
Computer systems fail, often with costly results.
Even simple errors (division by zero and buffer
overruns, for instance) that can be detected easily
by code inspection or testing cause havoc.

More pernicious and harder to detect are timing bugs,
which can lie dormant until triggered by some unusual
combination of circumstances. In the mid 1980s, for instance,
several cancer patients died from massive radiation
overdoses from the Therac-25, a computerized therapy
machine. At fault was improper synchronization between
data entry and dose calculation, which failed when operators
typed more quickly than had the testers. In 1990, 60 million
AT&T subscribers lost telephone service for nine hours (and
AT&T lost $60 million in revenue) after an electronic switch

failed and set off a chain reaction in which other switches
crashed, rebooted, and crashed again. More recently, software
guided the Mars Pathfinder to a spectacular landing, but
experienced total system resets when it began to collect—
but could not transmit—meteorological data. At fault in this
case was a latency problem in a preemptive priority-
scheduling routine.
Computer systems such as these are providing increasingly

powerful services, and society is expecting increasingly
strong guarantees of performance, fault tolerance, and
security. At the same time, however, the environments and
networks in which these systems operate are becoming
larger and less predictable. It is no wonder that distributed
systems, which consist of many programs running on many
different computers connected via a network, have become
very complicated and very difficult to get right. For years,
testing has been the primary means of ascertaining whether
programs behave as intended. However, as Edsger Dijkstra

www.byte.com Spring 2002 BYTE 3

DISTRIBUTED SYSTEMS

STEPHEN J. GARLAND

DESIGNING
RELIABLE DISTRIBUTED

SYSTEMS

A formal language for modeling distributed systems

Stephen is a Principal Research Scientist in the MIT
Laboratory for Computer Science. He can be contacted at
garland@lcs.mit.edu.

wrote in 1972, “testing can be used to
show the presence of bugs, but never
to show their absence.” So, as programs
become more complicated, it is high
time to augment testing with other
techniques for designing and reasoning
about complicated systems.
Unfortunately, it is very hard to

reason about most distributed systems
in full detail, as is apparent to anyone
who has tried to reason carefully about
a large software system. One reason
this task is so difficult is the paucity
of modeling techniques and tools:
Computer systems are unique among
engineering artifacts in that their
development rarely employs predictive
mathematical models. Another reason
is that, even with adequate models,
proofs about programs can be tedious.
Doing them by hand is cumbersome,
boring, and prone to mistakes. Unless
proofs are machine-generated or
machine-checked, there is little reason
to believe them. And unless the models
used for proofs are tied to the
languages used for programs, there is
little reason to believe that the proofs
have anything to do with the programs.
For several years, computer scientists

at MIT have been attempting to address
these problems by designing models,
languages, and tools for constructing
reliable distributed systems. Related
efforts are underway at universities,
research labs, and companies such as
Cornell, the University of Texas at
Austin, SRI,AT&T, Motorola, and Intel.
All these groups aim to make software

engineering more like other engineering
disciplines through a use of math-
ematical models and methods.
The current focus of our work at MIT

is on IOA, a simple formal language
for modeling distributed systems
(http://theory.lcs.mit.edu/tds/ioa.html).
IOA, which is written in Java, lets
system designers express their designs
at different levels of abstraction,
starting with a high-level specification
of required global behavior and ending
with a low-level version that can be
translated easily into real code. An
accompanying IOA toolset provides
access to a range of validation methods,
including machine-checked proofs and
simulation. IOA tools let designers
reason about properties of their designs
at all levels of abstraction and establish
relationships between different levels.
An additional code-generation tool will
soon connect verified low-level designs
to executable distributed code, thereby
carrying over claims and proofs about
designs to real distributed programs
in programming languages like C++
and Java. IOA’s combination of
verification and code-generation tools
is intended to ensure that the final
programs are correct, subject to
explicitly stated assumptions about the
behavior of externally provided system
components (for example, about the
behavior of standard communication
services).

Modeling Distributed
System Components
The theoretical community has long
modeled distributed systems as
collections of reactive components; that
is, of interacting state machines.
Input/output (I/O) automata, developed
by Nancy Lynch and Mark Tuttle at
MIT, and statecharts, developed by
David Harel at the Weizmann
Institute, are two such formalisms.
Each can be used to model system
components that interact with each
other and that operate at different

speeds. Each has mechanisms for
composing modeled components into
larger systems. Statecharts have an
appealing graphical representation,
but I/O automata are more amenable
to formal proofs.
An I/O automaton is a simple type of

state machine in which transitions
from state to state are associated with
named actions. The actions are
classified as input, output, or internal.
The inputs and outputs are used for
communication with other automata,
whereas internal actions are visible
only to the automaton itself. The
automaton controls which output and
internal actions are performed, but not
which input actions occur; other
automata initiate these actions, and
the automaton cannot block them from
occurring.
For example, Figure 1 shows a

communication channel between two
nodes, i and j, in a distributed system.
Node i can place a message m in the
channel via a send action, after which
the channel can deliver the message
via a receive action to node j. An
additional crash action, generated by
the environment, can affect the
behavior of the channel. The circle
represents the channel, an incoming
arrow an input action, and outgoing
arrow an output action. Figure 1 does
not show the channel’s internal actions,
which may divide messages into
packets, forward them through routers,
and reassemble them for delivery to j.
Central to the I/O automaton model

is its trace-based notion of external
behavior. Traces are permissible
sequences of input and output actions,
which serve to distinguish one kind of
automaton or communication channel
from another. A reliable first-in/first-
out (FIFO) channel, such as that
provided by the standard Internet TCP
protocol, neither loses nor reorders
messages. An unreliable channel, such
as that provided by the UDP protocol,
may lose or reorder messages. Thus,

sendij(m)

crash

receiveij(m)

Figure1: Communication channel.

4 BYTE Spring 2002 www.byte.com

DISTRIBUTED SYSTEMS

the traces …send1,2 (A)…send1,2 (B)…
crash…receive1,2 (B)…send1,2 (A)
…send1,2 (B)…receive1,2 (B)…send1,2
(C)…receive1,2 (A)… can be traces of
UDP, but not of TCP. Other kinds of
channels may duplicate messages or
even inject spurious ones. Defining
external behavior in terms of traces
lets us view systems at varying levels
of abstraction, compare them by
comparing their traces, and describe
the behavior of a composite system by
identifying the inputs of some
components with the outputs of others,
and then by interleaving the traces of
the components.
Automata produce r external behavior

by performing transitions that affect
their internal states. Figure 2 shows
the specification of a reliable FIFO
channel in IOA. The specification says
nothing about how the channel is
implemented to ensure reliable
delivery. It simply requires that
messages be received in the order they
are sent, with no duplicates or
omissions.
The channel automaton in Figure 2 is

parameterized by two data types, Node
and Msg, which can be instantiated to
describe the identifiers for com-
municating nodes (that is, IP addresses
or domain names) and the messages
that can be sent (strings or numeric
data). It is also parameterized by two
identifiers, i and j, for the sending and
receiving nodes. Its signature contains
a single send/receive action for each m
in Msg and a single crash action. The
keyword const indicates that the values
of i and j in these actions are fixed by
the values of the automaton’s param-
eters. Its state consists of a single
variable, buffer, which initially contains
an empty sequence of messages.
The transitions of channel are

described in terms of their precon-
ditions and effects. A precondition is a
predicate on the state indicating the
conditions under which an action can
occur (for example, buffer must be

nonempty and have message m at its
head for a receive action to occur). Input
actions have no preconditions because
they can occur at any time. The effect
describes the changes that occur as a
result of the action, either in the form
of a simple program (appending m to
buffer or removing m from its head, for
example) or in the form of a predicate
relating the states before and after the
action occurs. At the level of abstraction
in Figure 2, the crash action has no
effect on the state of a reliable channel.
Specifications for less reliable

channels differ from that in Figure 2
in any number of ways. Figure 3
illustrates some of the possibilities. The
crash action for an in-order at-most-
once message-delivery service might
simply delete some number of elements
from buffer, but not change the order
of the remaining elements. And the
state of an unreliable channel might
be represented as a set rather than a
sequence, and the crash action might
delete some number of elements from
that set.

Reasoning About Distributed
Systems Components
Communication channels play a central
role in distributed systems. It is
important that client programs
understand—and rely on no more
than—the guarantees they provide.And
it is important that a channel’s
implementation actually provides those

guarantees. System designers often
balance the behavior a communication
channel or other component guarantee
against its performance costs. Strong
guarantees, such as those provided by
a reliable FIFO channel, may be
essential for electronic funds transfer.
However, weaker guarantees may be
more appropriate for applications where
latency (the time it takes to deliver a
message) is more important than
absolute accuracy. For example, people
using Internet telephony may not be
bothered if static obscures occasional
syllables, but may become impatient if
the network interjects long pauses in
their conversation. For applications like
this, it makes sense to sacrifice accuracy
for speed.
Before the development of IOA, people

at MIT were designing an efficient
message-delivery service that was
allowed to lose occasional messages.
They proposed a simple abstract
specification of the service that would
be easy for clients to understand—the
one just cited in which a crash can
delete some number of elements from
buffer, but not change the order of the
remaining elements. In IOA, a simple
definition

input crash
eff buffer := choose b where b buffer

for the crash action was enough to
describe such a “lossy” channel. To use

www.byte.com Spring 2002 BYTE 5

automaton channel(Node, Msg: type, i, j: Node)

signature

input send(m: Msg, const i, const j)

output receive(m: Msg, const i, const j)

input crash

states buffer: Seq[Msg] := {}

transitions

input send(m, i, j)

eff buffer := buffer |- m

output receive(m, i, j)

pre buffer {} m = head(buffer)

eff buffer := tail(buffer)

input crash

Figure 2: IOA specification of a reliable communication channel.

it, you only had to provide axioms for
a subsequence relation () to supplement
IOA’s built-in definitions for the
operations head, tail, and append (|-).
The designer’s distributed implementa-
tion of the lossy channel was con-
siderably more complicated than this
specification—the sending node would
periodically retransmit sequence-
numbered messages until the receiving
node acknowledged receipt or receipt
of a higher numbered message. But the
designers saw no reason to confuse
clients with these details.
The designers were not particularly

happy, however, with a long and
complicated proof constructed to show
that their implementation met their
specification. They feared that even
small programming changes, designed
to increase efficiency, might break the
proof if not the entire implementation.
Hence, they sought advice from an
expert in verification to find a simpler
proof—one less sensitive to changes in
the implementation. The expert’s re-
sponse was disappointing: Their proof
was complicated, he claimed, because
they were using the “wrong” speci-
fication! According to the expert,

messages in transit when a crash
occurs might not be lost, only delayed;
hence, a more honest and tractable
specification would represent the loss
of a message as a separate action, which
could occur subsequent to a crash.
Figure 4 is the considerably more

complicated “honest” specification
formulated in IOA. In that
specification, the crash action does not
result in the immediate loss of mes-
sages from the queue; rather, it marks
messages as losable by subsequent
internal actions. In addition, new
axioms defined new operators such as
markAllMessages and deleteSome-
MarkedMessages. This was hardly a
specification the designers wanted to
show to users.
Fortunately, the designers were able

to have their cake and to eat it too: The
two specifications were actually
equivalent in that they had the same
set of traces. Once this equivalence had
been established, the designers could
show the simpler specification to
clients, and use the more detailed
specification to simplify their original
proof that their implementation was
correct.
How was equivalence established?

Two proofs were involved, one to show
that every trace of the desired user
specification (specification A in Figure
5) was also a trace of the honest
specification (specification B), and
another to show trace inclusion in the
other direction. The first proof involved
the construction of a so-called forward
simulation relation between the states
of A and those of B. As shown in Figure
5, such a relation R must satisfy two
conditions:

• Each initial state of A (shown in
black) must be R-related to some
initial state of B (shown in red).
• For each transition (sA, a, sA’) of
A and each state sB of B such that
(sA, sB) is in R there must be an
execution fragment (that is, a

6 BYTE Spring 2002 www.byte.com

DISTRIBUTED SYSTEMS

G F B A

G F BG F B A

E D C

Reliable FIFO Channel

E D C

In-Order, At-Most-Once Channel

D
E

C
A

Unreliable Channel

Figure 3: Different communication channel behaviors.

axioms MarkedMessage for Mark[__]

automaton honestSpec(Node, Msg: type, i, j: Node)

signature

input send(m: Msg, const i, const j)

output receive(m: Msg, const i, const j)

input crash

internal lose

states buffer: Seq[Mark[Msg]] := {}

transitions

input send(m, i, j)

eff buffer := buffer |- [m, unmarked]

output receive(m, i, j)

pre buffer {} m = head(buffer).msg

eff buffer := tail(buffer)

input crash

eff buffer := markAllMessages(buffer)

internal lose

eff buffer := deleteSomeMarkedMesages(buffer)

Figure 4: Revised IOA specification of a lossy communication channel.

sequence of transitions) of B that
corresponds to the given transition
in a particular way; namely, it has
the same trace and leads to a state
sB’ with (sA’, sB’) in R. Given such
a simulation relation R, it is easy
to map, step by step, any trace of A
to a trace of B.

For the lossy channel, the required
simulation relation simply throws
away the marks accompanying each
message in B’s buffer. This relation is
easy to define in IOA: forward
simulation from A to B: A.buffer =
messages(B.buffer).
The proof that this relation has the

required properties is also easy: The
send and receive actions in A and B
correspond in the natural way, and A’s
crash action corresponds to a crash
followed by an immediate loss in B. In
fact, the proof is so easy that it takes
little effort to get LP (an automated
proof assistant developed at MIT; see
http://nms.lcs.mit.edu/Larch/LP/overview
.html) to check every detail; LP re-
quired but a single hint from users to
find the proof.
The second proof, that every trace of

B is also a trace of A, requires a more
elaborate notion of a simulation
relation, a more complicated definition
of the simulation relation: backward
simulation from B to A: s (A.buffer =
messages(s) subseqMarked(s, B.buffer)),
is a longer proof that the definition has
the required properties, and more hints
(about a dozen) to guide LP through
the proof. But once done, the two
machine-checked proofs made it clear
that the two specifications for the lossy
channel were really equivalent.

The IOA
Language and Toolset
This design experience motivated the
development of IOA at MIT. It showed
that I/O automata could be used to help
in the design of real systems, and also
that proofs based on I/O automata were

well suited to computer-assisted
verification. At the same time, it
showed the need for a new language,
because practical use of I/O automata
demanded tool support. Tool support,
in turn, demanded a language for
describing I/O automata.
Designing the IOA language was a

challenge because it had to support both
proofs and compilation of executable
code. These twin demands created a
tension in the design because features
that make languages suitable for
proofs—a declarative style, simplicity,
and nondeterminism—differ from those
that make them suitable for code
generation—an imperative style,
expressive power, and determinism.
Nondeterminism is good for proofs
because it lets designers validate
general designs; for example, designers
can describe an at-most-once message-
delivery service without having to
specify which messages, if any, are
dropped. Furthermore, a simple
language with a declarative style is
easiest to translate into the input
languages of standard theorem provers
and to manipulate in interactive proofs.
On the other hand, programmers prefer
more expressive languages, and a
deterministic language with an
imperative style is easiest to translate
into executable code.
To meet its twin objectives, IOA

permits transition definitions that use

simple programs, predicates, or a
combination of the two. Furthermore,
accompanying tools support trans-
forming specifications from one form
into another, depending on whether
the task at hand is verification or code
generation. Since the I/O automaton
model is a reactive system model
rather than a sequential program
model, the IOA language reflects this
fundamental distinction. That is, IOA
is not a standard sequential pro-
gramming language with some addi-
tional constructs for concurrency and
interaction; rather, these concepts are
at its core.
The IOA language is accompanied by

a set of software tools, which are
designed to make IOA easy to use.
Basic tools include a prettyprinter for
producing easy-to-read listings, and a
static checker for detecting syntactic
and semantic errors that might
indicate deeper problems with a
specification or might confuse a reader.
A simulator runs sample executions

of an IOA program, letting users help
select the executions. It helps users
perform sanity checks, by letting them
test purported properties of I/O
automata before attempting to prove
them. A novel kind of paired simulation
aids checking purported simulation
relations. (Somewhat confusingly, IOA
inherited two different senses of the
word “simulation” from other areas in

www.byte.com Spring 2002 BYTE 7

SB,0

SA,0

SB

SA

SB’

SA’

States of B

States of A

RRR

β

α

Figure 5: Requirements for a forward simulation relation.

computer science.) A paired simulation
checks whether a candidate relation R
can be a simulation relation from A to
B by simulating A as usual, and using
its execution to generate a corre-
sponding execution of B.The simulation
also checks that B’s actions satisfy their
preconditions, that explicit non-
deterministic choices satisfy required
constraints, that the simulating frag-
ment has the same external behavior
as the given transition, and that the
relation R holds between the states of
the two automata after the transition.
Interfaces to existing proof tools

support:

• Proving lemmas and theorems
about properties of data types used
to define automata.
• Checking the conditions of
formation for I/O automata (for
example, that the sets of input,
output, and internal actions are
disjoint).
• Proving invariants of automata
(properties true in every reachable
state).
• Proving simulation relations
between automata.

Some of these properties can be
checked statically for some automata,
but many require theorem-proving
assistance. Proof tool interfaces can

suggest lemmas and proof tactics that
existing proof tools would not discover
on their own.
Experience shows that the benefits

of machine-checked proofs outweigh
the additional effort required to con-
struct them. The principal advantage
is that machine-checked proofs are
more reliable. They are harder than
manual proofs primarily where manual
proofs are vague and, therefore,
suspect. An additional benefit is that
careful checking helps you see exactly
what is necessary to ensure the desired
properties. At times, this leads to
simplifications in a system’s design. A
final benefit is that machine-checked
proofs are easy to repeat, particularly
for regression proving after a small
change in design requirements or
implementation. Without machine
assistance, programmers are likely to
skimp on such proofs, believing that
the change couldn’t possibly affect
properties that are tedious to recheck.
Finally, a still-to-come code generator

will translate low-level IOA speci-
fications (produced and verified by the
user with the aid of other IOA tools)
into Java code that runs on a collection
of workstations communicating via
standard networking protocols such as
MPI. The code generator will help
overcome the current problematic and
widespread disconnect between formal

specifications and system implementa-
tions. Central to its operation are
multiple models for external system
services. Abstract models describe
interfaces and behaviors of com-
munication channels that system
designers want to use (for example,
reliable FIFO channels). Lower-level
concrete models describe the actual
interfaces and behaviors of existing
external services (TCP or MPI, for
instance). The code generator provides
auxiliary IOA automata for each
external service that, as in Figure 6,
combine either with the service’s
concrete model to implement a desired
abstract channel or with an IOA
program designed to run on nodes of
the distributed system. In so doing, it
generates code that is guaranteed to
use the external service correctly.

Building Systems
Out of Components
In addition to supporting precise
descriptions for system components,
such as communication channels, IOA
also supports precise descriptions for
larger systems, obtained by assembling
those components. As for components,
it also supports reasoning about larger
systems at different levels of abstraction.
Consider, for example, a toy banking

system in which a single bank account
is accessed from several locations, using
deposit and withdrawal operations and
balance queries. Figure 7 shows an
abstract view of the system, in which
a central bank interacts with several
automatic teller machines, responding
to deposit and withdraw actions by an
ok action, and responding to a query
action with a balance action after
computing the reported balance by an
internal compute action.
The IOA specification for the ATMs

(Figure 8) describes the operations they
can invoke and when. The specification
expresses a simple condition for the
way in which each ATM interacts with
the bank, namely, an operation must

8 BYTE Spring 2002 www.byte.com

DISTRIBUTED SYSTEMS

Abstract Channel

Auxiliary Automata

Code Generated for Nodes

External Communication Service

Figure 6: Code generation strategy.

complete before the ATM can submit
another.
A corresponding specification (not

shown) describes what the bank is
allowed to do, without any details of
the distributed implementation. In
response to a balance action, the bank
automaton performs an internal action
to compute the result of some set of
prior deposits and withdrawals that
includes all operations submitted at
the ATM issuing the query; then it
reports that result. The response need
not reflect deposit and withdrawal
operations submitted at other ATMs.
A parameter to the bank automaton
indicates the number of ATMs it
supports.
The external signature of the bank

automaton and the ATM automata are
mirror images. Input actions of one
correspond to output actions of the
other. This enables the banking system
in Figure 7 to be described as a com-
position of the bank automaton and the
requisite number of ATM automata:

automaton AbstractBank(nLocs: Int)
components B: Bank(nLocs);

A[loc: Int]: ATM(loc) where loc < nLocs

IOA’s composition mechanism enables
the bank and ATM automata to
communicate. It identifies actions with
the same name and arguments in
different components, for example, the
input action deposit(loc, amt) for
Bank(nLocs) with the output action
deposit(loc, amt) for ATM(loc). When
any component automaton performs a
transition involving an action, so do all
component automata that have the
action in their signatures.
Composition also facilitates the

description of a distributed imple-
mentation of the banking system. In
that composition, reliable FIFO com-
munication channels, as specified in
Figure 2, connect Branch automata,
which work locally to process deposits
and withdrawals, but send explicit

messages to all other branches when
they receive balance queries. A Branch
automaton collects responses to these
messages and combines them with its
own known operations to calculate the
response to the balance query.

automaton DistributedBank(nLocs: Int)
components B[loc: Int]: Branch(loc)

where loc < nLocs;
L[loc: Int]: ATM(loc)

where loc < nLocs;
C[i, j: Int]: channel(Int,

M, i, j) where i <
nLocs j < nLocs i ~= j

hidden send(m, i, j), receive(m, i, j)

The hidden clause hides output
actions of component automata by
reclassifying them as internal actions.
This prevents them from being used
for further communication and means
that they are no longer included in
traces.
Just as the two specifications for the

lossy queue were shown to have the
same traces, so too can the Distri-
butedBank (Figure 9) be shown to
implement the AbstractBank; that is,
to show that all its traces are also traces
of AbstractBank. Indeed, a proof of this
fact has been checked using LP.
However, the proof is quite lengthy, and
work is now under way to shorten it

www.byte.com Spring 2002 BYTE 9

ATM
3

ATM
1

BANK

deposit (1, amt)

ok(1)

query(2)

ok(3)

balance(2, amt)

withdraw(3, amt)

compute(2)

ATM
2

Figure 7: Abstract banking system.

automaton ATM(loc: Int)

signature

input ok(const loc),

balance(const loc, amt: Int)

output deposit(const loc, amt: Int) where amt > 0

withdraw(const loc, amt: Int) where amt > 0,

query(const loc)

states active: Bool := false

transitions input ok(loc)

eff active := false

output deposit(loc, amt)

pre ~active

eff active := true

% ... transitions for other actions defined similarl

Figure 8: IOA specification for ATM machine.

(and similar proofs) by using simulation
to suggest potentially useful lemmas.

Conclusion
What makes IOA exciting is its poten-

tial for assisting in the development of
well-engineered software systems not
just for banking, but for many other
applications. Designers can propose
and reason about the effects of using
different components and com-
munication mechanisms to build their
systems. And when they are satisfied
they have the right design, they can
generate actual code directly from it
without having to fear that pro-
grammers will misunderstand the
design or introduce transcription errors
when coding it.
Languages like IOA and their sup-

porting tools will not make testing
obsolete; indeed, simulation in IOA is
a form of testing. However, such
languages and tools will lead to much
more reliable systems than can be
achieved by testing alone. ■

DISTRIBUTED SYSTEMS

10 BYTE Spring 2002 www.byte.com

ATM
3

ATM
1

Branch
1

Branch
2

Branch
3

deposit (1, amt)

query(2)

ok(3)

balance(2, amt)

withdraw(3, amt)

compute(2)

ATM
2

ok(1)

Figure 9: Distributed implementation of banking system.

