
The IOA Language and Toolset: Support for Designing, Analyzing,and Building Distributed SystemsStephen J. Garland and Nancy A. LynchMIT Laboratory for Computer Science, Cambridge, MAAugust 7, 1998(original version: September 25, 1997)Technical Report MIT/LCS/TR-762MIT Laboratory for Computer ScienceAbstractThis report describes a new language for distributed programming, the IOA language, to-gether with a high-level design and preliminary implementation for a suite of tools, the IOAtoolset, to support the production of high-quality distributed software. The language and toolsare based on the I/O automaton model, which has been used to describe and verify distributedalgorithms. The toolset supports a development process that begins with a high-level speci�ca-tion, re�nes that speci�cation via successively more detailed designs, and ends by automaticallygenerating distributed programs. The toolset encourages system decomposition, which helpsmake distributed programs understandable and easy to modify. It also provides a variety of val-idationmethods (theorem proving, model checking, and simulation), which can be used to ensurethat the generated programs are correct, subject to assumptions about externally-provided sys-tem services (e.g., communication services), and about the correctness of hand-coded data typeimplementations.Keywords: Distributed systems, distributed algorithms, I/O automata, software tools, veri�ca-tion, theorem proving, simulation, code generation, model checking.1 IntroductionI/O automata [58, 59] have been used to model and verify many distributed algorithms anddistributed system designs, and also to express many impossibility results. See, for example,[50, 52, 40, 10, 13, 25, 26, 16, 71, 72]. The model has many features that make it suitable forsuch tasks: its fundamental concepts are mathematical (rather than linguistic); it is simple; it in-cludes a notion of external behavior based on simple linear traces; it includes a notion of compositionbased on synchronized external actions; and it supports description of levels of abstraction, withsuccessive levels related by inclusion of trace sets. The model supports a rich set of proof methods,including invariant assertion techniques, forward and backward simulation methods, and composi-tional methods. It provides excellent support for system decomposition. A concise exposition ofthe model and most of its proof methods appears in Chapter 8 of [50].The model and methods were originally developed for reasoning about theoretical distributedalgorithms, but, in the past few years, they have been applied increasingly to practical systemservices such as distributed shared memory services [25, 24, 23], group communication services[26, 27, 16, 19, 41], and standard communication services like TCP [72, 71, 73]. For these services,0

the theory has contributed system descriptions and proofs, and also important structural informa-tion such as interface speci�cations, invariants, and simulation relations. Ambiguities have beenresolved, and several problems have been found, including logical errors in key algorithms in theOrca [8] and Ensemble [38, 39] systems and some unexpected behavior in the T/TCP communica-tion protocol [11].Most of this work has been done by hand; however, much of it (primarily, invariant and forwardsimulation proofs) is su�ciently stylized to admit computer assistance using interactive theoremprovers such as the Larch Prover [28] or PVS [70]. For example, we have proved the correctnessof a version of the Dolev-Shavit Bounded Concurrent Timestamp protocol [20, 30] using the LarchProver [68]. Also, Archer has proved most of the invariants in our paper [27] on view-synchronousgroup communication, using the PVS theorem prover [5]. Of course, many other researchers havealso used theorem provers to prove invariants and simulation relations for distributed systems, usingother state-machine models and theorem provers as well as I/O automata and LP.The success of this formal modelling/veri�cation work for both distributed algorithms anddistributed system services suggests that such techniques can play an important role in the devel-opment process for real distributed systems. However, there have so far been some serious barriersto their use. The main problem is that there is generally no formal connection between veri�eddesigns and corresponding �nal code. Although it is feasible to verify the correctness of an abstractdistributed system design using a theorem prover, there is no convenient way to extend this proofto the �nal code. Rather, the veri�ed design is generally re-coded in a real programming languagelike C++ or Java. This coding step involves costly duplication of e�ort and can introduce errors.A related problem is the lack of a programming language for distributed systems that is suitablefor both veri�cation and code generation. It is not obvious what such a language should look like,because the features that make a language suitable for veri�cation (axiomatic style, simplicity,nondeterminism) di�er from those that make it suitable for code generation (operational style,expressive power, determinism). In previous work on I/O automata, descriptions were written inan informal pseudocode rather than in a real programming language. The pseudocode was hand-translated into the input language of a theorem prover, which was time-consuming and introducederror possibilities. Also, it was not clear how to convert this pseudocode to running code.Another problem, for I/O automata in particular, is the unavailability of light-weight valida-tion tools such as simulators and model checkers. Such tools can yield quick feedback to help indebugging, prior to attempting a time-consuming formal proof.In this report, we propose a way of addressing these problems, in the form of a new languagefor distributed programming, the IOA language [29], together with a design for a coordinated suiteof tools, the IOA toolset. The language and tools are based on the I/O automaton model andsupport proofs, light-weight validation, and code generation. The toolset is designed to producee�cient, running distributed programs whose correctness has been proved, subject to stated as-sumptions about the behavior of externally-provided system services (e.g., communication services),and subject to assumptions about the correctness of hand-coded data type implementations. Thetoolset also supports system decomposition, using shared-action parallel composition and levels ofabstraction.In the mode of operation we propose, the designer of a distributed system or algorithm woulddevelop and validate his/her design entirely within the IOA framework. The �nal result|still anIOA program|would be translated automatically into source code in an existing programminglanguage like C++, Java, or ML, thereby eliminating the need for a �nal coding step. Before thetranslation, the design would be subject to a range of validation methods, including complete proofusing an interactive theorem prover, study of selected executions using a simulator, and exhaustivestudy of small instances of the design (and other debugging help) using a model checker. The1

IOA toolset would assist the programmer in decomposing the design into separable interactingcomponents, based on the formal I/O automaton composition operator, and in re�ning it usinglevels of abstraction, based on trace inclusion and forward and backward simulation relations.This paper introduces the IOA language and toolset and discusses how they meet the designrequirements for this combination of capabilities. The key components of our design are: the IOAlanguage, the basic support for composition and levels of abstraction, the method of interfacing toexisting theorem provers, the simulation method, the code generation method, and the method ofinterfacing to existing model checkers. We present requirements that we believe these various piecesmust satisfy, our designs for these pieces, and some discussion of the advantages and disadvantagesof our choices.Interesting features of the language include its guarded command style, its use of nondeter-minism, its handling of data types, its use of both axiomatic and operational descriptions, and itssupport for shared-action composition and levels of abstraction. Interesting features of the toolsetinclude its support for levels of abstraction (e.g., user-speci�ed step correspondences), certain as-pects of the simulation method (e.g., restricted form for programs, paired simulations) and certainaspects of the code-generation method (e.g., restricted form for programs, abstract channels).The IOA reference manual is available atURL http://larch-www.lcs.mit.edu:8001/~garland/ioaLanguage.ps.A parser and static semantic checker, which produce an internal representation suitable for useby validation and code generation tools, are available upon request to the authors. The rest ofthe tools have high-level designs, as described in this paper, and are currently in various stages ofdetailed design and implementation. In particular, Anna Chefter has produced a detailed designfor the simulator [14], and a preliminary implementation, also available upon request.There are many more possibilities for interesting work on this project than we can carry outourselves, and we hope that others will become interested in pursuing some of them.

2

2 Related WorkIt is hard for us to give adequate citations to related work, because there is so much of it. Manyresearchers and developers have worked on aspects of the general problem of modelling and val-idating distributed system designs, and the problem of generating code from higher-level formaldescriptions. Many other toolsets for manipulating distributed programs exist. In this section, wewill only mention what we think is the closest work.The IOA language evolved from pseudo-languages used in research papers and books on dis-tributed algorithms (see, e.g., [50, 52]). These pseudo-languages are based on named, parameter-ized transition de�nitions with preconditions and e�ects (that is, guarded commands). The e�ectscode is either operational (an imperative program), or assertional (a predicate relating pre- andpost-states). A similar precondition/e�ect style is used in other languages such as TLA [45] andUNITY [12], although these are based on somewhat di�erent automaton models, as discussed be-low. Several proofs for distributed algorithms, modelled using I/O automata and an IOA pseudo-language, and using invariants and simulation relations, have been carried out using interactivetheorem-provers. The �rst was Nipkow's proof for a reliable communication protocol [64] usingIsabelle; other examples include connection management protocols, mutual exclusion algorithms,and bounded concurrent timestamp algorithms, using the Larch Prover [75, 48, 68], and groupcommunication algorithms and simple hybrid systems using PVS [5, 6]. Some of these use \timed"extensions of the I/O automaton model [56] and pseudo-language.Goldman's Spectrum system [31] includes a formally-de�ned programming language for describ-ing I/O automata; it is based on transition de�nitions with preconditions and e�ects, but makessome di�erent design choices from IOA. His language uses operational descriptions for transactione�ects. He developed a (single machine) simulator for his language. The language was not con-nected to a theorem prover or a code generator, although a strategy for distributed simulation wassuggested. This strategy involved expensive non-local synchronization for implementing some tran-sitions. Goldman's more recent work on the Programmer's Playground [33] also includes a languagewith formal semantics in terms of I/O automata. Cheiner and Shvartsman [15] generated code fora speci�c I/O-automaton-based distributed algorithm|the Eventually Serializable Data Service ofLuchangco et al. [24], and also gave some suggestions for more general distributed code-generationstrategies. Their approach was not based on a formal programming language, and did not involvetheorem proving. Their principal code-generation strategy requires non-local synchronization forsome transitions, although they give some discussion of a local strategy.Process algebraic languages such as CSP [42] and CCS [63] also have automaton models thatare similar to our I/O automaton models, in particular, they use a notion of composition based onsynchronizing external actions. (However, external behavior is not typically described just by traces,but includes extra information such as \refusal sets" to capture certain liveness issues.)Althoughthe automaton models are similar, process algebraic languages have a very di�erent style andsyntax from our IOA language: they denote processes in concurrent systems by using algebraicexpressions with rich sets of algebraic operators, starting from some basic single-step processes.Notation for describing states can be complicated. Some process algebraic languages admit richsets of validation tools; for example, CCS is supported by the Concurrency Factory [17], whichincludes theorem provers, model checkers and simulators (but no distributed code generators).Proof methods tend to emphasize algebraic calculations, following the structure of the algebraicexpressions denoting processes. The programming language Occam [1, 2] is based on the process-algebraic language CSP [42]. Occam code was compiled to run on Transputers, but it appears tous that no veri�cation tools were provided for Occam programs.Some other languages and tools for concurrent systems are based on di�erent types of automata,3

which do not compose by synchronizing external actions, and do not use sets of traces as their notionof external behavior. For instance, Lamport's TLA language [45], Chandy and Misra's UNITYlanguage [12], and Manna and Pnueli's language SPL [61] are based on automata that combine viashared variables instead of shared actions. (Actually, SPL automata also allow a special kind ofCSP-style action synchronization.) We do not know of clear notions of external behavior for thesemodels, analogous to sets of traces. In fact, work on these languages does not seem to emphasizeformal parallel composition, which is basic to our work.TLA, UNITY, and SPL are similar to IOA in that their basic program units are transitionde�nitions having preconditions and e�ects. E�ects in TLA are described axiomatically, whilee�ects in UNITY and SPL are described operationally. These three languages support statementand proof of both safety and liveness properties, using temporal logic reasoning. The only tool weknow of for TLA is the TLP theorem prover [21], based on Larch. A variety of UNITY validationtools have been developed, e.g., [4], and some UNITY code generation experiments have beencarried out [77]. The Stanford STeP project [22] uses SPL. STeP has a powerful set of validationtools, including model checkers and theorem provers; we do not know of any STeP work on codegeneration.Other related work includes that on Estelle [44] and other \Formal De�nition Techniques"(FDTs). These are basically high-level, expressive programming languages with formal semantics,which can be used to describe or generate lower-level system code, and used as the basis forsimulation. Proofs are not generally done for such programs, possibly because the expressivenessof the languages complicates the formal semantics. Also, we do not know of clear mathematicalnotions of external behavior for these models. Other related work includes that by Harel [37],Meseguer [62], and Ostro� [66].

4

3 The IOA Language3.1 The I/O Automaton ModelThe IOA language [29] is based on the I/O automaton model [58, 59]. I/O automata serve asmodels for reactive programs, which interact with their environments in an on-going manner. AnI/O automaton consists of a set of actions, classi�ed as input , output , or internal , a set of states(including a nonempty subset of start states), a set of transitions , which are (state, action, state)triples, and a set of tasks, which are sets of non-input actions. Input actions are enabled in allstates. (Unlike in synchronous models such as SIGNAL [9], inputs do not trigger outputs.) Theoperation of an I/O automaton is described by its executions , which are alternating sequences ofstates and actions, and its externally-visible behavior is described by the traces of its executions,which are sequences of input and output actions. I/O automata admit a formal parallel compositionoperator, which allows an output action of one automaton to be performed atomically with inputactions in any number of other automata; this operator respects the trace semantics. They alsoadmit a hiding operator, which reclassi�es output actions as internal so they cannot be used infurther compositions. I/O automata admit a notion of implementation based on inclusion of sets oftraces. Proofs for I/O automata typically involve compositional reasoning, invariant assertions (i.e.,predicates that are true in all reachable states), and (forward and backward) simulation relations.An exposition of the model appears in Chapter 8 of [50]; simulation relations are presented in [55].3.2 RequirementsFirst of all, we require that our language support precise and direct description of the mathematicalmodel on which it is based. Since the I/O automaton model is a reactive system model rather than asequential programming model, we expect the language to emphasize concurrency and interaction.In particular, we do not expect to start with a standard sequential programming language andsimply add a few new constructs for expressing concurrency and interaction|these features shouldbe at the core of the language. The language must also describe the notions of shared-action parallelcomposition and levels of abstraction precisely and directly.Second, we require that the language be suitable for both veri�cation (formal proof) and codegeneration. These two goals generate conicting requirements: For veri�cation, users1 generallyprefer a language that includes nondeterminism, so they can validate designs in as general a formas possible. Moreover, a simple language with an axiomatic style is easiest to translate into theinput languages of standard theorem provers and easiest to manipulate in interactive proofs. Incontrast, for code generation, programmers generally prefer a language with maximum expressivepower. Moreover, a deterministic language with an operational style is easiest to translate into realcode. We need a language that (somehow) satis�es both sets of requirements.3.3 Design DecisionsThe starting point for our design is the pseudocode used in the literature to describe I/O au-tomata. This pseudocode contains explicit representations of automaton components (actions,states, transitions, etc.), where transitions are described using transition de�nitions (TDs) contain-ing preconditions and e�ects. This pseudocode has evolved in two distinct forms: an axiomaticstyle [52], in which e�ects are described by means of predicates relating pre- and post-states, andan operational style [50], in which e�ects are described by means of programs using assignments,conditionals, and so on.1In this paper, \user" denotes the user of the language and toolset, i.e., the programmer or program veri�er.5

To convert this pseudocode into a real programming language, we made several key designdecisions:1. We chose to de�ne data types axiomatically, in the style used by the Larch Prover [28] andother theorem provers. This provides a sound semantics and facilitates translation into theinput languages of theorem provers. We provide axiomatic de�nitions for built-in data types;the user may also de�ne new data types, using Larch.2. Since neither style alone is su�cient for all our purposes, we resolved the choice betweenaxiomatic and operational styles for specifying e�ects of transitions by allowing both, eitherseparately or in combination. That is, the e�ect for a TD may be described entirely by aprogram, entirely by a predicate, or by a combination, that is, by a program that includesexplicit nondeterministic choices, followed by a predicate involving the post-state (and pos-sibly also the pre-state) that constrains these choices. For example, we can write somethinglike:x := choose a where 1 � a � 6y := choose a where 1 � a � 6so that x + y = 73. In the same spirit, variables are initialized using ordinary assignments and nondeterministicchoice statements; in addition, the entire initial state may be constrained by a predicate.4. Operational code in the e�ects of TDs has a very simple form, consisting of (possibly nonde-terministic) assignments, conditionals, and simple bounded loops. This is reasonable becauseeach transition is supposed to be executed atomically, making unbounded loops undesirable.5. Automaton de�nitions and TDs can be parameterized, and the values of parameters can beconstrained by predicates. TDs can have additional parameters, which do not appear intraces, but which allow values to be chosen to satisfy a precondition, and then used explicitlyto describe its e�ects. (Spectrum [31] has some similar constructs.)6. There is an explicit notation for composition, based on identifying external actions of di�erentautomata, and also an explicit notation for hiding output actions.7. We introduced explicit notation to say that a predicate is an invariant of an automaton, andother notation to say that a binary relation is a forward (or backward) simulation from oneautomaton to another.3.4 DiscussionThe IOA language is very simple, allows precise and direct descriptions of I/O automata, and isdesigned to be used for both veri�cation and code generation. It also allows formal description ofsystem structure, using shared-action parallel composition and levels of abstraction. Using sharedactions for composition allows us to de�ne external behavior in terms of linear traces, which providesimple theoretical support for system decomposition. Evidence for IOA's expressiveness is that itspseudocode ancestors have proved adequate for modelling and verifying a wide range of algorithmsand system designs (e.g., [50, 52, 40, 10, 13, 25, 26, 16, 71, 72]).Nondeterminism is an important feature of the language, because it allows the programmer toavoid restricting his/her designs unnecessarily. Proving correctness of a design in its most general6

form is useful because the validity results can potentially be applied to many di�erent implementa-tions. Also, removing the \clutter" of unnecessary restrictions makes it easier to argue correctness,because it is easier to see what the correctness properties really depend on. (As in normal mathe-matical practice, we prefer to avoid cluttering up theorem statements with unnecessary hypotheses.)IOA's guarded command style encourages programmers not to constrain the order of executionof actions unnecessarily, unlike standard sequentially-oriented languages, which we believe encour-age overspeci�cation of sequencing constraints. In highly interactive programs, especially at higherlevels of abstraction, there are many situations in which the order of actions is not important forthe properties of interest. (E.g., the order of processing elements from a set often does not mat-ter.) Our philosophy of allowing maximum nondeterminism implies that such ordering constraintsshould be avoided. The nondeterministic guarded command versions of programs are more general,and are usually simpler and less cluttered, than their more sequential counterparts.However, there are some situations in which some control over the order of actions is needed,particularly at lower levels of design, where performance considerations may force particular actionscheduling decisions.2 So far, IOA lacks explicit support (control structures) for describing theorder of execution of transitions. In examples done so far, necessary ordering constraints have beenexpressed by introducing pc or status variables to keep track of progress in the sequential part ofthe computation. Although this method is adequate, it does not provide the same visual impactas more usual methods for describing sequencing, such as displaying lines of code to be executedin sequence vertically on a page, or displaying boxes with arrows in a owchart.So, at some point, it might be useful to add to IOA explicit support for specifying transitionorder. However, it is not yet clear how this should be done: standard control constructs usedin sequential programming languages will not be su�cient, and some may not even be necessary.For example, reactive systems may contain threads that are intended to execute sequentially, butmay be interrupted at any time; the interactions between the sequential threads and the interrupt-handling routines may be complicated to describe, and may require special control structures. Onthe other hand, the guarded command style allows alternative ways of describing iteration, whichmight mean that some standard looping constructs can be avoided. Flexibility may be important,to allow expression of many di�erent kinds of control patterns.If we do add such constructs to IOA, then to maintain simplicity and provability, and to ensurethat we remain faithful to the underlying mathematical model, we will make sure that this additionis done as pure syntactic sugar, that is, so that there is an unambiguous translation of the codewith the addition into code without it.3The IOA language also has some minor limitations related to global vs. local naming. Forinstance, all of an automaton's state variables are global to all of its TDs; we may want to addvariables whose scope is limited to a single TD. Also, all action names in a composition are global;we may also want to allow local action names, with a more exible method of matching up namesin a composition. At least, we will add a renaming operator for actions, which will yield most ofthe bene�ts of local action naming.We plan to evaluate the desirability of modifying the syntax and semantics of the IOA language2Sequencing of program steps within sequential programs implementing particular data type operations is a dif-ferent issue, and is handled using standard sequential programming languages. This issue is discussed in Sections 5.3and 5.4.3For example, we can provide a way to represent a ow-chart with boxes corresponding to some of the TDs, withextra \places" representing pc values interspersed among the boxes; each box has exactly one input place, but thesame place can be input to several boxes. Outgoing arrows from the boxes are labelled (exhaustively and exclusively)with state predicates. The translation to our basic language introduces an explicit pc value, an explicit statement atthe end of the e�ect of each TD setting the pc as indicated by the predicate labels, and an explicit precondition foreach TD saying that the pc indicates that place. 7

to reect recent work on the Common Algebraic Speci�cation Language (CASL) [65]. The currentsyntax and semantics of IOA is based on the Larch family of speci�cation languages [36], which is oneof the forerunners of CASL. CASL appears to provide better support than Larch for parameterizedspeci�cations. For example, CASL allows restrictions on data structures (e.g., that constrain thetopology of a network) to be expressed in separate speci�cations, and those speci�cation to be usedas parameters to speci�cations for services that are guaranteed to work only when the restrictionsare satis�ed. CASL also has a richer type system than Larch, which makes it easier for designersto express abstractions.Finally, an alternative approach to constructing veri�ed code is to begin with a rich, expressiveprogramming language, de�ne a formal semantics and proof rules for that language, and attempt touse them for veri�cation. The main problem with this approach is that complicated languages havecomplicated semantics and proof rules, which can be di�cult for proof tools to manipulate, and(especially) di�cult for users to think about. Arti�cial complexities introduced by such languagescan become intertwined with the real complexities of the design being veri�ed, making the job ofverifying a complex design much more di�cult than it needs to be. Instead, we have chosen tobegin with a simple language that can express the concepts we need and that is amenable to formalproofs, and later add constructs (carefully) to the language to make life easier for programmers.

8

4 Example IOA ProgramsIn this section, we illustrate the design and use of IOA by developing a trivial banking system,in which a single bank account may be accessed from multiple locations. The account may beaccessed using deposit and withdrawal operations (we assume that the balance can go negative),plus balance queries.We give speci�cations for the system and its environment, in the form of two I/O automata Aand Env. Env describes what operations can be invoked, where, and when; it may represent, forexample, a collection of ATMs and customers interacting with those ATMs. Automaton A describeswhat the bank is alowed to do, without any details of the distributed implementation.We also give a formal description C of a distributed implementation. We give a speci�cation Bfor an intermediate service describing stronger guarantees on what the bank does, and we use it tohelp prove that C implements A (in the context of Env).We also give IOA statements expressing some simple invariants and some forward simulationrelations between the levels. These programs illustrate most of the constructs of the language.4.1 Speci�cation for a Banking EnvironmentThe automaton Env speci�es the environment for the banking system. It describes the interfaceby which the environment interacts with the bank (requests and responses at locations indexed byelements of type I), and it expresses \well-formedness conditions" saying that each operation atany location i must complete before another operation can be submitted at i. Env simply keepstrack, for each i, of whether or not there is an outstanding operation at i, and allows submissionof a new operation if not.The de�nition of Env is parameterized by the location type I. The output actions of Env arerequests to perform deposit and withdrawal operations and balance queries. Each request indicatesa location i, and in the case of a deposit or withdrawal, also indicates a (positive) amount n beingdeposited or withdrawn. The where predicates are constraints on the action parameters. The inputactions of Env, which will be synchronized with outputs actions of the bank, are responses OK(i)(to deposit and withdrawal requests at location i), and reportBalance(n,i) (to balance queriesat location i).The only state information is a ag active[i] for each location i, indicating whether or notthere is an active request at location i. The rest of the automaton description consists of a collectionof TDs that constrain when new requests can be issued. An input at location i sets active[i]to false. An output is allowed to occur at location i provided that active[i] = false, and itse�ect is to set active[i] to true. In this description, Int and Bool are built-in types of IOA,Array is a built-in type constructor, and the operator constant appearing in the initialization is abuilt-in operator associated with the Array constructor.automaton Env(I: type)signatureinputOK(i: I),reportBalance(n: Int, i: I)outputrequestDeposit(n: Int, i: I) where n > 0,requestWithdrawal(n: Int, i: I) where n > 0,requestBalance(i: I)statesactive: Array[I, Bool] := constant(false)9

transitionsinput OK(i)e� active[i] := falseinput reportBalance(n, i)e� active[i] := falseoutput requestDeposit(n, i)pre : active[i]e� active[i] := trueoutput requestWithdrawal(n, i)pre : active[i]e� active[i] := trueoutput requestBalance(i)pre : active[i]e� active[i] := true4.2 A Weak Speci�cation of the Bank's BehaviorOur �rst speci�cation, A, for the banking system describes what it can do, but not its implemen-tation. Automaton A simply records all deposits and withdrawals in a set of elements of data typeOpRec. It allows a balance query to return the result of any set of prior deposits and withdrawalsthat contains all the operations submitted at the same location as the query. The response neednot reect deposit and withdrawal operations submitted at other locations.A is also parameterized by location type I. The de�nition of A introduces several data types:Each OpRec is an \operation record" indicating the amount of a deposit or withdrawal|positivenumbers for deposits and negative numbers for withdrawals|plus the location at which it wassubmitted, the sequence number, and a true or false value indicating whether the system hasreported the completion of the operation to the environment. Each BalRec is a \balance record"indicating the location at which a balance request was submitted and a value to be reported inresponse. An auxiliary speci�cation Total, written in Larch, de�nes the function totalAmount,which sums the amount �elds in a set of operation records. The type Null[Int] contains a specialvalue null, which indicates the absence of a numerical value. (Here, it is used to indicate that thereturn value has not yet been determined.)The external signature of A is a \mirror image" of that of Env|its inputs match Env's outputsand vice versa. A also has a single internal action doBalance, which calculates the balance for abalance query.The state of A is described by four variables: ops holds records of all submitted deposit and with-drawal operations, as OpRecs; bals keeps track of current balance requests, as BalRecs; lastSeqnocontains an array of the last sequence numbers assigned to deposits or withdrawals at all locations;and chosenOps is a temporary variable used in one of the TDs.The TDs are, for the most part, self-explanatory. The functions insert and delete are abstractfunctions de�ned (axiomatically) by the built-in data type Set. They are used to describe pro-grams in which statements do not have side e�ects (thereby simplifying reasoning and complicatingprogramming). The function nat2pos (de�ned in the auxiliary speci�cation NumericConversions)converts natural numbers (elements of the built-in type Nat) to positive natural numbers (elementsof type Pos). The function define converts an element of any type T to an element of type Null[T].The action requestDeposit causes a new sequence number to be generated and associated withthe newly requested deposit operation. The combination of the location at which the operation issubmitted and the sequence number serves as an identi�er for the operation. The requested depositamount, the location and sequence number, and the value false indicating that no response for this10

operation has yet been made to the environment, are all recorded in ops. A requestWithdrawalcauses similar e�ects, only this time, the amount recorded is negative. A requestBalance causesa record to be made of the balance query, in bals.The action OK(i) is allowed to occur any time there is an active deposit or withdrawal operationat location i; its e�ect is to set the reported ag for the operation to true. The nondeterministic\choose parameter" x in its TD picks a particular operation record x from the set ops.The action doBalance(i) is allowed to occur any time there is an active balance query at lo-cation i; its e�ect is to choose any set of operations that includes (at least) all those previouslyperformed at location i, to calculate the balance by summing the amounts in all the chosen oper-ations, and to store the result in the balance record in bals. Because the input language of thetheorem prover we are using, the Larch Prover, is a �rst-order language without any special nota-tions for set construction, the e�ect expresses a set inclusion using an explicit quanti�er. Eventually,the IOA language may be enriched by more natural set notations, and the IOA toolset enriched totranslate these notations into ones acceptable to particular theorem provers.Finally, reportBalance reports any calculated, unreported balance to the environment.automaton A(I: type)type OpRec = tuple of amount: Int, location: I, seqno: Pos, reported: Booltype BalRec = tuple of location: I, value: Null[Int]uses NumericConversions, Total(OpRec, .amount, totalAmount), Null(Int)signatureinputrequestDeposit(n: Int, i: I) where n > 0,requestWithdrawal(n: Int, i: I) where n > 0,requestBalance(i: I)outputOK(i: I),reportBalance(n: Int, i: I)internaldoBalance(i: I)statesops: Set[OpRec] := { },bals: Set[BalRec] := { },lastSeqno: Array[I, Nat] := constant(0),chosenOps: Set[OpRec]transitionsinput requestDeposit(n, i)e� lastSeqno[i] := lastSeqno[i] + 1;ops := insert([n, i, nat2pos(lastSeqno[i]), false], ops)input requestWithdrawal(n, i)e� lastSeqno[i] := lastSeqno[i] + 1;ops := insert([-n, i, nat2pos(lastSeqno[i]), false], ops)input requestBalance(i)e� bals := insert([i, null], bals)output OK(i)choose x: OpRecpre x 2 ops ^ x.location = i ^ : x.reportede� ops := insert(set_reported(x, true), delete(x, ops))output reportBalance(n, i)pre [i, define(n)] 2 balse� bals := delete([i, define(n)], bals)internal doBalance(i) 11

pre [i, null] 2 balse� chosenOps := choose cwhere 8 y: OpRec (y.location = i ^ y 2 ops) y 2 c) ^ c � ops;bals := insert([i, define(totalAmount(chosenOps))],delete([i, null], bals))The automaton AEnv is the parallel composition of the automata A and Env, matching externalactions. This is written using the IOA language as:automaton AEnv(I: type)compose A(type I); Env(type I)The user can state invariants of the composition AEnv within IOA. In the following invariant,Clause 1 implies that the variable lastSeqno[i] is greater than or equal to all sequence numbersthat have ever been assigned to operations originating at location i. Clause 2 implies that thesequence numbers assigned to operations submitted at location i form a pre�x of the positiveintegers. Clauses 3 and 4 say that the environment's active[i] ag correctly indicates when anoperation or balance query is active, and also say that only one operation is active at any locationat any time. Clause 5 says that the location and sequence number together identify an operationin ops uniquely.invariant of AEnv:8 x:OpRec (x 2 ops) pos2nat(x.seqno) � lastSeqno[x.location])^ 8 i:I 8 k:Pos(pos2nat(k) � lastSeqno[i]) 9 z:OpRec (z 2 ops ^ z.location = i ^ z.seqno = k))^ 8 x:OpRec(x 2 ops ^ : x.reported) active[x.location]^ 8 y:OpRec (y 2 ops ^ x.location = y.location / : y.reported) x = y)^ 8 b:BalRec (b 2 bals) x.location 6= b.location))^ 8 b:BalRec(b 2 bals) active[b.location]^ 8 b1:BalRec (b1 2 bals ^ b.location = b1.location) b = b1))^ 8 x:OpRec 8 y:OpRec(x 2 ops ^ y 2 ops ^ x.location = y.location ^ x.seqno = y.seqno) x = y)4.3 A Stronger Speci�cationAutomaton B is very much like A, but imposes a stronger requirement that the response to abalance query include the results of all deposits and withdrawals anywhere in the system thatcomplete before the query is issued. It does this by adding a state variable mustInclude[i] oftype Array[I, Set[OpRec]], by appending the statement:mustInclude[i] := choose s where 8 x:OpRec (x 2 s , x 2 ops ^ x.reported)12

to the transition de�nition for requestBalance(i), and by modifying the choose statement inthe transition de�nition for doBalance(i) to require the chosen set c of operations to includemustInclude[i]. In complete detail:automaton B(I: type)type OpRec = tuple of amount: Int, location: I, seqno: Pos, reported: Booltype BalRec = tuple of location: I, value: Null[Int]uses NumericConversions, Total(OpRec, .amount, totalAmount), Null(Int)signatureinputrequestDeposit(n: Int, i: I) where n > 0,requestWithdrawal(n: Int, i: I) where n > 0,requestBalance(i: I)outputOK(i: I),reportBalance(n: Int, i: I)internaldoBalance(i: I)statesops: Set[OpRec] := { },bals: Set[BalRec] := { },lastSeqno: Array[I, Nat] := constant(0),chosenOps: Set[OpRec],mustInclude: Array[I, Set[OpRec]] := constant({})transitionsinput requestDeposit(n, i)e� lastSeqno[i] := lastSeqno[i] + 1;ops := insert([n, i, nat2pos(lastSeqno[i]), false], ops)input requestWithdrawal(n, i)e� lastSeqno[i] := lastSeqno[i] + 1;ops := insert([-n, i, nat2pos(lastSeqno[i]), false], ops)input requestBalance(i)e� bals := insert([i, null], bals);mustInclude[i] := choose s where8 x: OpRec (x 2 s , x 2 ops ^ x.reported)output OK(i)choose x: OpRecpre x 2 ops ^ x.location = i ^ : x.reportede� ops := insert(set_reported(x, true), delete(x, ops))output reportBalance(n, i)pre [i, define(n)] 2 balse� bals := delete([i, define(n)], bals)internal doBalance(i)pre [i, null] 2 balse� chosenOps := choose cwhere 8 y: OpRec(y.location = i ^ y 2 ops) y 2 c)^ mustInclude[i] � c^ c � ops;bals := insert([i, define(totalAmount(chosenOps))],delete([i, null], bals))automaton BEnv(I: type)compose B(type I); Env(type I) 13

It should be easy to see that the composition BEnv implements AEnv in the sense that everytrace of BEnv is also a trace of AEnv. This can be shown formally using a trivial forward simulationrelation from BEnv to AEnv|the identity relation for the state variables of AEnv. This relationcan be expressed in IOA, as follows. This description uses a naming convention for variables in acomposition that prefaces the name of each state variable in the composition with a sequence ofnames designating the automata of which it is a part. When there is no ambiguity, some of the au-tomaton names in the sequence may be suppressed. For example, we can write AEnv(type I).opsor A(type I).ops in place of the complete name AEnv(type I).A(type I).ops.forward simulation from BEnv to AEnv:AEnv(type I).active = BEnv(type I).active^ A(type I).ops = B(type I).ops^ A(type I).bals = B(type I).bals^ A(type I).lastSeqno = B(type I).lastSeqno^ A(type I).chosenOps = B(type I).chosenOps4.4 Distributed ImplementationNow we describe a distributed implementation as an automaton C that is the composition of anode automaton C(i) for each i in I, plus reliable FIFO send/receive communication channelschannel(i,j) for each pair of distinct indices, i and j, in I.The channel automata are particularly simple: their state consists of a single variable, whichwhich holds a sequence of messages. The keyword const in the signature indicates that the valuesof i and j in the actions of a channel automaton are �xed by the values of the automaton'sparameters.automaton channel(i, j: I, I, M: type)signatureinput send(m: M, const i, const j)output receive(m: M, const i, const j)statesqueue: Seq[M] := { }transitionsinput send(m, i, j)e� queue := queue ` moutput receive(m, i, j)pre queue 6= { } ^ m = head(queue)e� queue := tail(queue)Each node automaton C(i) keeps track of a set of operations that it knows about, includingall local ones. It works locally to process deposits and withdrawals, but a balance query causes itto send explicit messages to all other nodes. It collects responses to these messages and combinesthem with its own known operations to calculate the response to the balance query.Since this automaton is particular to a location i, its action names are parameterized with i.Its send and receive actions are intended to match the corresponding channel actions. In the stateof C(i), ops is maintained as a set of records with no reported �eld; each record is an element ofa new type OpRec1. The informaton about which operations have been completed is kept locally ina separate variable reports; it need not be sent in messages. Balance information is also recorded14

locally, as elements of a new type BalRec1, and never sent. Additional state variables keep trackof request messages that have been sent, response messages that have been received, and responsemessages that must be sent. Speci�cally, the Boolean ag reqSent[j] is used to keep track ofwhether a req message has been sent to j, and the Boolean ag respRcvd[j] is used to keep trackof whether a response has been received from j. The ag reqRcvd[j] is used to record that arequest has just been received from j and is waiting to be answered. (Although these ag arraysare indexed by I, the ags for i itself are not really needed.)Since two kinds of messages are sent in this algorithm, we de�ne a new message type which isthe union of the two individual types.automaton C(i: I, I: type)type OpRec1 = tuple of amount: Int, location: I, seqno: Postype BalRec1 = tuple of value: Null[Int]type Msg = union of set: Set[OpRec1], req: Stringuses NumericConversions, Total(OpRec1, .amount, totalAmount), Null(Int)signatureinputrequestDeposit(n: Int, const i) where n > 0,requestWithdrawal(n: Int, const i) where n > 0,requestBalance(const i),receive(m: Msg, j: I, const i) where j 6= ioutputOK(const i),reportBalance(n: Int, const i),send(m: Msg, const i, j: I) where j 6= iinternaldoBalance(const i)statesops: Set[OpRec1] := { },reports: Set[Pos] := { },bals: Set[BalRec1] := { },lastSeqno: Nat := 0,reqSent: Array[I, Bool] := constant(false),respRcvd: Array[I, Bool] := constant(false),reqRcvd: Array[I, Bool] := constant(false)transitionsinput requestDeposit(n, i)e� lastSeqno := lastSeqno + 1;ops := insert([n, i, nat2pos(lastSeqno)], ops)input requestWithdrawal(n, i)e� lastSeqno := lastSeqno + 1;ops := insert([-n, i, nat2pos(lastSeqno)], ops)input requestBalance(i)e� bals := insert([null], bals);reqSent := constant(false);respRcvd := constant(false)output OK(i)choose x: OpRec1pre x 2 ops ^ x.location = i ^ : ((x.seqno) 2 reports)e� reports := insert(x.seqno, reports)output reportBalance(n, i)pre [define(n)] 2 balse� bals := delete([define(n)], bals) 15

internal doBalance(i)pre [null] 2 bals ^ 8 j: I (j 6= i) respRcvd[j])e� bals := insert([define(totalAmount(ops))], delete([null], bals))output send(req(x), i, j)pre : reqSent[j] ^ [null] 2 balse� reqSent[j] := trueoutput send(set(m), i, j)pre m = ops ^ reqRcvd[j]e� reqRcvd[j] := falseinput receive(set(m), j, i)e� ops := ops [m;respRcvd[j] := trueinput receive(req(x), j, i)e� reqRcvd[j] := trueWe de�ne C1 to be the composition of all the C(i) and all the channels, and C to be the sameas C1 but with the communication actions hidden (this is to match the external signature of B).automaton C1(I: type)compose C(i, type I) for i: I;channel(i, j, type I, type Msg) for i: I, j: I where i 6= jautomaton C(I: type)hide send(m, i, j), receive(m, i, j) for m: Msg, i: I, j: Iin C1We de�ne CEnv by composing C with the environment:automaton CEnv(I: type)compose C(type I); Env(type I)Now we have some invariants of CEnv: The �rst invariant says that any (deposit or withdrawal)operation that appears anywhere in the state (at a node or in a message) also appears in the opsset at its originating location.invariant of CEnv:8 x:OpRec1 8 i:I (x 2 C(i, type I).ops) x 2 C(x.location, type I).ops)^ 8 x:OpRec1 8 i:I 8 j:I 8 m:Set[OpRec1](x 2 m ^ set(m) 2 channel(i, j, type I, type Msg).queue) x 2 C(x.location, type I).ops)The next few invariants are analogous to invariants of AEnv.invariant of CEnv:8 x:OpRec1(x 2 C(x.location, type I).ops ^ : ((x.seqno) 2 C(x.location, type I).reports)) active[x.location]^ 8 y:OpRec1(y 2 C(y.location, type I).ops16

^ x.location = y.location^ : ((y.seqno) 2 C(y.location, type I).reports)) x = y)^ C(x.location, type I).bals = { })^ 8 b:BalRec1 8 i:I(b 2 C(i, type I).bals) active[i] ^ 8 b1:BalRec1 (b1 2 C(i, type I).bals) b = b1))invariant of CEnv:8 x:OpRec1(x 2 C(x.location, type I).ops) pos2nat(x.seqno) � C(x.location, type I).lastSeqno)invariant of CEnv:8 x:OpRec1 8 y:OpRec1(x 2 C(x.location, type I).ops ^ y 2 C(y.location, type I).ops^ x.location = y.location ^ x.seqno = y.seqno) x = y)invariant of CEnv: 8 i:I 8 k:Pos(k 2 C(i, type I).reports) pos2nat(k) � C(i, type I).lastSeqno)The next invariant is a trivial one, saying that channels from nodes to themselves are neverused.invariant of CEnv:8 i:I (channel(i, i, type I, type Msg).queue = { }^ : C(i, type I).reqSent[i]^ : C(i, type I).reqRcvd[i]^ : C(i, type I).respRcvd[i])Finally, we have an auxiliary invariant that is needed to prove some of the invariants of CEnv1.Claim 1 says that if there is a request in a channel, then there is an active query, the ags forsending and receiving are set correctly, there is only one request in that channel, and there is noresponse in the return channel. (These last two conclusions rule out messages left over from earlierbalance queries.) Claim 2 describes consistency among the sending and receiving ags. Claim 3says that if there is a response in a channel, then there is an active query, the ags are set correctly,there is only one response in the channel, and there is no request in the corresponding channel.Claim 4 says that if a response has been received, then a corresponding request was sent.invariant of CEnv:8 i:I 8 j:I 8 s1:String(req(s1) 2 channel(i, j, type I, type Msg).queue) [null] 2 C(i, type I).bals^ C(i, type I).reqSent[j]^ : C(j, type I).reqRcvd[i]^ (channel(i, j, type I, type Msg).queue = { } ` req(s1)_ 9 m:Set[OpRec1](channel(i, j, type I, type Msg).queue = { } ` req(s1) ` set(m)_ channel(i, j, type I, type Msg).queue = { } ` set(m) ` req(s1)))^ :9 m:Set[OpRec1] (set(m) 2 channel(j, i, type I, type Msg).queue)^ : C(i, type I).respRcvd[j]) 17

^ 8 i:I 8 j:I(C(j, type I).reqRcvd[i]) [null] 2 C(i, type I).bals^ C(i, type I).reqSent[j]^ : C(i, type I).respRcvd[j])^ 8 i:I 8 j:I 8 m:Set[OpRec1](set(m) 2 channel(j, i, type I, type Msg).queue) [null] 2 C(i, type I).bals^ C(i, type I).reqSent[j]^ : C(j, type I).reqRcvd[i]^ (channel(j, i, type I, type Msg).queue = { } ` set(m)_ 9 s1:String(channel(j, i, type I, type Msg).queue = { } ` req(s1) ` set(m)_ channel(j, i, type I, type Msg).queue = { } ` set(m) ` req(s1)))^ :9 s1:String (req(s1) 2 channel(i, j, type I, type Msg).queue)^ : C(i, type I).respRcvd[j])^ 8 i:I 8 j:I (C(i, type I).respRcvd[j]) C(i, type I).reqSent[j])To show that CEnv implements BEnv, we would like to de�ne a forward simulation relation fromCEnv to BEnv. In order to do this, it is convenient �rst to add \history variables" mustInclude[i],for i in I, to CEnv. The name mustInclude[i] is suggestive of the same-named variable in BEnv;there is a slight di�erence in that here mustInclude[i] is a subset of OpRec1 rather than ofOpRec. These history variables are maintained by means of the following addition to the transitionde�nition for requestBalance in CEnv:requestBalance(i)e�...mustInclude[i] := choose c where 8 x: OpRec1(x 2 c, 9 j:I(x 2 C(j,type I).ops ^ x.location = j ^ x.seqno 2 C(j,type I).reports))Let CEnv1 denote the result of augmenting the composition CEnv with these history variables.We can give some invariants involving the new history variables. In the �rst invariant, Claim 1says that if there is an active balance query at location i, and if operation x, originating at anotherlocation j, is one of those that must be included in the query, then x must appear in certain placesin the state. In particular, x must be in ops at location j, must be in any response message intransit from j to i, and, in case i has received a message from j, must be at location i. Claim 2is a variant of Claim 1 for operations originating at location i; it says that these operations mustalready be at location i. The second invariant just says that any operation in mustInclude[i]must have actually completed.invariant of CEnv1:8 i: I 8 j: I 8 x: OpRec1([null] 2 C(i, type I).bals^ x 2 CEnv1(type I).mustInclude[i]^ x.location = j^ j 6= i) x 2 C(j, type I).ops 18

^ 8 m: Set[OpRec1](set(m) 2 channel(j, i, type I, type Msg).queue) x 2 m)^ (C(i, type I).respRcvd[j]) x 2 C(i, type I).ops))^ 8 x: OpRec1([null] 2 C(x.location, type I).bals^ x 2 CEnv1(type I).mustInclude[x.location]) x 2 C(x.location, type I).ops)invariant of CEnv1:8 x:OpRec1 8 i:I(x 2 CEnv1(type I).mustInclude[i]) x.seqno 2 C(x.location, type I).reports)Now we can de�ne the desired forward simulation relation from CEnv1 to BEnv. This uses aprojection function proj from OpRecs to OpRec1s, de�ned in an auxiliary speci�cation Projections,that just eliminates the reported component.uses Projectionforward simulation from CEnv1 to BEnv:BEnv(type I).active = CEnv1(type I).active^ 8 x: OpRec(x 2 B(type I).ops ,proj(x) 2 C(x.location, type I).ops^ (x.reported , x.seqno 2 C(x.location, type I).reports))^ 8 x: BalRec(x 2 B(type I).bals , [x.value] 2 C(x.location, type I).bals)^ 8 i: I (B(type I).lastSeqno[i] = C(i, type I).lastSeqno)^ 8 i: I 8 x: OpRec(x 2 B(type I).mustInclude[i] ,proj(x) 2 CEnv1(type I).mustInclude[i] ^ x.reported)

19

5 The IOA ToolsetNow we describe the requirements for and the design of the IOA toolset. This is a high-level design;more detailed designs and implementations are in various stages of completion.An overall design requirement is to have the tools based �rmly on the underlying mathematicalmodel. For instance, when we manipulate programs, we would like to be able to state theoremsabout the automata denoted by those programs. Another requirement is to keep the tools as simpleas possible. We let the tools do the easy, routine jobs and rely on the user to help with the hardwork. For instance, we rely on the user to help in many situations where a nondeterministic choicemust be resolved.We do not require that each of our tools be capable of processing the full IOA language; rather,we de�ne special forms for programs (for the simulator, code generator, and model checker) andrely on the user to help in transforming programs into the special forms. The tools provide supportin de�ning and verifying the correctness of these transformations.Currently, the IOA tools deal only with safety properties. Instead of liveness properties, weplan to consider time bounds, which can be treated as safety properties. This will involve a futureextension of our system to timed I/O automata [56, 60].5.1 Basic Support Tools5.1.1 Parser and static semantic checkerThe IOA language has a working parser and static semantic checker, which produce an internalrepresentation suitable for use by other tools. There is also a prettyprinter , which tidies up thecode, e.g., by indenting it consistently, breaking long lines, and helping to format it using LaTeX.Example 1 The parser, static semantic checker and prettyprinter have been used to process all thecode in the bank example in Section 4 except for the invariants and simulation relation involvingCEnv1. Since the IOA tools currently provide no support for de�ning CEnv1 by adding the historyvariable mustInclude[i] to CEnv, we checked the statement of these invariants and simulationrelation against the automaton CEnv and received the expected error messages about mustIncludebeing unde�ned.5.1.2 ComposerA composition tool (composer) converts the description of a composite automaton into primitiveform by explicitly representing its actions, states, transitions, and tasks. In the resulting descrip-tion, the name of a state variable is pre�xed with the names of the components from which it arises.Such pre�xes may be abbreviated as long as no ambiguity is introduced. The input to the composermust be a compatible collection of automata; for example, the component automata should haveno common output actions. This compatibility is checked using other tools|in simple cases, thestatic semantic checker, and in more complicated cases, the theorem prover, as indicated in Section5.2.2.Example 2 In the bank example, the user can use the composer tool to produce intermediate IOAcode for the compositions AEnv, BEnv, and CEnv.The design of the composer is described in more detail in [14]. A preliminary implementationhas been developed and will be available soon. 20

5.1.3 Step correspondenceA novel part of our design is its support for programming using levels of abstraction. When usersattempt to show that an automaton,B, implements another automaton, A, they generally expect tode�ne a simulation relation|a predicate relating the states of B and A |for example as illustratedin Section 4.3. However, for some purposes, the predicate alone is not enough; the user must alsosupply information about the correspondence between steps of B and A. We think it reasonablefor the user to do this, because the step correspondence expresses key facts about the relationshipbetween the automata, which we think are useful for the user to understand.The toolset helps users de�ne step correspondences. Consider the case of a forward simulationR. (The handling of backward simulations is analogous.) Given a step (sB; �; s0B) of B (arising froma given TD), and a state sA such that (sB; sA) 2 R, the user must de�ne an execution fragment ofA that corresponds to the given step of B. One way in which the user might specify this executionfragment is by providing, as a function of the given step and state, (a) a sequence of TDs of A,plus (b) a way of resolving each explicit nondeterministic choice (i.e., those represented by choosestatements and choose parameters) that appears in those TDs. (This information is enough tode�ne the corresponding execution fragment of B uniquely.) The user will be able to describe thisfunction by using a case statement to de�ne the sequences of TDs and by supplying subroutines toresolve the nondeterministic choices.It is not always obvious how the user can de�ne the needed fragment of A solely as a functionof the given step and state. For example, the choice of fragment of A (e.g., the resolution of theexplicit nondeterministic choices in the fragment of A) may depend on explicit nondeterministicchoices, or on which branch of a conditional is taken, in the step of B. In such cases, the usermay want to modify the code of the given TD of B by adding history variables to record relevantchoices, and then to use the values of these history variables in state s0B in de�ning the executionfragment of A (e.g., in resolving the explicit nondeterminism in the execution fragment).The IOA system will support modifying the code for B in this fashion, checking that the modi�-cations are \allowable", that is, that they do nothing more than add new variables to the state andnew statements that assign values to those variables. In particular, they may not change existingassignments. The toolset will also provide a little language for use in de�ning step correspondences.These step correspondences can be used by our toolset in at least two ways: (a) In provingcorrectness of a simulation relation, using a theorem prover. (See Section 5.2.) (b) In testingwhether a proposed simulation relation appears to be correct, using a simulator. (See Section 5.3.)Example 3 In the bank example, the simulation relation from BEnv to AEnv projects the state vari-ables of BEnv onto the state variables of AEnv, and the step correspondence extends this projectionto (state, action, state) triples. This provides all the information that is needed to verify the simula-tion relation using a theorem prover. However, it does not provide quite enough information to testthe simulation relation using a simulator. In particular, the user needs to direct the simulator tomake explicit choices in the steps of AEnv \in the same way" as in BEnv. This latter correspondencecan be expressed using history variables.The interesting cases are doBalance(i), because of its use of a choose expression that makesa nondeterministic choice, and OK(i), because of its use of a choose parameter. First, suppose theuser is given the step (sB ; doBalance(i); s0B) of BEnv, and a state sA of AEnv such that sB and sA arerelated. Then the step correspondence speci�es that the sequence of actions of AEnv that will appearin the corresponding execution fragment is the single-action sequence doBalance(i), and that thestate s0A that results from the execution of this action from state sA is just the projection of s0B on thestate variables of AEnv. The user can now direct the simulator to resolve the nondeterministic choice21

in the choose statement in doBalance(i) in AEnv by using the same value that was chosen in thechoose statement in BEnv. In this case, this value is recorded in the program variable chosenOpsin state s0B.Second, suppose the user is given the step (sB;OK(i); s0B) of BEnv, and a state sA of AEnvsuch that sB and sA are related. Again, the step correspondence speci�es that the sequence ofactions of AEnv is the single-action sequence OK(i), and that s0A is the projection of s0B. Now theuser needs to resolve the nondeterminism represented by the choose parameter x. The appropriatevalue for this choice is the value that was chosen for the corresponding choose parameter in BEnv.Unfortunately, this value, while a member of ops in states sB and s0B, is not readily identi�able ineither state. However, the user can make this value available in state s0B by adding an appropriatehistory variable to the automaton BEnv.Example 4 The step correspondence for the simulation relation from CEnv1 to BEnv is trivial forsend and receive steps. For each other step of CEnv1, the fragment of BEnv consists of a singlestep with the same action. Since the forward simulation is a function de�ned in IOA, this step isuniquely determined, and its �nal state can be de�ned in IOA. Again, to direct a simulator, theuser can describe how to resolve explicit nondeterminism in the same manner as in Example 3.5.2 Theorem Prover5.2.1 OverviewA theorem prover can be used for IOA programs in several ways, for example, to prove validityproperties for programs and other user inputs, to prove facts about the data types manipulatedby programs, to prove invariants of automata, and to prove (forward and backward) simulationrelations between automata.The IOA toolset will contain interfaces to a number of existing theorem provers. The �rst suchinterface is targeted to the Larch Prover (LP) [28], which is based on �rst-order logic. The IOAmanual [29] contains an overview of Larch. Devillers and Vaandrager have begun working on aninterface to PVS [70]. Interfaces to HOL [34] and Isabelle [67] are also desirable. Although theirinput languages and proof capabilities di�er, the di�erences between these theorem provers areunimportant for our purposes, because the types of things we need to express and to prove arewithin the capabilities of all standard theorem provers.These interfaces will translate IOA descriptions of automata into axioms that can be used by thetargeted theorem provers. These axioms will provide a mathematical description of the underlyingautomaton, de�ning its actions, states, transitions, and tasks explicitly. The IOA language has beendesigned to facilitate this translation. All the operational statements in TDs, including assignmentstatements, choose statements, conditionals, and loops, can be replaced by constraints expressedas predicates, allowing the transitions to be described as the set of (state, action, state) triplessatisfying certain constraints. Similarly, the initial states can be described as the set of valueassignments for all the variables satisfying certain constraints. All these constraints are axioms inthe language of the theorem prover. Additional axioms are provided by the formal de�nitions ofthe data types used in the automata.When a well-formedness condition for an automaton (e.g., that the set of choices for a nondeter-ministic assignment is always nonempty) is too hard to establish by static checking, the interfacescan formulate this condition as a theorem that must be proved. They can also formulate setsof lemmas that imply that asserted invariants and simulation relations are indeed invariants andsimulation relations. 22

Users can interact directly with a theorem prover to prove that the lemmas follow as conse-quences of the axioms. In some cases, the theorem prover can prove a lemma automatically, usingalgebraic substitutions and other logical deductions. In other cases, the user must interact withthe prover to suggest proof strategies and other useful information.5.2.2 Validity of programs and other inputSome validity properties for IOA programs cannot be checked statically, but can be veri�ed usingthe theorem prover. For example, IOA requires that a choose statement always choose from anonempty set. Determining if this is so is undecidable in general, but in practice, it can often beproved using a theorem prover. The interface can translate the nonemptiness requirement into alemma describing constraints on the set in a choose statement, again by converting operationalstatements into predicates. For another example, IOA requires that automata being composedbe compatible, e.g., that they do not share any output actions. Since actions are described withparameters and where clauses, determining this is undecidable in general, but it may be provedusing a theorem prover.The theorem prover can also be used to validate other inputs provided by the user in the courseof using the tools. For example, the user provides help to the simulator in the form of a functionthat is supposed to indicate the next action to simulate (see Section 5.3). The theorem prover canbe used to verify that the proposed action is enabled in the current state.5.2.3 InvariantsIOA allows a user to assert that a predicate P is an invariant of an automaton A. The interfacecan convert P into lemmas saying that P is true in all start states and that P is preserved by allof A's transitions. These lemmas are generally organized by cases, based on particular TDs. Thetheorem prover can attempt to prove these lemmas, with user guidance. The interface can alsoprovide some guidance, for example, telling the theorem prover that proving an invariant involvesconsidering separate cases for each TD. If the theorem prover succeeds in proving the theorem, theuser knows that the invariant is true. If not, the theorem prover lets the user know where it isstuck, which allows the user to provide additional suggestions or correct errors.Example 5 We have used the LP theorem prover to prove the given invariants of AEnv, CEnv andCEnv1, by hand-translating the IOA code for these systems into LP's input language.In the proof of the invariants for AEnv, we had to direct LP to skolemize the precondition forthe OK action and then divide the proof into cases depending on whether the chosen x was the sameor di�erent from the x and y in the statement of the invariant. There were also other case splitsfor the OK action, as well as for other actions (e.g., case splits on whether or not certain operationsrecorded in the state were submitted at the location performing the action).The proofs for CEnv were considerably longer than those for AEnv.5.2.4 Simulation relationsIOA allows a user to assert that a predicate R is a forward simulation (or a backward simulation)from automaton B to automaton A. The interface can convert the proposed simulation relation R,together with user-proposed invariants for B and A, into a set of lemmas expressing a relationshipbetween the start states of B and A, a relationship between the steps of B and A, and (in the caseof a backward simulation) a totality condition. Formal de�nitions appear, for example, in Section1.4 of [29]. 23

However, unlike in the case of an invariant, we are not ready at this point to hand the problemo� to the theorem prover. This is because some of the proof obligations for simulation relationscontain existential quanti�ers that the user must help to instantiate. For example, the \step" proofobligation for a forward simulation says that, for each step of B and each state of A correspondingto the pre-state, there exists a corresponding execution fragment of A. Proving such a statementautomatically would be prohibitively di�cult for a theorem prover, because it involves an expensivesearch. So, we allow the user to provide an explicit mapping from steps of B and states of Ato execution fragments of A, as described in Section 5.1. The user also supplies help for otheroccurrences of existential quanti�ers; for example, for a forward simulation, he/she speci�es thecorresponding start state of A for a given start state of B.Now the theorem prover can attempt to prove the lemmas, with guidance from the user andinterface. For example, for the step correspondence, the theorem prover can try to verify that thespeci�ed sequence is indeed an execution fragment, that it has the same external behavior as thegiven step, and that the �nal states are related by the proposed relation. Our experience with suchproofs suggests to us that the step correspondence provided by the user is just what is needed toallow the theorem prover to carry out this work with a minimum of user interaction. If the theoremprover succeeds, the user knows that the simulation relation is correct, and if not, the user getsfeedback to help complete the process.Example 6 We have used the LP theorem prover to show that the claimed relation is a forwardsimulation from BEnv to AEnv, again by hand-translating the IOA code into LP's input language.Informally speaking, it is easy to see that initial states are related, and that steps correspond asneeded. The only signi�cant di�erence is that the choice of a set of operations (in doBalance)is more restrictive in BEnv than in AEnv; the de�nition of a forward simulation allows for suchrestrictions.In order to guide the theorem prover in proving this theorem, we speci�ed, for each step ofBEnv, the corresponding execution fragment of AEnv. We did this manually by means of a stepcorrespondence, as described in Example 3. In particular, we provided the step correspondencefor doBalance and OK steps by de�ning s0A to be the projection of s0B onto the state variables ofAEnv. The proof of the simulation relation required no user guidance other than to provide the stepcorrespondence.Example 7 We have also used the LP theorem prover to show that the claimed relation is aforward simulation from CEnv1 to BEnv. The interesting case in this proof is the doBalance(i)action. When this action is performed in BEnv, a set of operations is selected, including all thosein BEnv.mustInclude[i], which represents the deposit and withdrawal operations completed beforethe balance is requested. The �rst invariant of CEnv1 implies that the choice that is made for thisaction in CEnv1 includes CEnv1.mustInclude[i], which implies that the relation is preserved.This theorem implies that CEnv1 implements BEnv. But it is also easy to show that CEnv imple-ments CEnv1, so it follows by transitivity that CEnv implements BEnv, as we wanted to show.5.2.5 DiscussionOur experience indicates that the IOA language is easy to connect to a theorem prover. The maintask, which is to convert programs from a mixed operational/axiomatic style to purely axiomaticstyle, is eased by the simplicity of IOA programs. If IOA is later extended with constructs todescribe sequencing, this will be done as syntactic sugar, which will preserve the ease of translationinto theorem-prover languages. 24

Although some proofs still require more user interaction than we would like, we believe thatwe can shorten such proofs (without waiting for better theorem provers to appear) by continuingto identify key forms of user input|primarily, resolution of nondeterministic choices|and by sup-porting the user in providing such inputs. For example, our experience con�rms our belief that auser-provided step correspondence goes a long way toward allowing theorem provers to establishsimulation relations with a minimum of user interaction.Although carrying out full proofs for distributed algorithms using a theorem prover is nowquite feasible, it is still painstaking and time-consuming work. Consequently, there is sill a needfor lightweight validation tools such as a simulator or model-checker.5.3 Simulator5.3.1 OverviewA simulator [14] is required to run selected executions of an IOA program on a single machine. Theuser should be able to help select the executions that are run. The simulator should be able to checkproposed invariants in the selected executions, provide some information about time performance,and check proposed simulation relations.5.3.2 Special form for programsWe do not require that the simulator be capable of simulating arbitrary IOA programs, but expectusers to transform programs �rst into a restricted form. The biggest problem faced by a simulatorof distributed algorithms is resolving nondeterminism. IOA programs allow two kinds of nonde-terminism: explicit nondeterminism, which arises from choose statements, choose parameters,and choose expressions in initial assignments, and implicit nondeterminism, which involves thescheduling of actions. The special form does not allow either type of nondeterminism.Speci�cally, we assume that an IOA program submitted to the simulator satisfy the followingrestrictions:1. It is in primitive form (a single automaton, with explicit description of its actions, states,transitions and tasks).2. It is closed, that is, it has no input actions.3. It has no explicit (choose) nondeterminism; thus, e�ects and initializations are de�ned oper-ationally rather than axiomatically.4. (To handle implicit nondeterminism) At most one non-input action is enabled in any state.Moreover, the user must specify what that action is, as a function of the state. (The outputof this function is a TD plus expressions for the values of the parameters.)5. All relations and functions are computable (e.g., all quanti�ers range over �nite sets).The toolset will provide support to the user in getting programs into the required form. For ex-ample, the existing composition tool helps close an automaton, once the user provides a descriptionof an \environment automaton" that supplies inputs for the given automaton, and helps transformrepresentations using compose into primitive form. To resolve explicit nondeterminism, the sys-tem can prod the user to provide explicit choices to replace the nondeterministic choices (e.g., byadding a state variable representing a pseudo-random sequence and by replacing the nondetermin-istic choice by the value of a function applied to the next element of this sequence). If necessary,25

the theorem prover can be used to check that the provided choices satisfy any required constraints(expressed by where clauses, preconditions, or sothat predicates). Explicit nondeterminism canalso be resolved by user input during the simulation or by system-generated probabilistic choices,but these mechanisms are merely syntactic sugar for transformations of a program into specialform.To remove implicit nondeterminism, the system can prod the user to constrain the executionof an automaton, e.g., by adding state variables containing scheduling information, adding extraconstraints involving the new scheduling variables to the preconditions of actions, and adding newstatements to the e�ects of actions to maintain the scheduling variables. The system can also askthe user to provide a function indicating the next action to be simulated; the theorem prover canbe used to verify that the indicated action is in fact enabled, and that no other actions are enabled.Such modi�cations may remove implicit nondeterminism entirely, or convert it into explicitnondeterminism, which can be resolved as described above. The following examples illustratecomplete removal of implicit nondeterminism.Example 8 Round-robin scheduling: If a set of actions is to be executed in round-robin fash-ion, then a scheduling variable might keep track of the (index of the) next action to be performed,the precondition of each action might be augmented with a clause saying that the indicated actionis the one recorded in the new variable, and the e�ect of each action might increment the indexmaintained in the new variable. This removes all the scheduling nondeterminism, and an obviousfunction of the state describes the next action to be performed.Example 9 Random scheduler: A scheduler that uses randomness can also be described in thesame general way. The system can allow the user to describe (as a function of the current state)a collection of possible next actions with associated probabilities, and can augment the automaton'sstate with a pseudorandom sequence, add a new constraint to the precondition of each action sayingthat it is selected by the next pseudorandom number, and add new statements to the e�ects thatdiscard used pseudorandom numbers. This again removes all scheduling nondeterminism. The sys-tem could further assist the user in coming up with the probabilities for each action, by allowing theuser to provide estimates of the time for each action. The system could then determine probabili-ties for the actions based on the user time estimates (with actions with low time estimates havingcorrespondingly high probabilities).It is also possible to postpone resolution of some of the explicit or implicit nondeterminism untilsimulation time. For example, in the probabilistic scheme described above, calls to the pseudoran-dom number generator could be made on-line. Or, explicit nondeterminism could be resolved byuser input or system-generated probabilistic choice. However, in these cases, the description givenabove is still a good conceptual view.5.3.3 Main simulator loopIn order to simulate data type operations, which are de�ned axiomatically in IOA, the simulatorneeds actual code. For operations de�ned by IOA's built-in data types, the simulator uses codefrom class libraries written in a standard programming language (currently, Java). At present, wedo not address the problem of establishing the correctness of this sequential code (other than byconventional testing and code inspection). For operations (such as totalAmount) de�ned in auxil-iary Larch speci�cations, the user can choose to write the auxiliary speci�cations in an executablealgebraic style, or to supply separate code libraries that purport to implement the speci�ed oper-ations. Standard techniques of sequential program veri�cation based, for example, on Hoare logic,26

should be capable of handling such correctness proofs. (Note that the IOA framework focuses oncorrectness of the concurrent, interactive aspects of programs rather than of the sequential aspects.)With all these assumptions, the simulator has a relatively easy job. Since all implicit nonde-terminism has been removed, the simulator can start from the unique initial state and perform aloop in which, at each iteration, it executes the unique action enabled in the current state. Morespeci�cally, it uses the user-provided function to determine the next TD and parameter values,then executes that TD with those parameter values. Since there is no explicit nondeterminism, thisuniquely determines the next state.The simulator checks that proposed invariants are indeed true in all states that arise in thesimulated executions.Example 10 A restricted version of AEnv can be simulated. In this restricted version, the environ-ment is constrained to submit particular operations in a particular way, e.g., round robin by location,with some particular pattern of deposits, withdrawals, and balance queries. The bank is constrainedto calculate balances and respond at certain times, e.g., to process each request immediately, beforethe next request arrives. Explicit nondeterminism in the doBalance action can be resolved, e.g., bysaying that the action returns all the operations up to the end of the last round-robin round. Also,I must be made explicit.By varying these restrictions, the simulator can simulate a wide range of schedules. The simu-lator can check all the invariants given for AEnv in all states of the simulated executions.The simulator can also provide some performance information, by calculating \times" at whichevents of interest occur. It can do this by using upper bounds, provided by the user, for the timefor steps in each task of the automaton; an on-line calculation can determine the greatest time atwhich each event can occur, subject to the task bounds.5.3.4 Paired simulationsThe simulator can also be used to check that a candidate relation R appears to be a simulationrelation fromB to A.4 Namely, it can simulate B in the usual way and use the steps that arise in thesimulation, together with a user-speci�ed step correspondence, to generate a simulated executionof A. The simulator can check that the relation R holds after each step of B. We call this strategya paired simulation.For example, suppose that R is a proposed forward simulation relation. After the user speci�esthe mapping from steps to execution fragments (plus a mapping from start states of B to startstates of A), the simulator can run the two algorithms together, letting the execution of B drive thatof A. Speci�cally, after the simulator determines an initial state of B, it applies the user-providedmapping to get the initial state of A. Then the simulator simulates steps of B; for each suchstep, the simulator �rst simulates the step as usual, then determines the corresponding (proposed)execution fragment of A and runs the steps of that execution fragment. While it runs those steps,the simulator performs various tests, including: checking that the preconditions of all the actionsare satis�ed (with the user-provided values replacing the choose parameters); checking that theuser-provided values used in choose statements and initial assignments satisfy their where clausesand sothat constraints; checking that the execution fragment has the same external behavior asthe given step; and checking that relation R holds between the �nal states of the two automataafter the step and the execution fragment. All of these can be done by evaluating predicates. Notethat, although B must be described in the restricted input language, A need not be.4We have an unfortunate clash of terminology here, between \simulator" and \simulation relation".27

Paired simulations can also help in checking proposed backward simulation relations. However,in this case, the simulator �rst simulates a (�nite) execution of B completely, then begins at theend and generates the corresponding execution of A backwards.5.3.5 DiscussionThe simulator has an easy job because all nondeterminism is removed ahead of time. The systemprovides support in removing nondeterminism, in the form of general support for transformingautomata (e.g., using levels of abstraction), and special support designed for use with the simulator(e.g., suggestions to remove choose constructs, and help in building randomized scheduling policiesinto the state of an automaton).The use of the user-provided function should yield more e�cient schedules than would arisefrom a general scheduling discipline, and should also help to avoid some runtime overhead.We expect that the paired simulation strategy will prove to be a very useful tool for systemdevelopment using levels of abstraction.A detailed design for the simulator appears in [14], and a preliminary implementation has beencarried out.5.4 Code Generator5.4.1 OverviewThe code generator is required to generate real code for a distributed system. The target systemshould be exible|an arbitrary con�guration of computing nodes and communication channels.The generated code should be e�cient enough to use in real applications.The process of generating code remains, as long as possible, within the IOA framework. Designproceeds as usual, possibly in several levels of abstraction, until the �nal IOA description conformsclosely to the available hardware and software services. This �nal IOA description consists of acollection of node automata, one for each actual machine, and channel automata for externally-provided communication services. Then each node automaton can be translated automatically intoactual code that implements the node automaton, in the sense of trace inclusion. Each channelautomaton can be implemented, also in the sense of trace inclusion, by an externally-providedservice such as TCP [69] or MPI [35, 3]. (However this implementation guarantee might only holdwith high probability, e.g., it might be conditional upon certain assumptions about the behavior ofthe underlying hardware.)This process allows the IOA formal modelling and veri�cation facilities to be used to reasonabout the design until the last possible moment. It can be used to ensure that the �nal systemprovably implements higher-level IOA descriptions, subject to assumed properties of the externally-provided services, the handwritten data type implementation code, and the underlying hardware.5.4.2 Special form for programsIn addition to restricting IOA programs to have a special form that matches the distributed systemarchitecture, the code generator requires that node programs satisfy restrictions similar to thoserequired by the simulator. Speci�cally, programs should be in primitive form, and should be devoidof both explicit and implicit nondeterminism, but they need not be closed. (Thus, a node programis essentially a sequential program consisting of non-input actions, with the possibility of interruptsfrom input actions.) As before, the user must specify the next enabled action, as a function of thestate. 28

We need another (technical) restriction to get a faithful system implementation: Atomicityrequires that the e�ect part of each transition be done without interruption, even if inputs arrivefrom the external user or from the communication service during its execution. In our design,such inputs are bu�ered. In between running non-input actions, the generated program examinesbu�ers for newly arrived inputs, and handles (some of) them by running code for input actions.(At each examination point, it might run all inputs, or just one, or one from each input \port",etc.) Since the processing of inputs is delayed (with respect to the performance of these actionsby their originators), such delays have the potential to upset precise implementation claims for thenode automata.Example 11 Consider a node automaton that receives inputs a and b, in that order, from twodi�erent parts of its environment, If the implementation does not perform the inputs immediately,but instead bu�ers them in separate bu�ers, polls the bu�ers, and processes the inputs after somedelay, it might process the inputs in the reverse order b; a. An execution thereby occurs in which theprocessing order is di�erent from the order in which the events are received from the environment,which violates the correctness of the implementation.We introduce a restriction on the node programs that prevents such delays from upsettingthe implementation claims. Stated in its strongest, simplest form, the restriction is that eachnode automaton A be input-delay-insensitive: its external behavior should not change if its inputactions are delayed and reordered before processing. Formally, traces(A0 � Bu�) must be a subsetof traces(A), where A0 is just like A except that its inputs are renamed to \internal versions", andBu� is a possibly-reordering delay bu�er that takes the real inputs and delivers them later in their\internal versions". It is possible to weaken this requirement slightly, to require trace inclusiononly in \well-formed" environments (e.g., only for blocking inputs); then these assumptions mustbe satis�ed by the actual environments of the node automata. Or, we can allow a \port" structurefor di�erent types of inputs, corresponding to actual arrival ports for inputs, and assume that Bu�preserves the order of inputs on each port.As for the simulator, the system can provide some help in getting the program into the specialform. The general facilities to support programming using levels of abstraction can be used tore�ne the design within the IOA framework until the required node-and-channel form is reached.Support for putting the program into primitive form and for removing explicit and implicit nonde-terminism is the same as for the simulator. IOA speci�cations for actual communication serviceslike TCP and MPI are maintained in a library; we obtain such speci�cations by reading manualsand experimenting with available implementations. We do not generally try to prove that thesespeci�cations are correct descriptions of the real services; however, our methodology could be usedto prove such results, based on modelling the protocols and hardware that implement the services.For input-delay-insensitivity, the user can verify the needed trace inclusion property using the toolsthat support programming in levels of abstraction.5.4.3 Main code generator loopThe code generator uses the same library of data type implementations as the simulator. Again,we do not address the problem of proving the correctness of this sequential code. For each nodeautomaton, the code generator translates the IOA code into a program in a standard programminglanguage (like C++, Java, or ML) that performs a simple loop, similar to the one performed bythe simulator. (In each iteration, the program uses the user-provided function to determine thenext non-input TD and parameter values, then performs that TD with those parameter values.)29

Note that it is possible for the code generator to translate the code at di�erent nodes to di�erentlanguages.By insisting that IOA programs from which we generate real code match the available hardwareand services, and by requiring the node programs to tolerate input delays, we avoid the need forexpensive non-local synchronization in achieving a faithful implementation.5.4.4 Abstract channelsPrior to using the code generator, it is often helpful to describe a system design as a compositionof node automata Ai and abstract channel automata Ci;j, as illustrated in Figure 1. Such abstractchannel automata are typically simpler than the automata for the real channels; for example, thechannel automata in Section 4.4 might be used.
12

23

1A

3A

2A

31C

C

CFigure 1: An implementation using abstract channels.At a lower level of design, illustrated in Figure 2, each abstract channel automaton Ci;j isimplemented in terms of automata Di;j and Dj;i representing real channels, together with protocolautomata attached to the node automata. At this level of design, a node automaton is (formally)the composition of the node automaton from the previous level (the automaton that interacts withthe abstract channels) with all the protocol automata for the node that appear in the channelimplementations. It is this composed automaton (transformed into primitive form, and with itsnondeterminism removed) that gets translated by the code generator into a standard programminglanguage. The composed automata are circled in the �gure.Example 12 Abstract channel implementation A send/receive channel from i to j can beimplemented in terms of a single MPI service connecting i to j [78]. The implementation atthe sender bu�ers the client's messages, sending them one at a time using MPI. At the receiver,the implementation does repeated non-blocking \probes" until it discovers that some message hasarrived, then does a \receive" to retrieve the message and ships it to the client.The abstract channel strategy provides exibility in that it allows di�erent abstract channelsto be used to describe implementations using the same distributed system architecture, and allowsthe same abstract channels to be used to describe implementations using di�erent real channels.The IOA system supports programming with abstract channels by maintaining libraries ofIOA descriptions of abstract and real channels, and of IOA implementations of abstract channelsin terms of real channels. The system also assists in proving correctness of implementations ofabstract channels. 30

1
A A

D

D

A

D

2

3

D
31

D
13

12

21

D
32

23

12

C

31C
23C

Figure 2: An implementation using abstract channels implemented by real channels.Example 13 The IOA system can be used to generate a running implementation of automaton C(that is, all except the environment) in the CEnv system, based on MPI. This strategy uses abstractsend/receive channels, like those in Section 4.4.5.4.5 DiscussionThis code generation method follows our general strategy of relying on the user (with supportfrom IOA tools) to put the program in the proper form for input to the code generator. Oncethe program is in that form, the job of the code generator is not hard. We achieve provability byworking entirely within the mathematically-based IOA framework until the last possible moment,then translating into real code using a very simple strategy.Some of the real system services that we may want our IOA programs to interact with may becomplicated and di�cult to model accurately. We do not consider this to be mainly an IOA issue,but a general problem for system development. Our contribution is to provide a simple structure formodelling and reasoning about such services. In particular, we think that our simple trace-basednotion of external behavior provides a good basis for modelling interfaces.It must still be demonstrated that code with realistically good performance can be obtainedusing IOA. Some of our reasons for believing this will work are:1. Our strategy achieves e�ciency by working locally, without the need for any synchronizationinvolving more than one machine. In contrast, the design sketched in [31, 32] and the maindesign in [15] use global synchronization strategies.2. The code-generation process incorporates existing services (e.g., communication services),which may be highly optimized.3. We allow hand-coding of data type implementations in a standard sequential programminglanguage, rather than trying to generate these automatically, as is done in work on executable31

speci�cations (see, e.g., [62]). This strategy provides many opportunities for hand optimiza-tion. If we like, these operations can be quite high level and powerful (e.g., a complicatedfunction like a Fast Fourier Transform), as long as they can be computed by sequential codein the target programming language. These implementations can use powerful and complexcontrol constructs, even recursion, as long as we are happy with the performance that resultsby performing the operation atomically at runtime.4. Giving the user exibility in controlling the order in which actions are performed should yieldmore e�cient schedules for local node programs than would arise from a general schedulingdiscipline. Also, allowing the scheduler to call a user-provided function to determine the nextaction should avoid some runtime overhead.We believe that user control over the scheduler is even more important for the code generatorthan for the simulator. We believe that an automatic, general scheduling discipline can lead toexcessive runtime overhead. Besides, we cannot now think of any general scheduling disciplinefor I/O automata that will always yield e�cient choices of actions.5. Source-to-source translation to C++ and other languages should be able to take advantageof prior work on optimizing compilers for those languages.6. We should be able to avoid the expense of checks that would typically be done at runtime,by proving some properties statically.7. IOA is su�ciently exible to be used at di�erent levels of abstraction, including a very lowlevel that can permit extensive optimization within IOA itself.8. Some work we have recently carried out with Hickey and van Renesse at Cornell [41], onmodelling and validation of the Ensemble system using IOA-based methods, shows that itnot hard to write and verify algorithms in IOA in such a way that they can be translatedinto ML code that is \essentially isomorphic" to the actual running code for the Ensemblesystem [39]. The existing ML code appears to run acceptably fast.At later stages of development, we might want to try to improve performance by taking ad-vantage of multithreading possibilities in the target programming language. This will involvingloosening the restrictions on the programs that are input to the code generator, for example, al-lowing several actions to be enabled at a time. Maintaining action atomicity then becomes morecomplicated; concurrency control issues will need to be addressed here.Also at later stages, we might want to provide some special default schedulers, which can allowthe user to avoid specifying the next action. Because coordination and communication aspects ofdistributed computation are costly, it is possible that the extra overhead of such a scheduler mightnot be critical. We also would like to provide the user with convenient patterns for describinge�cient schedulers, perhaps utilizing the \task" structure of the I/O automaton model [58, 59, 50],and perhaps with restrictions on the input programs.Another programming issue that needs attention is the memory model|so far, the conceptualmodel involves in�nite state machines with statically-allocated in�nitely memory, but reality im-posed some restrictions. Also, in our design, we have mostly ignored fault-tolerance issues. Goodways of modelling faults and faulty behavior within IOA need to be devised and incorporated intothe toolset design. 32

5.5 Model Checker5.5.1 OverviewModel checkers provide an approach to validation that is complementary to theorem proving andto simulation. Unlike theorem provers, model checkers work completely automatically. Simulatorscheck a particular execution of a system, whereas theorem provers are used to validate all executions.Model checkers can be used to validate all executions of a �nite system, provided that it has asu�ciently small number of states. They are often used to validate abstract �nite versions of morecomplex in�nite-state systems.At present, the IOA system uses a model checker only to check invariants. The IOA toolsetis designed to utilize existing model checkers. The �rst model checking interface is targeted toSPIN [43], with input language PROMELA. An automaton to be tested is represented as a singlePROMELA process.5.5.2 Special form for programsWe assume that an IOA program provided as input to the model checker is closed and in primi-tive form. It may be nondeterministic, but cannot have any sothat statements. Data types arerestricted to those in the model checker's input language; for example, PROMELA allows integers,Booleans, and arrays of these. The program must have a �xed �nite number of variables (althoughthese variables may potentially take on in�nitely many values).The user provides an IOA program in the special form, and expresses the invariant as a predicateusing IOA notation. The interface translates the program and predicate into the model checkerinput language. Then the model checker performs its work (with no user guidance). If it succeedsin verifying that the predicate holds in all reachable states, the user can infer that the predicate isan invariant of the original IOA program. If the model checker �nds a counterexample, the userknows that the predicate is not an invariant and can use the counterexample for debugging. Inour initial design, this counterexample is given in the language of the model checker, but later,we expect to add more system support so that the error is expressed in terms of the original IOAprogram.Example 14 In the bank example, the user can use the model checker to check the invariants inrestricted cases of the system.5.5.3 Levels of abstractionWe would like to extend our notion of paired simulations to a model-checking technique for simu-lation relations; this remains to be done.
33

6 ExtensionsWe plan to extend the language and toolset to timing-based systems, using timed I/O automataas described in [56, 60] and Chapter 23 of [50]. This model has an external behavior notion basedon timed traces, and supports parallel composition and hiding operators. It also admits reasoningusing invariant assertions and various kinds of simulation relations.This extension will support modelling and proof of timing-dependent distributed systems, andtiming analysis for timing-dependent and non-timing-dependent distributed systems. The mainaddition to the model is that timed automata include time-passage actions as well as ordinarydiscrete actions. Safety properties of the usual kinds can still be stated and validated. Among theproperties to be validated are those involving proofs of time bounds. Some of these properties willbe conditional, based on assumptions about inputs to the algorithm and about failure patterns.(For this purpose, failures must be modelled explicitly, in terms of special \failure actions".)It should be easy to extend the IOA language to a new TIOA language that includes time-passage transitions, described by TDs with preconditions and e�ects. For example, �(t) mayindicate time-passage by real time t. These actions are not classi�ed as input, output or internal,but rather form a fourth category of actions. Among the data types to be used with this language area \real number" data type, satisfying appropriate axioms (e.g., [47]), which can be used to describequantities representing times. Time-valued variables can be included in an automaton's state.Typical such time-valued variables are a now variable represeng the current time, last variablesrepresenting deadlines for scheduled events, and �rst variables representing earliest times thatcertain events may occur.Time-passage transitions are de�ned by transition de�nitions similar to the ones used in basicIOA. These include preconditions and e�ects. Now the preconditions and e�ects may involvethe time-valued variables, as well as other variables. Typical preconditions involve things like:now+ t � last(e), which indicates that time cannot pass beyond the deadline for event e. Typicale�ects involve incrementing now by t. In addition, other actions may have preconditions involvingtime, for example, �rst(e) � now, and may modify the deadline variables.TIOA admits explicit statement of invariant assertions and simulation relations. Both of thesekinds of statements can involve time-valued variables; this allows them to be used to express timebounds and other timing relationships. Typical simulation relations for timed systems may in-volve inequalities between time-valued quantities in the speci�cation and implementation automata.Proofs for such statements follow the same methods as for the untimed versions. Deduction in-volving inequalities plays a prominent role. Chapter 23 of [50] contains relevant de�nitions, andexamples of usage of some pseudocode on which TIOA is based. Other examples appear, forinstance, in [47, 76, 7, 48, 74, 46].We expect that much of the design of the toolset will also carry over to TIOA. For example, atheorem prover can be used to prove invariant assertions and simulation relations for TIOA, usingformalized versions of techniques used in [47, 76, 7, 48, 74, 46]. A prover should be able to handlethe full TIOA language.In order to prove conditional time bounds for a system expressed as a TIOA program, the usercan formulate the restrictions involved in the conditional as a restricted version of the program,itself expressed as a new TIOA program. (For example, to consider the behavior of the programwhen there are no failures, one would restrict the program to omit explicit failure actions. Or, toconsider the behavior after low-level timing behavior stabilizes, one would model the stabilizationpoint explicitly, and restrict the program to behave in a restricted fashion after the stabilizationpoint. Some ideas for how to do this appear in [18].) Then the conditional bounds can be provedfor the restricted program. 34

A code generator for distributed code can be constructed, using basically the same strategy thatwe are using for the untimed case. Now the models for the channels are TIOA programs (timedautomata), which include timing assumptions about the behavior of the channels; we rely on theexternally-provided channel implementations to guarantee those assumptions. The node programsare also TIOA programs. The scheduler for a node program works essentially as in the untimedcase, with some extra care to process inputs in a timely manner. For instance, after each selectionand performance of a locally-controlled action, the scheduler may allow all pending inputs to beprocessed, before going on to the next locally-controlled action.The user of the TIOA tools should prove that a proposed distributed algorithm, expressedin terms of node and channel TIOA programs, meets its timing requirements. However, now anadditional step may be needed to demonstrate that the actual node implementation meets thetiming requirements expressed by the higher-level node TIOA programs. Such a demonstrationmay depend upon modelling the low-level implementation using a �ner-granularity TIOA program,which includes such notions as the input delay bu�er and the individual processor steps and theirtime bounds, and proving that this lower-level program is a faithful implementation of the moreabstract node TIOA program.Acknowledgments: Josh Tauber contributed many ideas that appear in the discussions ofthe language, simulator and code generator. Anna Chefter worked on the detailed design andpreliminary implementation of the simulator, and also helped with the coding of the front endand the data type implementation libraries. Mandana Vaziri designed a translation scheme toPROMELA and implemented a preliminary translator. Martin Rinard provided useful guidanceand encouragement.

35

References[1] INMOS Ltd: OCCAM Programming Manual, 1984.[2] INMOS Ltd: OCCAM 2 Reference Manual, 1988.[3] MPI: a message-passing interface standard, Version 1.1. Message Passing Interface Forum,University of Tennessee, Knoxville, June 1995.URL http://www.mcs.anl.gov/Projects/mpi/mpich/index.html.[4] Flemming Andersen. A Theorem Prover for UNITY in Higher Order Logic. PhD thesis,Technical University of Denmark, March 1992.[5] Myla Archer, 1997. Personal communication.[6] Myla Archer and Constance Heitmeyer. Verifying hybrid systems modeled as timed automata:A case study. In Oded Maler, editor, Hybrid and Real-Time Systems (International Workshop,HART'97, Grenoble, France, March 1997), volume 1201 of Lecture Notes in Computer Science,pages 171{185, Berlin Heidelberg, 1997. Springer-Verlag.[7] Hagit Attiya and Nancy A. Lynch. Time bounds for real-time process control in the presenceof timing uncertainty. Information and Computation, 110(1):183{232, April 1994.[8] H. E. Bal, M. F. Kaashoek, and A. S. Tanenbaum. Orca: A language for parallel programmingof distributed systems. IEEE Trans. on Soft Eng., 18(3):190{205, March 1992.[9] A. Benviniste, P. Le Guernic, and C. Jacquemot. Synchronous programming with event andrelations: The SIGNAL language and its semantics. Science of Computer Programming, 16,1991.[10] Elizabeth Borowsky, Eli Gafni, Nancy Lynch, and Sergio Rajsbaum. The BG distributedsimulation algorithm, December 1997. Submitted for journal publication.[11] R. Braden. Extending TCP for transactions | concepts. Internet RFC-1379, July 1994.[12] K. Mani Chandy and Jayadev Misra. Parallel Program Design: A Foundation. Addison-WesleyPublishing Co., Reading, MA, 1988.[13] S. Chaudhuri and P. Reiners. Understanding the set consensus partial order using theBorowsky-Gafni simulation. In 10th International Workshop on Distributed Algorithms, Oc-tober 1996. To appear in Lecture Notes in Computer Science, Springer Verlag.[14] Anna E. Chefter. A simulator for the IOA language. Master's thesis, Department of ElectricalEngineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA02139, May 1998.[15] Oleg Cheiner. Implementation and evaluation of an eventually-serializable data service. Mas-ter's thesis, Department of Electrical Engineering and Computer Science, Massachusetts In-stitute of Technology, Cambridge, MA, September 1997.[16] Gregory V. Chockler. An adaptive totally ordered multicast protocol that tolerates parti-tions. Master's thesis, Institute of Computer Science, The Hebrew University of Jerusalem,Jerusalem, Israel, August 1997. 36

[17] R. Cleaveland, J. N. Gada, P. M. Lewis, S. A. Smolka, O. Sokolsky, and S. Zhang. The Concur-rency Factory - practical tools for speci�cation, simulation, veri�cation and implementation ofconcurrent systems. In Speci�cation of Parallel Algorithms. DIMACSWorkshop., pages 75{89.American Mathematical Society, 1994.[18] Roberto DePrisco. Revisiting the Paxos algorithm. Master's thesis, Department of ElectricalEngineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA02139, June 1997. Also, MIT/LCS/TR-717.[19] Roberto DePrisco, Alan Fekete, Nancy Lynch, and Alex Shvartsman. A dynamic view-orientedgroup communication service. In Proceedings of the 17th Annual ACM SIGACT-SIGOPSSymposium on Principles of Distributed Computing, pages 227{236, Puerto Vallarta, Mexico,June-July 1998. Also, technical memo in progress.[20] Danny Dolev and Nir Shavit. Bounded time stamping. SIAM Journal on Computing,26(2):418{455, April 1997.[21] Urban Engberg, Peter Gr�nning, and Leslie Lamport. Mechanical veri�cation of concurrentsystems with TLA. In G. v. Bochmann and D. K. Probst, editors, Proceedings of the FourthInternational Conference on Computer Aided Veri�cation, volume 663 of Lecture Notes inComputer Science, pages 44{55, Berlin, June 1992. Springer-Verlag. Proceedings of the FourthInternational Conference, CAV'92.[22] Zohar Manna et al. STeP: the Stanford Temporal Prover. Technical Report STAN-CS-TR-94-1518, Department of Computer Science, Stanford University, Stanford, CA 94305, June1994.[23] Alan Fekete, David Gupta, Victor Luchangco, Nancy Lynch, and Alex Shvartsman. Eventually-serializable data service. Theoretical Computer Science on Distributed Algorithms (SpecialIssue). To appear.[24] Alan Fekete, David Gupta, Victor Luchangco, Nancy Lynch, and Alex Shvartsman. Eventually-serializable data services. In Proceedings of the Fifteenth Annual ACM Symposium on Princi-ples of Distributed Computing, pages 300{309, Philadelphia, PA, May 1996.[25] Alan Fekete, M. Frans Kaashoek, and Nancy Lynch. Implementing sequentially consistentshared objects using broadcast and point-to-point communication. Journal of the ACM,45(1):35{69, January 1998.[26] Alan Fekete, Nancy Lynch, and Alex Shvartsman. Specifying and using a partitionable groupcommunication service. In Proceedings of the Sixteenth Annual ACM Symposium on Principlesof Distributed Computing, pages 53{62, Santa Barbara, CA, August 1997. Expanded versionin [27].[27] Alan Fekete, Nancy Lynch, and Alex Shvartsman. Specifying and using a partitionable groupcommunication service. Technical MemoMIT-LCS-TM-570, Laboratory for Computer Science,Massachusetts Institute of Technology, Cambridge, MA, 02139, 1997.[28] Stephen J. Garland and John V. Guttag. A guide to LP, the Larch Prover. Research Report 82,Digital Systems Research Center, 130 Lytton Avenue, Palo Alto, CA 94301, December 1991.37

[29] Stephen J. Garland, Nancy A. Lynch, and Mandana Vaziri. IOA a language for specify-ing, programming and validating distributed systems. Technical Report MIT/LCS/TR-762,Laboratory for Computer Science, Massachusetts Institute of Technology, Cambridge, MA,December 15 1997. URL http://larch-www.lcs.mit.edu:8001/~garland/ioaLanguage.ps.[30] Rainer Gawlick, Nancy Lynch, and Nir Shavit. Concurrent time-stamping made simple. InD. Dolev, Z. Galil, and M. Rodeh, editors, Theory of Computing and Systems (ISTCS'92, IsraelSymposium, Haifa, Israel, May 1992), volume 601 of Lecture Notes in Computer Science, pages171{185. Springer-Verlag, 1992.[31] Kenneth J. Goldman. Distributed Algorithm Simulation using Input/Output Automata. PhDthesis, Department of Electrical Engineering and Computer Science, Massachusetts Instituteof Technology, Cambridge, MA, July 1990.[32] Kenneth J. Goldman. Highly concurrent logically synchronous multicast. Distributed Com-puting, 6(4):189{207, 1991.[33] Kenneth J. Goldman, Bala Swaminathan, T. Paul McCartney, Michael D. Anderson, and RamSethuraman. The Programmers' Playground: I/O abstraction for user-con�gurable distributedapplications. IEEE Transactions on Software Engineering, 21(9):735{746, September 1995.[34] M. J. C. Gordon. HOL: A proof generating system for higher order logic. In G. Birtwistleand P. A. Subrahmanyam, editors, Current Trends in Hardware Veri�cation and AutomatedTheorem Proving, pages 73{128. Springer-Verlag, 1989.[35] William Gropp, Ewing Lusk, and Anthony Skjellum. Using MPI: Portable Parallel Program-ming with the Message-Passing Interface. MIT Press, Cambridge, MA, October 1994.[36] John V. Guttag, James J. Horning, Stephen J. Garland, Kevin D. Jones, Andr�es Modet, andJeannette M. Wing, editors. Larch: Languages and Tools for Formal Speci�cation. Springer-Verlag Texts and Monographs in Computer Science, 1993.[37] David Harel. Statecharts: A visual formalism for complex systems. Science of ComputerProgramming, pages 231{274, 1987.[38] M. Hayden and R. van Renesse. Optimizing layered communication protocols. TechnicalReport TR96-1613, Dept. of Computer Science, Cornell University, Ithaca, NY 14850, USA,November 1996.[39] Mark Hayden. Ensemble Reference Manual. Cornell University, 1996.[40] Maurice Herlihy. Wait-free synchronization. ACM Transactions on Programming Languagesand Systems, 13(1):124{149, January 1991.[41] Jason Hickey, Nancy Lynch, and Robbert van Renesse. Speci�cations and proofs for ensemblelayers, May 1998. Manuscript in progress.[42] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall International, UnitedKingdom, 1985.[43] Gerard J. Holzmann. Design and Validation of Computer Protocols. Prentice Hall SoftwareSeries, New Jersey, 1991. 38

[44] Information Processing Systems Open Systems Interconnection ISO 9074. Estelle- a formaldescrition technique based on a extended state transition model, 1989.[45] Leslie Lamport. The temporal logic of actions. ACM Transactions on Programming Languagesand Systems, 16(3):872{923, May 1994.[46] Butler W. Lampson, Nancy A. Lynch, and J�rgen F. S�gaard-Andersen. Correctness of at-most-once message delivery protocols. In Richard L. Tenney, Paul D. Amer, and M. �Umit Uyar,editors, Formal Description Techniques, VI (Proceedings of the IFIP TC6/WG6.1 Sixth Inter-national Conference on Formal Description Techniques | FORTE'93, Boston, MA, October1993), pages 385{400. North-Holland, 1994.[47] Victor Luchangco. Using simulation techniques to prove timing properties. Master's the-sis, Department of Electrical Engineering and Computer Science, Massachusetts Institute ofTechnology, Cambridge, MA 02139, June 1995.[48] Victor Luchangco, Ekrem S�oylemez, Stephen Garland, and Nancy Lynch. Verifying timingproperties of concurrent algorithms. In Dieter Hogrefe and Stefan Leue, editors, Formal De-scription Techniques VII: Proceedings of the 7th IFIP WG6.1 International Conference onFormal Description Techniques (FORTE'94, Berne, Switzerland, October 1994), pages 259{273. Chapman and Hall, 1995.[49] Nancy Lynch. Modelling and veri�cation of automated transit systems, using timed automata,invariants and simulations. Technical Memo MIT/LCS/TM-545, Laboratory for ComputerScience, Massachusetts Institute of Technology, Cambridge, MA 02139, December 1995. Also,[51].[50] Nancy Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, Inc., San Mateo, CA,March 1996.[51] Nancy Lynch. Modelling and veri�cation of automated transit systems, using timed automata,invariants and simulations. In R. Alur, T. Henzinger, and E. Sontag, editors, Hybrid SystemsIII: Veri�cation and Control (DIMACS/SYCON Workshop on Veri�cation and Control ofHybrid Systems, New Brunswick, New Jersey, October 1995), volume 1066 of Lecture Notesin Computer Science, pages 449{463. Springer-Verlag, 1996. Also, [49].[52] Nancy Lynch, Michael Merritt, William Weihl, and Alan Fekete. Atomic Transactions. MorganKaufmann Publishers, San Mateo, CA, 1994.[53] Nancy Lynch, Roberto Segala, Frits Vaandrager, and H. B. Weinberg. Hybrid I/O automata.Technical Memo MIT/LCS/TM-544, Laboratory for Computer Science, Massachusetts Insti-tute of Technology, Cambridge, MA 02139, December 1995. Also, [54].[54] Nancy Lynch, Roberto Segala, Frits Vaandrager, and H. B. Weinberg. Hybrid I/O automata.In R. Alur, T. Henzinger, and E. Sontag, editors, Hybrid Systems III: Veri�cation and Control(DIMACS/SYCONWorkshop on Veri�cation and Control of Hybrid Systems, New Brunswick,New Jersey, October 1995), volume 1066 of Lecture Notes in Computer Science, pages 496{510.Springer-Verlag, 1996. Also, [53].[55] Nancy Lynch and Frits Vaandrager. Forward and backward simulations | Part I: Untimedsystems. Information and Computation, 121(2):214{233, September 1995.39

[56] Nancy Lynch and Frits Vaandrager. Forward and backward simulations | Part II: Timing-based systems. Information and Computation, 128(1):1{25, July 1996.[57] Nancy Lynch and H. B. Weinberg. Proving correctness of a vehicle maneuver: Deceleration.In Second European Workshop on Real-Time and Hybrid Systems, pages 196{203, Grenoble,France, May/June 1995. Later version appears as [79].[58] Nancy A. Lynch and Mark R. Tuttle. Hierarchical correctness proofs for distributed algorithms.In Proceedings of the Sixth Annual ACM Symposium on Principles of Distributed Computing,pages 137{151, Vancouver, British Columbia, Canada, August 1987.[59] Nancy A. Lynch and Mark R. Tuttle. An introduction to input/output automata. CWI-Quarterly, 2(3):219{246, September 1989. Centrum voor Wiskunde en Informatica, Amster-dam, The Netherlands. Technical Memo MIT/LCS/TM-373, Laboratory for Computer Sci-ence, Massachusetts Institute of Technology, Cambridge, MA 02139, November 1988.[60] Nancy A. Lynch and Frits W. Vaandrager. Action transducers and timed automata. FormalAspects of Computing, 8(5):499{538, 1996.[61] Zohar Manna and Amir Pnueli. Temporal Veri�cation of Reactive Systems: Safety. Springer-Verlag, New York, 1995.[62] Jos�e Meseguer. Conditional rewriting logic as an uni�ed model of concurrency. TheoreticalComputer Science, 96:73{155, 1992.[63] Robin Milner. Communication and Concurrency. Prentice-Hall International, United King-dom, 1989.[64] Tobias Nipkow. Formal veri�cation of data type re�nement: Theory and practice. InJ. W. de Bakker, W. P. de Roever, and G. Rozenberg, editors, Stepwise Re�nement of Dis-tributed Systems: Models, Formalisms, Correctness (REX Workshop, Mook, The Netherlands,May/June 1989), volume 430 of Lecture Notes in Computer Science, pages 561{591. Springer-Verlag, 1990.[65] CoFI Task Group on Language Design. The common algebraic speci�cation language, April1998. URL http://www.brics.dk/Projects/CoFI/Documents/CASL/Summary/.[66] Jonathan S. Ostro�. A visual toolset for the design of real-time discrete event systems. IEEETransactions on Control Systems Technology, 5(3), May 1997.[67] Lawrence C. Paulson. The Isabelle reference manual. Technical Report 283, University ofCambridge, Computer Laboratory, 1993.[68] Tsvetomir P. Petrov, Anna Pogosyants, Stephen J. Garland, Victor Luchangco, and Nancy A.Lynch. Computer-assisted veri�cation of an algorithm for concurrent timestamps. In Rein-hard Gotzhein and Jan Bredereke, editors, Formal Description Techniques IX: Theory, Appli-cations, and Tools (FORTE/PSTV'96: Joint International Conference on Formal DescriptionTechniques for Distributed Systems and Communication Protocols, and Protocol Speci�cation,Testing, and Veri�cation, Kaiserslautern, Germany, October 1996), pages 29{44. Chapman &Hall, 1996.[69] J. Postel. Transmission Control Protocol | DARPA Internet Program Speci�cation (InternetStandard STC-007). Internet RFC-793, September 1981.40

[70] N. Shankar, Sam Owre, and John Rushby. The PVS proof checker: A reference manual.Technical report, Computer Science Lab, SRI Intl., Menlo Park, CA, 1993.[71] Mark Smith. Formal veri�cation of communication protocols. In Reinhard Gotzhein andJan Bredereke, editors, Formal Description Techniques IX: Theory, Applications, and ToolsFORTE/PSTV'96: Joint International Conference on Formal Description Techniques for Dis-tributed Systems and Communication Protocols, and Protocol Speci�cation, Testing, andVeri�cation, Kaiserslautern, Germany, October 1996, pages 129{144. Chapman & Hall, 1996.[72] Mark Smith. Formal Veri�cation of TCP and T/TCP. PhD thesis, Department of ElectricalEngineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA02139, September 1997.[73] Mark Smith. Reliable message delivery and conditionally-fast transactions are not possiblewithout accurate clocks. In Proceedings of the 17th Annual ACM Symposium on the Principlesof Distributed Computing, pages 163{171, June 1998.[74] J�rgen S�gaard-Andersen. Correctness of Protocols in Distributed Systems. PhD thesis, De-partment of Computer Science, Technical University of Denmark, Lyngby, Denmark, December1993. ID-TR: 1993-131. Also, expanded version in MIT/LCS/TR-589.[75] J�rgen F. S�gaard-Andersen, Stephen J. Garland, John V. Guttag, Nancy A. Lynch, and AnnaPogosyants. Computer-assisted simulation proofs. In Costas Courcoubetis, editor, Computer-Aided Veri�cation (5th International Conference, CAV'93, Elounda, Greece, June/July 1993),volume 697 of Lecture Notes in Computer Science, pages 305{319. Springer-Verlag, 1993.[76] Ekrem S�oylemez. Automatic veri�cation of the timing properties of MMT automata. Master'sthesis, Department of Electrical Engineering and Computer Science, Massachusetts Instituteof Technology, Cambridge, MA 02139, February 1994.[77] M. G. Staskauskas. Formal derivation of concurrent programs: An example from industry.IEEE Transactions on Software Engineering, 19(5):503{528, May 1993.[78] Joshua Tauber. IOA code generation - theory and practice. Manuscript.[79] H. B. Weinberg and Nancy Lynch. Correctness of vehicle control systems: A case study. In17th IEEE Real-Time Systems Symposium, pages 62{72, Washington, D. C., December 1996.Earlier version appears as [57].
41

