== true" is implicit.}
 \text{..}
 \text{resume by case IBC0.(t)}
 \text{resume by case IBC1.tc}
 \text{resume by case IBC2.tc}
 \text{resume by case IBC3.tc}
\texttt{qed}
\end{verbatim}

The preceding theorems only cover safety properties of Figure 2, showing that every
step of its execution (after the start-up transient) corresponds either to a step of Figure 1's
execution or to a stall. It would also be useful to know that the implementation cannot
simulate stalling forever. The following commands suffice to prove that, once the start-up
transient is over, the circuit can never stall for more than four consecutive cycles—the time
needed to clear the pipe of shadowed instructions after a successful branch.

\begin{verbatim}
prove
 not((Stalled.(t+3)) \& (Stalled.(t+4)) \& (Stalled.(t+5)) \&
 (Stalled.(t+6)) \& (Stalled.(t+7)))
\end{verbatim}
4 Discussion

4.1 Distance from a real circuit

The example presented in this paper is at a level of abstraction somewhat removed from actual circuits. The details we have abstracted away fall into two broad classes:

1. We have been intentionally silent about some aspects of the circuit design, including

 - The kinds of data carried on internal data paths, e.g., how big are the instruction and register address spaces?
 - The semantics of the operators, e.g., how many ALU operation codes are there and what does each ALU operation code mean?
 - The encodings of the data presented at the interface, e.g., how is a data word encoded in bits.

2. We have said nothing about the physical realization of the circuit. In particular, we have not discussed what design rules must be obeyed in order to guarantee that the physical circuit behaves consistently with the equations describing it.

 We have avoided the first class of details by treating many aspects of the design as parameters. In effect, we have designed a class of circuits. In a real application, the specification writer would at some point instantiate the design parameters by requiring a particular word size, ALU semantics, etc. The soundness of our algorithmic transformations and our verification of the _ad hoc_ transformation do not depend upon how these parameters are instantiated. They are independent not only of the implementation of, say, the ALU, but even of its specification. It is only necessary that Figure 3 be instantiated with the _same_ word size, ALU specification, etc. as Figure 1.

 In contrast, the second class of details is not easily dealt with within our framework. Recall that each implementation equation in Section 2.2.1 corresponds to one or a few components in the Figure 2 diagram. We assume that if the physical components are properly fabricated and connected to each other in accordance with the diagram, then the resulting system will obey the equations. In general, however, the signals at the inputs and outputs of a physical component (for example, an AND gate) can be guaranteed to satisfy the corresponding equation \((\text{out}.t = (\text{in1}.t) \& (\text{in2}.t))\) only if the system as a whole obeys
certain design rules. For example, the outputs of different components must not be shorted together, and the clock period must be long enough to allow all combinational outputs to achieve stable values between successive ticks.

4.2 Debugging and maintaining machine-checked proofs

In our experience with mechanical proof checking, a few things stand out:

• Almost every “theorem” we try to prove isn’t.

• If we don’t understand why a theorem is valid, there is very little chance of discovering a mechanical proof.

• Even if we do understand why a theorem is valid, the first proofs we attempt are likely to be flawed.

Consequently, we want our proof checker to have a number of properties:

• It should assist in the interactive development of proofs.

• It should quickly detect invalid proof steps, and provide feedback that will help the user discover the error.

• To the greatest extent possible, it should “fail fast” on non-theorems, that is, stop and complain rather than automatically indulging in complex or time-consuming heuristics. There’s a very good chance that simple proofs aren’t working because the conjecture just isn’t true.

• It should make it easy to formulate proof scripts that will be robust. It is frequently necessary to replay the proof of a theorem after small changes in axioms, the proofs of previous theorems, or the statement of the theorem itself. These should not require development of a completely new proof script.

• During replay, it should monitor the correspondence between the script and the progress of the proof, and stop as soon as a divergence is detected. This realization led us to the implementation of the $\texttt{\textless}$$, $\texttt{\textgreater}$$, and $\texttt{\textbackslash q e d}$ commands described in Section 3.3.

4.3 Debugging and generalizing the original informal proof

The circuits in Figures 1, 2, and 3 were originally designed by Jim Saxe to illustrate the application of successive transformations in the systematic design of high-speed digital circuits by deriving Figure 3 from Figure 1 by way of Figure 2. Although he was convinced of the “equivalence” of Figures 1 and 2, because he had carefully derived the latter from the former, he wasn’t sure how to prove it formally. So he solicited help from Leslie Lamport,
who, in the course of an afternoon, generated both a formal statement of the theorem to be proved and a sketch of a formal proof.\footnote{Both the original statement of the theorem and the structure of the proof differ significantly from the ones given in this paper, although they are of similar complexity.} He suggested that greater confidence in the proof could be gained by using a term rewriting system we had been building, Reve [4], to perform the symbol manipulation needed to complete his proof sketch.

It took us about three man-weeks to come up with our first machine-checked proof based on the sketch we were given. We had to fix a number of small errors that are practically a litany of what goes wrong in hand proofs: there was a missing parenthesis in one of the formulas; there was an off-by-one error in a loop; the restriction that no instruction may attempt to read from the address null was left unstated; one case (branch taken) was ignored in the analysis; the proof used an invariant that we had to strengthen. We also spent time debugging our axiomatization of the circuit. In some places the prover was very helpful in doing this, e.g., an inconsistent specification of the assign and select operators was detected by the prover. In other places, it was less helpful.

It is interesting that all the problems we found were errors in the hand proof or in our translation of the hand proof to Reve notation, not in the machine design. It really was the proof, and not the design, that we debugged. It is important to note, however, that in constructing the proof we were forced to be explicit about a variety of assumptions upon which the correctness of the design depends. For example, the specification used in our proof included the possibility of a start-up transient and the possibility of occasional stalls. If the circuit described by Figure 1 were to be used in a context where such behaviors could not be accommodated, then an implementation based on Figure 3 would not be acceptable. Making such assumptions explicit is an important benefit of machine-checked verification.

When we first did this proof, our tools were not as good as they are now. In fact, much of the early evolution of LP from Reve was motivated by the example we have presented here. Also, we had very little experience with mechanical proofs of this nature. However, despite improvements in our tools and our increased experience, it still seems harder to construct machine-checked proofs than hand proofs, not least because the machine has an annoying habit of rejecting plausible but erroneous arguments.

Figure 2 was produced by adding four stages of pipelining to Figure 1, one of which is partially optimized away. One would expect similar correctness proofs to work for circuits derived by adding more or fewer stages of pipelining. Our experiments in this direction gave precisely the results we expected: It was an entirely straightforward, albeit tedious, task to modify all the circuit descriptions, conjectures, and proofs given above so that they would work with different numbers of stages; but the time and space requirements of such proofs rose exponentially with the number of stages. Under a reformulation of the circuit descriptions using single LP symbols to represent arrays of circuit components, we were able to prove, by induction on the depth, the correctness of versions of Figure 2 with arbitrary-depth pipelines.
Acknowledgments

We thank Urban Engberg for helpful comments on an earlier draft of this paper.

References

