
Simulating Nondeterministi Systems at Multiple Levels ofAbstrationDilsun K�rl� Kaynar, Anna Chefter, Laura Dean, Stephen J. GarlandNany A. Lynh, Toh Ne Win, Antonio Ram��rez-RobredoMIT Laboratory for Computer Siene�AbstratIOA is a high-level distributed programming language based on the formal I/O automatonmodel for asynhronous onurrent systems. A suite of software tools, alled the IOA toolkit,has been designed and partially implemented to failitate the analysis and veri�ation of dis-tributed systems using tehniques supported by the formal model. An important proof tehniquefor distributed systems de�ned by a hierarhy of abstrations involves the notion of a simulationrelation between pairs of automata at di�erent levels in the hierarhy. The IOA toolkit's sim-ulator tests purported simulation relations by exeuting the low-level automaton and, given aproposed orrespondene between its steps and those of the higher-level automaton, generatingand heking an exeution of the higher-level automaton. One heked by the simulator, thesimulation relation and the step orrespondene an be used in onjuntion with the toolkit'sproof tools to onstrut a formal proof that the low-level automaton implements the higher-levelone. This paper presents a ase study that illustrates this use of the IOA toolkit to prove orretan algorithm for mutual exlusion. The ase study shows how tools like the IOA simulator anplay an important role in proving distributed systems orret.1 IntrodutionThe input/output (I/O) automaton model [LT89, Lyn96℄ is a labeled transition system modelsuitable for desribing systems with asynhronously interating omponents. In this model, aomponent is represented as an I/O automaton whih is a nondeterministi, possibly in�nite-state,state mahine. The external behavior of eah automaton is de�ned by a simple mathematial objetalled a trae.The I/O automata model supports viewing systems at multiple levels of abstration. A systeman be desribed �rst at a high-level of abstration, apturing only the essential requirements aboutits behavior, and then be re�ned suessively until the desired level of detail is reahed. The modelde�nes what it means for an automaton to implement another (in terms of trae inlusion), and itintrodues the notion of a simulation relation as a suÆient ondition to prove an implementationrelation between two automata. A parallel omposition operator, also inluded in the model, allowsone to deompose the desription, analysis and veri�ation of large and omplex systems.IOA [GL00, GL98℄ is a formal language for desribing I/O automata. It an be regarded asa high-level distributed programming language. Its design was driven by a motivation to supportboth simulation [Che98, RR00, Dea01℄ and veri�ation [Bog01℄. The IOA toolkit is a partially�Corresponding address: 200 Tehnology Square, Cambridge, MA 02139, USA, dilsun�theory.ls.mit.edu. Cur-rently, Chefter is employed by Merill Lynh, Dean is employed by Oryxa, and Ram��rez is in the PhD program inmathematis at Stanford University.

implemented set of software tools that support the design, analysis, and development of systemswithin the I/O automaton framework. The toolkit ontains a front-end that heks whether systemdesriptions (IOA programs) omply with IOA's syntax and stati semantis, and that produesan intermediate representation of the ode for use by the bak-end tools (a simulator, interfaes toa number of existing theorem provers, model hekers, and an automati ode generator).A key feature of the I/O automaton model is nondeterminism. Nondeterminism allows systemsto be desribed in their most general forms and to be veri�ed onsidering all possible behaviorswithout being tied to a partiular implementation of a system design. The results obtained for anondeterministi system arry over to di�erent implementations of the same system. Nondetermin-ism also makes it easier to prove orretness in the absene of extraneous, unneessary restritions.A key hallenge in the design of IOA has been to provide support for both simulation and ver-i�ation in a uni�ed framework. Nondeterminism in IOA assists veri�ation in the ways notedabove. On the other hand, nondeterminism ompliates simulation, whih must hoose partiularexeutions. Therefore, simulation requires mehanisms for resolving nondeterminism. The IOAlanguage and toolkit provide suh mehanisms. Moreover, these mehanisms turn out to be usefulnot just for simulation, but for veri�ation as well.In this paper, we desribe by means of a ase study how the IOA toolkit an be used forsimulating and subsequently verifying distributed algorithms. We fous on the apability of theIOA simulator to simulate pairs of I/O automata at di�erent levels of abstration. Users presentthe paired simulator with desriptions of two automata, a andidate simulation relation, and amapping, alled a step orrespondene, from the ations of the lower-level automaton to sequenesof ations of the higher-level one. The simulator simulates the low-level automaton, heks whetherthe trae of the high-level automaton indued by the step orrespondene is idential to that of thelow-level automaton, and heks whether the andidate simulation relation holds throughout thesimulated exeutions.In our ase study we present an algorithm for mutual exlusion and use the paired simulator toobtain evidene that this algorithm satis�es the mutual exlusion property. We then verify that thealgorithm satis�es this property with LP [GG91℄. The toolkit failitates the automati translationof the algorithm and the andidate simulation relation into the language of LP.Related work Other toolkits suh as AsmL [GSV01℄ tools, Moha [dAAG+00℄, the SMV sys-tem [MM℄, and TLC [LY01℄ support simulation or veri�ation of onurrent and distributed sys-tems. The IOA toolkit di�ers from these in that it ombines paired simulation apability withtheorem-proving based veri�ation. AsmL failitates simulating systems at di�erent levels of ab-stration, heking step by step whether a system satis�es its spei�ation, but it does not supportusing paired simulation in onjuntion with proof tools. The veri�ation omponents of Moha,SMV, and TLC use model heking and hene are limited to exploring �nite state spaes; the prooftools in the IOA toolkit apply to �nite and in�nite systems alike. Another feature that distin-guishes the IOA toolkit from other tools is the onnetion of its simulator to a program analysistool [ECGN01℄ for automati invariant disovery.2 I/O automata and the IOA LanguageThis setion inludes a brief introdution to the I/O automaton model and the IOA Language. Werefer the reader to [Lyn96, GL98℄ for an in-depth introdution.

2.1 Theoretial bakgroundAn I/O automaton is a simple type of state mahine in whih the transitions between states areassoiated with named ations �. The ations are lassi�ed as either input, output, or internal.The input ations are assumed not to be under the automaton's ontrol, whereas the automatonitself ontrols whih output and internal ations should be performed. An I/O automaton onsistsof a signature, whih lists its ations, a set of states, some of whih are distinguished as start states,a state-transition relation, whih ontains triples of the form (state, ation, state), and an optionalset of tasks. We do not onsider automata with tasks in this paper.An ation � is said to be enabled in a state s if there is another state s0 suh that (s; �; s0) isa transition of the automaton. Input ations are enabled in every state. The operation of an I/Oautomaton is desribed by its exeutions s0; �1; s1; : : : , whih are alternating sequenes of statesand ations, and its traes, whih are the externally visible behavior ourring in exeutions. Oneautomaton is said to implement another if all its traes are also traes of the other. The parallelomposition operator allows an output ation of one automaton to be identi�ed with input ationsin other automata; this operator respets the trae semantis.The I/O automaton model provides support for system desriptions at multiple levels of ab-stration. The proess moving through a series of abstrations, from higher to lower levels, is alledsuessive re�nement. To prove that one automaton implements another, one needs to show thatfor any exeution of the lower level automaton there is a orresponding exeution of the higherlevel automaton. The notion of a simulation relation proves useful in onstruting proofs of imple-mentation relations.De�nition 2.1 (Forward simulation). A forward simulation from automaton A to automatonB is a relation f on states(A)� states(B) with the following properties:1. For every start state a of A, there exists a start state b of B suh that f(a; b).2. If a is a reahable state of A, b is a reahable state of B suh that f(a; b), and a �! a0, thenthere exists a state b0 of B and an exeution fragment � of B suh that b �! b0, f(a0; b0) holds,and trae(�) = trae(�).Theorem 2.1. If there is a forward simulation relation from A to B, then every trae of A is atrae of B. (See [Lyn96℄ for a proof.)2.2 The IOA languageIn the IOA language, the desription of an I/O automaton has four main parts: the ation signature,the states, the transitions, and the tasks of the automaton. States are represented by olletions oftyped variables. The transition relation is usually given in preondition-e�et style, whih groupstogether all transitions that involve a partiular ation into a single piee of ode. Eah de�nitionhas a preondition (indiated by the keyword pre), whih desribes a ondition on the state thatshould be true before the transition an be exeuted, and an e�et (indiated by the keyword e�)whih desribes how the state hanges when the transition is exeuted. The entire piee of ode inthe e�et of a transition is exeuted indivisibly. If pre is not spei�ed, then it is assumed to alwayshold.The ode may be written either in an imperative style, as a sequene of assignment, onditional,and looping instrutions, or in delarative style, as a prediate relating state variables in the pre-and post-states, transition parameters, and nondeterministi parameters. It is also possible to usea ombination of these two styles.

Nondeterminism appears in IOA in two ways: expliitly in the form of hoose onstruts instate variable initializations and the e�ets of the transition de�nitions, and impliitly, in the formof ation sheduling unertainty. We present examples for both forms of nondeterminism later inthe paper and desribe how they are resolved by the IOA simulator.2.3 Example: Spei�ation of mutual exlusionWe present a sample IOA program to illustrate some of the language onstruts disussed aboveand to introdue the mutual exlusion problem that onstitutes the basis of our ase study. Webuild on this example gradually as we disuss simulation and proof tehniques based on simulationrelations.The mutual exlusion problem involves the alloation of a single, indivisible, non-shareableresoure among n proesses. The resoure ould be an output devie that requires exlusive aessto produe sensible output or a data struture that requires exlusive aess in order to avoidinterferene among the operations of di�erent proesses. A proess with aess to the resoure ismodeled as being in a ritial region, whih is a designated subset of its states. When a proessis not involved in any way with the resoure, it is said to be in the remainder region. In order togain admittane to its ritial region, a proess exeutes a trying protool ; after it is done with theresoure, it exeutes an exit protool. This proedure an be repeated so that eah proess followsa yle, moving from its remainder region to its trying region and arriving bak at the remainderregion after going through ritial and exit regions.We onsider mutual exlusion within the shared memory model explained in [Lyn96℄. The sharedmemory system ontains n proesses, numbered 1; : : : ; n. The try; rit; exit, and rem ations arethe only external ations of a proess. Input ations onsist of tryi, whih models a request foraess to the resoure by proess i, and exiti, whih models an announement that proess i is donewith the resoure. Output ations onsist of riti, whih models the granting of aess to proessi, and remi, whih tells proess i that it an ontinue with the remainder of its work. Formally, wede�ne a sequene of tryi; riti; exiti, and remi ations to be well-formed for proess i if it is a pre�xof the ylially ordered sequene tryi; riti; exiti; remi; tryi0 ; : : : The automaton Mutex (Figure 1)is an IOA spei�ation of mutual exlusion for three proesses in whih the well-formedness ofinteration with the environment is guaranteed.The state variable regionMap maps proess indies to regions and keeps trak of the urrentregion of eah proess. The initialization of regionMap to onstant(rem) de�nes the start state.The transition de�nitions are mostly self-explanatory. Eah ation updates the variable regionMapto reord the region entered upon its exeution. The transition de�nition for rit imposes themutual exlusion ondition: a proess in a trying region is allowed to enter its ritial region onlyif there is no other proess that is in region rit.2.4 Example: An algorithm for mutual exlusionFigure 2 ontains IOA ode for an algorithm for mutual exlusion. Comments in the ode indiateitems that will be of partiular interest when we disuss the mehanism for resolving nondetermin-ism to enable simulation. We start, however, by explaining the algorithm briey, pointing at thesoures of nondeterminism.The algorithm desribed by the automaton DijkstraInt is a simpli�ed version of a mutualexlusion algorithm by Dijkstra presented in [Lyn96℄. It abstrats away those parts in the originalalgorithm dediated to dealing with liveness. The suÆx \Int" in the automaton name indiatesthat we onsider it to be an intermediate level algorithm: not at as high a level as the spei�ation,

type Index = enumeration of p1, p2, p3type Region = enumeration of rem , try, rit , exitautomaton Mutexsignature output try(p: Index), rit (p: Index), exit (p: Index), rem(p: Index)states regionMap : Array[Index, Region ℄ := onstant (rem)transit ionsoutput try(p)pre regionMap [p℄ = reme f f regionMap [p℄ := tryoutput rit (p)pre regionMap [p℄ = try ^ 8 u: Index (p 6= u) regionMap [u℄ 6= rit)e f f regionMap [p℄ := ritoutput exit (p)pre regionMap [p℄ = rite f f regionMap [p℄ := exitoutput rem(p)pre regionMap [p℄ = exite f f regionMap [p℄ := remFigure 1: Spei�ation of mutual exlusionyet less detailed than the original algorithm of Dijkstra.The automaton DijkstraInt uses two types, PValue and Stage, in addition to those in Figure 1.Values of type PValue represent possible program ounter values for a proess, while values of typeStage represent stages of the algorithm. The automaton has four external and four internal ations.The external ations have the same names as those of Mutex in Figure 1. This is no oinidene, asour ultimate aim is to show that DijkstraInt implements mutual exlusion as spei�ed by Mutex.The algorithm has two stages. The �rst, stage1, indiates that a proess is either inative oris about to enter the seond stage. The seond, stage2, embodies the ruial steps and determineswhether a proess is allowed to enter its ritial region. A proess an enter its ritial region only ifall other proesses are in stage1. The transition de�nition for ation hek details how this works.Eah proess p uses a set S[p℄ to keep trak of the proesses that it has deteted as being in stage1.The state variables flag and p reord the stage of the algorithm for eah proess and ontrol theorder of ourrene of the ations mimiking the program ounter for a proess.Expliit nondeterminism in this example arises from the hoose statement in the transitionde�nition for ation hek. When a proess p performs the hek ation, it nondeterministiallyhooses the proess u to be heked. The prediate in the where lause allows the nondeterministihoie to yield any proess that is not already in the set S[p℄. Impliit nondeterminism also arises inthis example, beause there may be more than one ation enabled at a time. Consider, for example,the very �rst ation to be performed by the automaton. Sine the program ounters (p) of allproesses are initialized to rem, all proesses are enabled to perform the try ation. To simulatethis automaton, one must selet one of these proesses to start exeution.3 Simulation and nondeterminism resolutionThe simulator runs sample exeutions of an IOA program, allowing the user to help selet theexeutions. It generates logs of exeution traes and displays information upon the user's request.The IOA Language allows users to propose invariants, whih the simulator heks in the seletedexeutions.The simulator requires that IOA programs be transformed into a form suitable for simulation.

type PValue = enumeration of rem , setflag1 , setflag2 , hek, leavetry ,rit , reset , leaveexittype Stage = enumeration of stage1 , stage2automaton DijkstraIntsignatureoutput try(p: Index), rit(p: Index), exit (p: Index), rem(p: Index)internal setflag1 (p: Index), setflag2 (p: Index), hek(p: Index), reset(p: Index)statesflag : Array[Index, Stage℄ := onstant (stage1),p: Array[Index, PValue ℄ := onstant (rem),S: Array[Index, Set[Index ℄℄ := onstant ({}),u: Indextransit ionsoutput try(p)pre p[p℄ = reme f f p[p℄ := setflag1internal setflag1 (p)pre p[p℄ = setflag1e f f flag [p℄ := stage1 ; p[p℄ := setflag2internal setflag2 (p)pre p[p℄ = setflag2e f f flag [p℄ := stage2 ; S[p℄ := {p}; p[p℄ := hekinternal hek(p)pre p[p℄ = heke f f u := hoose x: Index where :(x 2 S[p℄);%% expliit nondeterminism to be resolved for simulationi f flag[u℄ = stage2 then S[p℄ := {}; p[p℄ := setflag1e lse S[p℄ := S[p℄ [{u};i f 8 i: Index (i 2 S[p℄) then p[p℄ := leavetry f if ioutput rit (p)pre p[p℄ = leavetrye f f p[p℄ := ritoutput exit (p)pre p[p℄ = rite f f p[p℄ := resetinternal reset(p)pre p[p℄ = resete f f flag [p℄ := stage1 ; S[p℄ := {}; p[p℄ := leaveexitoutput rem(p)pre p[p℄ = leaveexite f f p[p℄ := rem%% impliit nondeterminism to be resolved for simulationFigure 2: An algorithm for mutual exlusion

The ruial problem in this transformation is resolving nondeterminism. The nondeterminismresolution approah adopted by the IOA simulator is to assign a program, alled an NDR program,to eah soure of nondeterminism in an automaton. There is an NDR program orresponding toevery hoose statement, and an NDR program for sheduling the ations of the automaton. Weexplain the nondeterminism resolution mehanism of the IOA simulator by referring to the examplepresented in Setion 2.4.3.1 Resolving expliit nondeterminismA simple NDR program (determinator), given below, resolves the expliit nondeterminism for thehek ation in the automaton DijkstraInt. It yields a proess index that is not in S[p℄. Thisindex is guaranteed to di�er from p beause p is plaed in S[p℄ before hek is enabled, and it isguaranteed to exist beause hek is no longer enabled one S[p℄ ontains all indies.det do i f :(p1 2 S[p℄) then yield p1e l s e i f :(p2 2 S[p℄) then yield p2e l s e i f :(p3 2 S[p℄) then yield p3f iod3.2 Resolving impliit nondeterminismTo resolve impliit nondeterminism, users of the IOA simulator must speify a sheduling poliyusing the language onstruts of IOA. We present below a sample shedule blok that implementsa randomized sheduling poliy for three proesses. It piks a random integer between 1 and 3 anduses this integer to deide whih proess will be given the turn to perform an ation. It heks theenabling onditions for the randomly hosen proess and �res the enabled ation. The while loopthat ontains these steps is nonterminating; the IOA simulator prompts the users for the maximumnumber of steps to simulate and halts the exeution automatially when the predetermined step isreahed.shedulestates pik : Int, p: Indexdo while true dopik:= randomInt (1,3);i f pik = 1 then p := p1e l s e i f pik = 2 then p := p2e lse p := p3f i ;i f p[p℄ = rem then f i r e output try(p)e l s e i f p[p℄ = setflag1 then f i r e internal setflag1 (p)e l s e i f p[p℄ = setflag2 then f i r e internal setflag2 (p)e l s e i f p[p℄ = hek then f i r e internal hek(p)e l s e i f p[p℄ = leavetry then f i r e output rit(p)e l s e i f p[p℄ = rit then f i r e output exit (p)e l s e i f p[p℄ = reset then f i r e internal reset(p)e lse f i r e output rem(p)f iodod3.3 Cheking invariantsThe IOA simulator heks the validity of invariants proposed by users. We present below severalinvariants for the automaton DijkstraInt that are key lemmas for proving the algorithm orret.

In Setion 5 we take up the question of how the user disovers suh lemmas.Eah proess p uses a set S[p℄ to keep trak of suessfully heked proesses, that is, of proessesthat are not ontending with p to enter the ritial region. The �rst assertion states that twoproesses annot both be exeuting the seond stage of the algorithm and be in eah other's set.The seond states that whenever the p value for a proess is leavetry or rit, its set ontainsall of the proesses. These two assertions express the key ideas we will use in our proof: if the pvalues for two proesses were rit at the same time, it would be impossible for assertion1 andassertion2 to be both true.invariant assertion1 of DijkstraInt :8 i: Index 8 j: Index :(i 6= j ^ flag [i℄ = stage2 ^ flag [j℄ = stage2^ i 2 S[j℄ ^ j 2 S[i℄)invariant assertion2 of DijkstraInt :8 i: Index ((p[i℄ = leavetry) 8 j:Index (j 2 S[i℄))^ (p[i℄ = rit) 8 j:Index (j 2 S[i℄)))3.4 Simulator outputThe automaton DijkstraInt from Figure 2 an be simulated with the IOA simulator after insertingthe NDR programs spei�ed in Setion 3 in the indiated plaes. The invariants to be heked needto be appended to the ode.Some output of the simulator for running DijkstraInt is shown below. It displays the stepinvolving the �rst entry to the ritial region (step 21) in a simulation for 200 steps. The simulatorreports errors if any of the invariants fail at a simulated step, if an NDR program attempts to �rea transition that is not enabled, or if it attempts to yield a value that does not satisfy the wherelause of the orresponding hoose statement.[[[[Begin step 21 [[[[transition: output rit(p1) in automaton DijkstraInt%%%% Modified state variables:p --> (ArraySort (ConstantValue rem) (p1 rit) (p2 setflag2) (p3 rem))℄℄℄℄ End step 21 ℄℄℄℄4 Paired SimulationIn this setion, we desribe how the simulator simulates exeution of a pair of automata related by asimulation relation as de�ned in Setion 2. The key problem here is that simulation relation, beingmerely a prediate that relates the states of two automata, does not identify how eah step in theimplementation automaton orresponds to a sequene of steps in the spei�ation automaton. Ingeneral, there might be multiple step orrespondenes that realize a given valid simulation relationbetween automata; even if there is only one, it an be diÆult to �nd it. The problem of deriving aspei�ation-level exeution from an implementation-level exeution is analogous to that of derivinga deterministi exeution of a single automaton from a spei�ation that allows nondeterminism.The design of the paired simulator is based on the observation that it is reasonable and bene�ialto require users to speify a step orrespondene. In most orretness proofs, determining when apartiular ation in the spei�ation is performed by the implementation turns out to be the key tothe proof. By requiring a user to speify the step orrespondene, the simulator atually urges theuser to understand the relationship between the two levels. One the main invariants and the steporrespondene is determined, the rest of the proof is likely to involve routine bookkeeping steps.

4.1 Enoding step orrespondenesA step orrespondene needs to speify, for a given low-level transition, a high-level exeutionfragment suh that exeution of both the low-level transition and the high-level fragment preservesthe simulation relation. Thus, a step orrespondene an be seen as an \attempted proof" of thesimulation relation, missing only the reasoning that shows that the simulation relation is preserved.To speify the proposed proof of a simulation relation, the IOA forward simulation assertion allowsa setion alled proof for speifying the step orrespondene. This setion ontains one entry foreah possible transition de�nition in the low-level automaton; eah entry provides an algorithm forproduing a high-level exeution fragment. In addition to these entries, the proof setion ontainsan initialization blok, whih spei�es how to set the variables of the high-level automaton giventhe initial state of the low-level automaton, and an optional states setion that delares auxiliaryvariables used by the step orrespondene.4.2 Example: Forward simulation from DijkstraInt to MutexFigure 3 de�nes a forward simulation relation in IOA and ontains a proof blok for that relation.Together with the IOA desriptions of Mutex and DijkstraInt augmented with the NDR programsfrom Setion 3, this blok allows one to use the paired simulator to hek whether the relation holdsin the simulated exeutions.The andidate relation in this example is based on the relation between the values of the statevariable p of the low-level automaton and those of the state variable regionMap of the spei�ationautomaton. The intuition behind this relation is as follows. For eah region in the spei�ation ofmutual exlusion there are ertain ations that an be performed by the low-level automaton. Theseations are determined by the p values. The relation states that whenever the program ounterof a proess at the low-level automaton is set to one of setflag1, setflag2, hek, or leavetry, theregionMap of the spei�ation automaton must show region try for the same proess. The rest ofthe relation is de�ned similarly. The delimiter \;" an be interpreted as onjuntion.In paired simulation, the simulation of the low-level algorithm drives the simulation of the high-level one. For eah external ation performed by the low-level automaton, the proof blok diretsthe simulator to �re the ation with the spei�ed name at the high-level. The internal ationsare mathed by empty exeution fragments indiated by ignore statements. The simulator hekswhether the proposed simulation relation holds after the ations are performed. The following is asample output of the paired simulator, displaying the simulation step 17.[[[[Begin step 17 [[[[Exeuted impl transition: output rit(p1) in automaton DijkstraInt%%%% Modified state variables for impl automaton:p --> (ArraySort (ConstantValue rem) (p1 rit) (p2 setflag2) (p3 setflag2))Exeuted spe transition: output rit(p1) in automaton Mutex%%%% Modified state variables for spe automaton:regionMap --> (ArraySort (ConstantValue rem) (p1 rit) (p2 try) (p3 try))℄℄℄℄ End step 17 ℄℄℄℄Note that the simulator gives information about how the states of the two automata hangeupon the ourrene of an ation of the implementation automaton. In this example, eah stepin the low-level exeution is mathed by either a single step or an empty exeution fragment inthe spei�ation. The IOA simulator an also handle paired simulations in whih this is not thease. It allows exeution fragments to be spei�ed by any IOA program onsisting of assignments,onditional, while, and �re statements. For example, a step orrespondene in whih an output

forward simulation from DijkstraInt to Mutex :8 i: Index (DijkstraInt .p[i℄ = setflag1 _ DijkstraInt .p[i℄ = setflag2 _DijkstraInt .p[i℄ = hek _ DijkstraInt .p[i℄ = leavetry, Mutex.regionMap [i℄ = try);8 i: Index (DijkstraInt .p[i℄ = rit , Mutex.regionMap [i℄ = rit);8 i: Index (DijkstraInt .p[i℄ = rem , Mutex.regionMap [i℄ = rem);8 i: Index (DijkstraInt .p[i℄ = reset _ DijkstraInt .p[i℄ = leaveexit, Mutex.regionMap [i℄ = exit);proofi n i t i a l l y Mutex.regionMap := onstant (rem)for output try(p:Index) do f i r e output try(p) odfor output rit (p:Index) do f i r e output rit (p) odfor output exit (p:Index) do f i r e output exit (p) odfor output rem(p:Index) do f i r e output rem(p) odfor internal setflag1 (p:Index) ignorefor internal setflag2 (p:Index) ignorefor internal hek(p:Index) ignorefor internal reset(p:Index) ignoreFigure 3: Forward simulation from DijkstraInt to Mutexation a at the low-level is mathed by a sequene onsisting of an output ation a that is preededand followed by an internal ation b ould be enoded as follows:for output a do f i r e internal b; f i r e output a; f i r e internal b od5 Using simulation results to help onstrut a proof of orretnessIn the previous setion we introdued a method for simulating pairs of automata at di�erent levels ofabstration with the aid of the IOA toolkit. It is important to note that paired simulation providesonly empirial evidene for the orretness of a simulation relation. In most ases it is desirableto omplement this evidene with a proof. In this setion we desribe the support provided by theIOA toolkit for formal veri�ation.5.1 MethodThe IOA toolkit has been designed to support veri�ation of safety properties, whih speify thata \bad' event never happens. LP is an interative theorem proving system for multisorted �rst-order logi and is suitable for reasoning about safety properties expressible in this kind of logi.It admits spei�ations of theories in the Larh Shared Language (LSL). The IOA toolkit inludesa tool alled ioa2lsl [Bog01℄, whih translates IOA de�nitions of automata, their invariants, andsimulation relations into LSL theories. The tool ioa2lsl ombines the de�nition of an automatonwith standard LSL de�nitions of I/O automata to produe axioms in �rst-order logi that desribethe operation of the automaton. These are subsequently used to generate input for LP.5.2 Example: Proof of forward simulationWe now desribe how we proved that a andidate simulation relation, presented in Figure 3 andheked with the paired simulator for seleted exeutions, is atually a forward simulation relationfrom DijkstraInt to Mutex. It then follows from Theorem 2.1 that DijkstraInt implements mutualexlusion.

We �rst used ioa2lsl to proess the �le ontaining the de�nitions of the two automata, theirinvariants, and the simulation relation.1 We then used the LSL Cheker to prepare the axioms andproof obligations for LP.The proof of the simulation relation proeeds by indution. The basis step onsists of showingthat the relation holds for the start state. The proof of the indution step takes the form of proof byases. The heart of the proof lies in providing a \witness" for an existential quanti�er asserting theexistene of a simulating step sequene in the high-level automaton that preserves the simulationrelation and has the the same trae as a given step of the low-level automaton. The step sequenealready onstruted for the paired simulator turns out to be exatly what is needed to provide thiswitness.Proofs of the invariants were routine proofs by indution. The proof of assertion1 gave rise tothe need to prove two other simpler invariants:invariant assertion3 of DijkstraInt :8 i: Index (p[i℄ = leavetry) flag [i℄ = stage2)invariant assertion4 of DijkstraInt :8 i: Index (p[i℄ = rit) flag [i℄ = stage2)5.3 Automati detetion of invariantsFinding key invariants is an essential step in proofs of orretness. Any help from automati toolsin �nding these invariants would alleviate the burden on the user. For example, if a tool oulddisover simple invariants suh as assertion3 and assertion4, whih LP an prove more or lessautomatially, and if LP ould use these to prove the invariants assertion1 and assertion2 usedin the orretness proof, that proof would beome muh easier.We have begun [WE02℄ developing this kind of automated proof assistane by onneting theIOA simulator to Daikon [ECGN01℄, a tool for dynami invariant disovery. The user an instrutthe IOA simulator to reord the values of state variables upon entry to and exit from eah transitionin the ourse of a seleted exeution. Then Daikon an infer invariants about the pre-state andpost-state of eah transition by examining these values.In our preliminary experiments, Daikon was able to infer some potentially useful invariants.For example, Daikon deteted that flag[p℄=stage2 in the pre-state of rit(p). The invariantassertion3 in the previous is just the impliation of this invariant by the preondition of the ritation. We are ontinuing to work on the Daikon-IOA onnetion to detet other useful invariantsand to automate the formulation of invariants suh as assertion3.6 Overview of the implementationA preliminary \IOA toolkit distribution" (software pakage inluding soure and Java exeutables)is available from the home page of the IOA projet (http://theory.ls.mit.edu/tds/ioa.html).The front-end of the toolkit takes IOA desriptions and LSL spei�ations as input and outputsan equivalent spei�ation written in an intermediate language. Eah bak-end tool takes as inputthe intermediate form of an IOA spei�ation. There is ommon support for the bak-end tools inthe form of an intermediate language parser and an internal representation of IOA elements, in theform of a Java lass hierarhy.Data types are de�ned axiomatially in IOA so as to failitate their translation into theoremprover input languages. We provide de�nitions for built-in data types and allow the programmer to1The tool ioa2lsl is still under development, and we had to edit its output to orret a number of small errors.

de�ne new data types using LSL. However, in order to simulate data type operations, the simulatorneeds atual ode for the spei�ed operations. Eah IOA sort is implemented by a Java lass, andeah operator is implemented by a method on that lass. The implementation lasses extend theioa.runtime.ADT lass, whih provides two operators ommon to all IOA data types. The simulatorobtains implementations for sorts and operators by querying a global implementation registry.The simulator shares runtime type libraries with the IOA ode generator to ensure similar odebehavior and to redue repeated ode [Tsa02℄.7 Disussion and onlusionsFormal orretness proofs for distributed systems an be long, hard, or tedious to onstrut. Sim-ulation an be used as a way of testing system designs before delving into orretness proofs. Iteither reveals bugs or inreases on�dene that a system behaves as expeted. Simulation an alsoassist users in onstruting orretness proofs. It is this aspet of simulation that we foused onthroughout this paper.We onsidered nondeterministi systems modeled using the I/O automata formalism and de-sribed how these systems an be simulated with the support of the IOA language and the toolkit.Our aim was to draw attention to a useful apability of the IOA simulator { paired simulation{ that allows users to hek whether two automata at di�erent levels of abstration are relatedby a simulation relation for the seleted exeutions. In the I/O automaton model, the notion ofa simulation relation between two automata is a useful oneptual tool to prove the orretnessof systems. Hene, the ability to propose and hek simulation relations with the IOA simulatoronstitutes a valuable step towards a formal proof based on a simulation relation. The spei�ationof a relation is not the only thing that is required from a user by the paired simulator. A user is alsorequired to speify a step orrespondene that will make the simulation relation hold throughoutpaired simulation. This is partiularly useful sine �nding the right step orrespondene is usuallythe key to the proof of a simulation relation. This indeed happened in our ase study.Another apability of the IOA simulator that helps the onstrution of proofs is invariantheking. The invariants that are observed to be true for simulated exeutions onstitute andidatesfor useful lemmas. The invariants that we heked with the paired simulator in our ase study werelater used as lemmas in the full proof.The ase study in this paper suggests a general methodology for the analysis and veri�ationof distributed systems with the IOA toolkit, using multiple levels of abstration. The basi stepsare to:1. Write the IOA ode for the spei�ation and the implementation automata;2. For eah automaton, resolve nondeterminism and perform simulation to test that the automa-ton behaves as expeted;3. Formulate a andidate forward simulation relation from the implementation automaton tothe spei�ation automaton, speify a step orrespondene and perform paired simulation tohek whether the relation holds for the seleted exeutions;4. Formulate the potentially useful invariants for the proof of the simulation relation and hekwhether they are true for the seleted exeutions;5. Use the tool ioa2lsl to translate the IOA ode for automata and the forward simulation relationto LSL, and to generate proof obligations for LP; and

6. Prove with LP that the simulation relation holds for all possible exeutions, making use ofthe step orrespondene and the key invariants.A urrent projet aims at improving the onnetion between the program analysis tool Daikonand the IOA simulator. We expet this onnetion to ontribute to this methodology by automatingparts of the orretness proofs.Referenes[Bog01℄ Andrej Bogdanov. Formal veri�ation of simulations between I/O automata. Master's the-sis, Department of Eletrial Engineering and Computer Siene, Massahusetts Institute ofTehnology, Cambridge, MA, 2001.[Che98℄ Anna E. Chefter. A simulator for the IOA language. Master's thesis, Department of EletrialEngineering and Computer Siene, Massahusetts Institute of Tehnology, Cambridge, MA,May 1998.[dAAG+00℄ L. de Alfaro, R. Alur, R. Grosu, T. Henzinger, M. Kang, R. Majumdar, F. Mang, C. Meyer-Kirsh, and B.Y. Wang. Moha: Exploiting Modularity in Model Cheking. University ofCalifornia at Berkeley Department of Eletrial Engineering and Computer Sienes, Uni-versity of Pennsylvania Department of Computer and Information Sienes, 2000. URLhttp://www-ad.ees.berkeley.edu/~moha/refs.shtml.[Dea01℄ Laura G. Dean. Improved simulation of Input/Output automata. Master's thesis, Depart-ment of Eletrial Engineering and Computer Siene, Massahusetts Institute of Tehnology,Cambridge, MA, September 2001.[ECGN01℄ Mihael Ernst, Jake Cokrell, William G. Griswold, and David Notkin. Dynamially disover-ing likely program invariants to support program evolution. IEEE Transations on SoftwareEngineering, 27(2):1{25, 2001.[GG91℄ Stephen Garland and John Guttag. A guide to LP, the Larh Prover. Tehnial report, DECSystems Reserah Center, 1991. Updated version avaliable at URL http://nms.ls.mit.edu/Larh/LP.[GL98℄ Stephen J. Garland and Nany A. Lynh. The IOA language and toolset: Support for designing,analyzing, and building distributed systems. Tehnial Report MIT/LCS/TR-762, Laboratoryfor Computer Siene, Massahusetts Institute of Tehnology, Cambridge, MA, August 1998.URL http://theory.ls.mit.edu/tds/papers/Lynh/IOA-TR-762.ps.[GL00℄ Stephen J. Garland and Nany A. Lynh. Using I/O automata for developing distributedsystems. In Gary T. Leavens and Murali Sitaraman, editors, Foundations of Component-BasedSystems, hapter 13, pages 285{312. Cambridge University Press, USA, 2000.[GSV01℄ Yuri Gurevih, Wolfram Shulte, and Margus Veanes. Toward industrial strength abstrat statemahines. Tehnial Report MSR-TR-2001-98, Mirosoft Researh, 2001. URL for softwarehttp://www.researh.mirosoft.om/foundations/asml/.[LT89℄ Nany A. Lynh and Mark R. Tuttle. An introdution to input/output automata. CWI-Quarterly, 2(3):219{246, September 1989. Centrum voor Wiskunde en Informatia, Amster-dam, The Netherlands. Tehnial Memo MIT/LCS/TM-373, Laboratory for Computer Siene,Massahusetts Institute of Tehnology, Cambridge, MA 02139, November 1988.[LY01℄ Leslie Lamport and Yuan Yu. TLC { The TLA+ Model Cheker. Compaq Systems ResearhCenter, Palo Alto, California, 2001. URL http://researh.mirosoft.om/users/lamport/tla/tl.html.[Lyn96℄ Nany Lynh. Distributed Algorithms. Morgan Kaufmann Publishers, In., San Mateo, CA,Marh 1996.

[MM℄ K. L MMillan. The SMV Language. Cadene Berkeley Labs, 2001 Addison Street, Berkeley,CA 94 704, USA. URL http://www.is.ksu.edu/santos/smv-do/.[RR00℄ J. Antonio Ramirez-Robredo. Paired simulation of I/O automata. Master's thesis, Depart-ment of Eletrial Engineering and Computer Siene, Massahusetts Institute of Tehnology,Cambridge, MA, September 2000.[Tsa02℄ Mihael Tsai. Code generation for the IOA language. Master's thesis, Department of EletrialEngineering and Computer Siene, Massahusetts Institute of Tehnology, Cambridge, MA,June 2002.[WE02℄ Toh Ne Win and Mihael Ernst. Verifying distibuted algorithms via dynami analysis andtheorem proving. Tehnial Report MIT-LCS-TR-841, MIT Laboratory for Computer Siene,May 2002.A Proof SriptThe following is the Larh proof sript for the simulation relation presented in Setion 4. Theset of axioms DijkstraInt2Mutex_Axioms is generated by the LSL heker by proessing the LSLspei�ation of the simulation relation. The tatis that are referred to in the proof are given inSetion A.2.A.1 Main simulation proofexeute DijkstraInt2Mutex_Axiomsdelare variables u': States[DijkstraInt℄, at: Ations[DijkstraInt℄, pi: AtionSeq[Mutex℄set name theoremprove start(u:States[DijkstraInt℄) => \E s:States[Mutex℄ (start(s:States[Mutex℄) /\ F(u, s))resume by speializing s:States[Mutex℄ to [onstant(rem)℄exeute tati_impliesqedproveisStep(u:States[DijkstraInt℄, at, u') /\ F(u, s)/\ assertion1(u) /\ assertion2(u) /\ assertion3(u) /\ assertion4(u)=> \E pi:AtionSeq[Mutex℄ (exeFrag(s, pi) /\ trae(pi:AtionSeq[Mutex℄) = trae(at)/\ first(s, pi) = s /\ F(u', last(s, pi)))..resume by indution on at% try ationresume by =>resume by speializing pi to try(i1) * {}exeute tati_and4ases% rit ationresume by =>resume by speializing pi to rit(i1) * {}resume by /\ritial-pairs *Hyp with *Hypexeute tati_4asesresume by =>resume by ontraditionritial-pairs *Hyp with *Hyp% exit ationresume by =>

resume by speializing pi to exit(i1) * {}exeute tati_and4ases% rem ationresume by =>resume by speializing pi to rem(i1) * {}resume by /\ritial-pairs *Hyp with *Hypexeute tati_4ases% setflag1 ationresume by =>resume by speializing pi to {}ritial-pairs *Hyp with *Hypexeute tati_and4ases% setflag2 ationresume by =>resume by speializing pi to {}ritial-pairs *Hyp with *Hypexeute tati_and4ases% hek ationresume by =>resume by speializing pi to {}ritial-pairs *Hyp with *Hypresume by /\exeute tati_stage2_i2exeute tati_stage2_i2exeute tati_stage2_i2exeute tati_stage2_i2% reset ationresume by =>resume by speializing pi to {}ritial-pairs *Hyp with *Hypexe tati_and4asesqedquitA.2 Tatis% tati_impliesresume by =>% tati_aseres by ase i1 = i% tati_4asesexeute tati_aseexeute tati_aseexeute tati_aseexeute tati_ase% tati_and4asesresume by /\exeute tati_4ases% tati_stage2_i2.lpresume by ase u.flag[i2℄ = stage2exeute tati_aseresume by ase \A i:Index (i = i2 \/ i \in u.S[i1℄)exeute tati_ase

