
Software Tools for Technology Transfer manuscript No.
(will be inserted by the editor)

Using Simulated Execution in Verifying Distributed Algorithms
Toh Ne Win, Michael D. Ernst, Stephen J. Garland,
Dilsun Kırlı, and Nancy A. Lynch

MIT Computer Science and Artificial Intelligence Laboratory
{tohn,mernst,garland,dilsun,lynch}@csail.mit.edu

The date of receipt and acceptance will be inserted by the editor

Abstract

This paper presents a methodology for using simulated exe-
cution to assist a theorem prover in verifying safety properties
of distributed systems. Execution-based techniques such as
testing can increase confidence in an implementation, provide
intuition about behavior, and detect simple errors quickly.
They cannot by themselves demonstrate correctness. How-
ever, they can aid theorem provers by suggesting necessary
lemmas and providing tactics to structure proofs. This paper
describes the use of these techniques in a machine-checked
proof of correctness of the Paxos algorithm for distributed
consensus.

1 Introduction

Theorem provers are powerful tools for ensuring that pur-
ported proofs are correct, that is, that proofs adhere to the
rules of logic. The main hindrance to using theorem provers
has been the amount of human input they require. General-
purpose theorem provers for sufficiently powerful logics have
acted less as automated verification tools than as interactive
proof systems or proof assistants. Humans must provide them
with two primary types of input: lemmas and tactics. Lemmas
provide facts about the programs being verified, which are of-
ten necessary for correctness proofs. Tactics guide the prover
in making choices during a proof, such as which lemmas to
apply or whether to reason by cases or by induction.

The focus of previous work on making provers easier to
use has been on analyzing syntactic structures in axioms and
conjectures in order to generate potentially useful lemmas
and tactics. When these lemmas and tactics do not suffice,
humans must provide additional input based on their under-
standing of the semantic content of the axioms and conjec-
tures. Often this understanding is faulty or incomplete. The
focus on the work described here is on making it easier to use

theorem provers for verifying distributed algorithms by re-
ducing the need for this kind of human input. To this end, we
use a dynamic analysis of the results of executing a program,
in addition to a static analysis of the program’s text and of
its test suite, to increase human insight, to discover semantic
content in the program’s behavior, and to generate potentially
useful lemmas and tactics for correctness proofs.

This is a new use for execution, which has been a tradi-
tional part of algorithm and system development, but does not
yet play a direct part in formal verification. Because execu-
tion requires little human effort, it has traditionally served as
a powerful prelude to formal verification, a task that requires
much greater human effort. When used for testing, execution
can reveal departures from desired behavior that can be cor-
rected before attempting to prove code correct. Execution can
serve in additional ways as a prelude to formal verification.
Tools for dynamic program analysis can extract descriptions
of program behavior from executions, and programmers can
match the extracted descriptions against their expectations.
Unlike the traditional use of execution to test behavior, this
use can reveal unexpected behaviors, not just departures from
anticipated behaviors. Furthermore, simulated execution can
be used to test specifications (expressed, for example, as ab-
stract programs) in the same way that actual execution tests
programs, even in the absence of a complete implementation.

These uses of execution to test programs and specifica-
tions occur before verification and are largely disjoint from it.
This paper describes additional ways to integrate information
obtained from execution into the process of formal verifica-
tion.

First, we use descriptions of program behavior, extracted
by dynamic analysis from executions, as lemmas in proofs.
Unlike human proofs, which are peppered with phrases like
“it is obvious that,” machine-checked proofs often require
many explicit lemmas. Some lemmas are tedious and obvi-
ous, some are not. In either case, using dynamic program
analysis to provide these lemmas saves human effort.

1

Second, information used to construct test suites can also
play a role in verification. During testing, such information
ensures adequate test coverage by ensuring that all interesting
cases—normal, abnormal, or borderline, as determined by the
programmer, by the tester, or by static analysis—are tested.
During verification, this information can be used to supply
proof tactics, for example, to choose helpful case splits. Thus,
tactics generated from test suites for simulated execution can
complement tactics built into the prover in reducing human
input.

We illustrate these uses of execution in constructing a for-
mal proof of correctness for Paxos, a distributed algorithm for
consensus [Lam98,PLL00]. This paper is concerned primar-
ily with a general methodology for verifying distributed al-
gorithms — and with the role execution and automated tools
play in that methodology— and not with the details of the
Paxos algorithm itself. Our methodology is based on the in-
put/output (I/O) automaton framework [LT89] for modeling
and verifying distributed algorithms, in which each compo-
nent of a system is represented as an automaton whose ex-
ternal behavior is defined by a simple mathematical object
called a trace.

This paper is organized as follows. Section 2 introduces
the I/O automaton model, discusses the IOA language and
toolkit [GL98], which support its use, and compares the IOA
toolkit to related tools that use run-time techniques to aid
formal verification. The remainder of the paper presents our
execution-based methodology in more detail, using a proof
of the Paxos algorithm as a running example. Section 3 for-
mulates a specification and implementations for Paxos as I/O
automata. Section 4 describes how these automata are exe-
cuted, and Section 5 shows how dynamic invariant detection
extracts lemmas for proofs from these executions. Section 5
also discusses issues that arise from using this technique. Sec-
tions 6 and 7 show how information used to test conformance
of an implementation automaton to a specification via simu-
lated execution can also be used to create tactics for use in a
correctness proof for the implementation. Section 8 discusses
ways to extend this research, and Section 9 concludes.

2 Preliminaries

Our methodology uses I/O automata and the IOA language
to model specifications and the programs we wish to ver-
ify. Verification involves the use of three tools in the IOA
toolkit [GL98]: the IOA interpreter, the LP theorem prover,
and the Daikon dynamic invariant detector.

2.1 I/O automata and the IOA language

An I/O automaton is a (possibly nondeterministic, infinite)
state machine in which transitions between states are associ-
ated with named actions, which are classified as either input,
output, or internal. The inputs and outputs are external ac-
tions used for communication with the automaton’s environ-
ment; internal actions are visible only to the automaton itself.

An automaton controls which output and internal actions it
performs, but input actions are not under its control. An I/O
automaton consists of a signature, which lists its actions; a
set of states, some of which are distinguished as start states;
a state-transition relation, which contains triples of the form
(state, action, state); and an optional set of tasks for liveness
(not considered in this paper).

An action π is enabled in a state s if and only if there is
a state s′ such that (s, π, s′) is a transition of the automaton.
Input actions are enabled in every state. The operation of an
I/O automaton is described by its executions s0, π1, s1, . . .,
which are alternating sequences of states and actions such
that (si, π, si+1) is a transition of the automaton for every i ≥

0, and by its traces, which are the externally visible behavior
occurring in executions. One automaton implements another
if all its traces are also traces of the other.

2.1.1 Verification methods

Proof methods supported by the I/O automaton model include
invariant assertion techniques for proving that a particular
property is true in all reachable states, simulation methods
for proving that one automaton implements another [LV95],
and compositional methods for reasoning about collections
of interacting components. We employ the first two of these
methods in this paper. A forward simulation shows that an
automaton A conforms to a specification expressed as another
automaton B. Definition 1 and Theorem 1 describe forward
simulations formally. Invariants are often needed to assist in
verifying forward simulations (see Section 7).

Definition 1 (Forward simulation). A forward simulation
from an automaton A to an automaton B is a binary relation
F on states(A)× states(B) with the following two proper-
ties:

Start condition: For every start state a of A, there is a start
state b of B such that F (a, b).

Step condition: If a is a reachable state of A, (a, π, a′) is
a transition of A, and b is a reachable state of B such that
F (a, b), then there is an execution fragment β of B leading
from b to a state b′ of B such that F (a′, b′), and trace(π) =
trace(β).

Theorem 1. If there is a forward simulation relation from A

to B, then every trace of A is a trace of B, and automaton A

implements specification B [Lyn96].

2.1.2 The IOA language

The IOA language provides notations for describing I/O au-
tomata and for stating their properties; it uses specifications
written in the Larch Shared Language [GHG+93] to axioma-
tize the semantics of I/O automata and the data types used to
describe algorithms. In IOA, an automaton’s state is defined
by a list of state variables, and its transition relation is defined
in terms of preconditions and effects, which can be written
either in an imperative style (as a sequence of assignment,
conditional, and loop statements) or in declarative style (as a

2

predicate relating state variables in the pre- and post-states,
transition parameters, and other nondeterministically chosen
parameters). It is also possible to combine these two styles.

Nondeterminism appears in IOA in two ways: explicitly,
in the form of nondeterministic choices in state variable ini-
tializations and in the effects of the transition definitions, and
implicitly, in the form of action scheduling uncertainty. Non-
determinism allows systems to be described in their most
general forms and to be verified considering all possible be-
haviors without being tied to a particular implementation of
a system design.

The sample programs in this paper do not exploit the full
generality of the IOA language. They all define primitive (i.e.,
not composite) automata in an imperative style with almost
no explicit nondeterminism.

2.2 The IOA toolkit

2.2.1 The IOA interpreter

The IOA interpreter [KCD+02a,KCD+02b] simulates execu-
tion either of a single automaton running in isolation or of two
automata running in lockstep. The interpreter assists users in
formulating and checking properties of automata by check-
ing stated assertions (invariants for a single automaton or a
simulation relation between two automata) and displaying or
logging the automaton’s execution. (The IOA interpreter is
also known as the “IOA Simulator,” but is called an inter-
preter in this paper to avoid confusion with the notion of a
forward simulation.)

For paired execution, a user presents the interpreter with
two automata, a candidate forward simulation relation, and
a step correspondence mapping actions of the purported im-
plementation automaton to sequences of actions of the spec-
ification automaton. The interpreter simulates execution of
the implementation automaton, generates the candidate exe-
cution of the specification automaton induced by the step cor-
respondence, checks that the two executions have the same
trace, and checks that the simulation relation holds at the end
of the candidate execution.

2.2.2 The Daikon invariant detector

The Daikon invariant detector [ECGN01] proposes proper-
ties that are likely to be true throughout a program’s execu-
tion. Daikon operates dynamically by examining values com-
puted during execution and generalizing over those values.
Its output is in the form of invariants expressible in a gram-
mar on the program’s variables. Initially, Daikon conjectures
that all properties in its grammar are true on the program.
Daikon then examines the execution data and deletes any in-
variants that are contradicted by the data. Finally, Daikon uses
static analysis and statistical tests to reduce the number of
false positives by eliminating some of the remaining invari-
ants [ECGN00]. When used in conjunction with the IOA in-
terpreter, Daikon formulates the proposed properties in the
IOA language as invariants of the executed automaton.

Dynamic detection of invariants is unsound, because there
is no guarantee that the test suite used to generate execution
traces fully characterizes the execution environment. In prac-
tice, the reported properties are usually true and are gener-
ally helpful in explicating the system under test and/or its test
suite. Furthermore, the method described in this paper does
not rely on unproven lemmas; rather, it uses Daikon to sug-
gest lemmas and a theorem prover both to prove whichever of
these lemmas it can and also to use those lemmas in a larger
proof.

Experiments indicate that Daikon produces output in the
form of a formal specification that often matches what a hu-
man would have written [NE02a,NE02b]. In another exper-
iment, Daikon was given inadequate test suites in order to
artificially degrade its output, but even the degraded output
improved programmer performance (to a statistically signif-
icant degree) when verifying the absence of certain runtime
errors [NE02b].

2.2.3 The Larch Prover

The Larch Prover [GG91] (LP) is an interactive proof assis-
tant for multisorted first-order logic. It admits specifications
of theories in the Larch Shared Language (LSL). The IOA
toolkit includes ioa2lsl [Bog00], a tool that translates IOA
definitions of automata into LSL theories that describe the
operation of the automata. It also generates proof obligations
for asserted invariants and simulation relations.

2.3 Related work

Other toolkits, such as AsmL [GSV01], Mocha [AHM+98],
SMV [McM98], and TLC [LY01], support execution or ver-
ification of concurrent and distributed systems. They use ex-
ecution mainly for debugging and understanding the behav-
ior of a system. The IOA toolkit uses execution not only for
these purposes, but also for automatically discovering pro-
gram properties that can be used as lemmas in formal proofs.
Moreover, the IOA toolkit’s facility for executing pairs of au-
tomata, matching actions of one against those of the other,
helps users in organizing formal proofs of correctness based
on simulation relations.

Mocha, SMV and TLC use model checking as the veri-
fication method. Model checking is attractive because it re-
quires relatively less expertise than theorem proving, and it
provides counter-examples to falsified properties. However,
model checkers provide no intuition about true properties and
can analyze only finite state spaces; theorem provers apply to
finite and infinite systems alike.

The “invisible invariants” method [PRZ01] facilitates au-
tomated verification of parameterized, finite-state systems.
It uses techniques from model checking to calculate candi-
date invariants, to check their inductiveness, and to prove the
verification conditions generated by the standard invariance
rule of deductive verification. For some parametrized sys-
tems, model checking for a finite number of processes suf-
fices to verify the system in general. The invisible invariants

3

type Node = t u p l e o f location: Int
type Value = t u p l e o f value: Int

automaton Cons
s i g n a t u r e

input fail(i: Node), init(i: Node, v: Value)
output decide(i: Node, v: Value)
i n t e r n a l chooseVal(v: Value)

s t a t e s
initiated: Set[Node] := {},
proposed: Set[Value] := {},
chosen: Set[Value] := {},
decided: Set[Node] := {},
failed: Set[Node] := {}

t r a n s i t i o n s
input init(i, v)

e f f i f ¬(i ∈ failed) ∧ ¬(i ∈ initiated) then
initiated := initiated ∪ {i};
proposed := proposed ∪ {v}

f i
i n t e r n a l chooseVal(v)

pre v ∈ proposed ∧ chosen = {}
e f f chosen := {v};

output decide(i, v)
pre i ∈ initiated ∧ ¬(i ∈ decided) ∧

¬(i ∈ failed) ∧ v ∈ chosen
e f f decided := decided ∪ {i}

input fail(i)
e f f failed := failed ∪ {i}

Fig. 1. Specification of consensus in IOA

can be proved automatically and need not be shown to a hu-
man. By contrast, we regard invariants also as a means to
inform users about interesting program properties. Invariants
detected by Daikon are intended to be simple and easily read-
able properties. Additionally, our methodology is not limited
to finite-state or parametrized systems.

3 Specifying automata in IOA

The first step in using our method for verifying a system is to
define it in IOA. If the goal is to show that an implementation
meets a specification, then the user defines both the specifica-
tion and implementation automata in IOA. For Paxos, we use
code from a case study [PLS+] that defines a hierarchy of au-
tomata. The highest-level automaton, Cons, provides a spec-
ification for consensus. The lowest-level automaton, Paxos,
provides a distributed implementation. An intermediate-level
automaton, Global1, although non-distributed, captures the
main idea of Paxos, that of using ballots and quorums to
achieve consensus. A correctness proof involves showing the
existence of a series of forward simulation relations between
successive levels in the hierarchy. In this paper, we discuss
the forward simulation between Cons and Global1.

3.1 Specification automaton

Paxos implements distributed consensus in an asynchronous
system in which individual processes can fail. Suppose that I

is a finite set of nodes representing the processes in the system
and V is the set of possible consensus values. Processes in I

may propose values in V . The consensus service is allowed
to return decisions to processes that have proposed values. It

must satisfy two conditions: all nodes must receive the same
value (“agreement”) and that value must have been proposed
by some process (“validity”).

The signature of the specification automaton Cons (Fig-
ure 1) contains an input action init(i,v), which repre-
sents the proposal of value v by process i, an internal action
chooseVal(v), which represents the choice of a consensus
value v, an output action decide(i,v), which represents the
report of the consensus value v to process i, and an input ac-
tion fail(i), which represents the failure of process i. The
transitions of the automaton provide the required agreement
and validity guarantees: only a single consensus value can be
chosen, and that value must have been previously proposed.

3.2 Implementation automaton

The automaton Global1 (Figure 2) specifies an algorithm
that implements consensus in a non-distributed setting. This
automaton uses a totally ordered set of ballots for values, one
of which may eventually be chosen as the consensus value
if sufficient approval is collected from the processes in the
system.

In addition to the external actions of the automaton Cons,
the signature of Global1 includes internal actions for mak-
ing ballots, assigning them values, and voting for or abstain-
ing from ballots. The automaton Global1 determines the fate
of a ballot by considering the actions of quorums, which are
finite subsets of I , on that ballot. Global1 allows a ballot to
succeed only if every node in a quorum has voted for it.

4 Simulating execution of an automaton with the IOA
toolkit

The second step in using our method to verify an automaton
is to test its behavior by simulating its execution. The IOA
interpreter simulates (on a single computer) execution of an
I/O automaton, allowing the user to help select the executions
and to propose invariants for the interpreter to check.

The interpreter requires IOA programs to be transformed
into a form suitable for execution. For example, it requires
that the initial values for all state variables, such as quorums
in Global1, be specified operationally, rather than declara-
tively or nondeterministically. We transformed Global1 into
a form suitable for execution by adding an additional internal
action

i n t e r n a l defineQuorums(theNodes: Set[Node])
e f f quorums := insert(delete([1], theNodes), {})

and by invoking it at the beginning of each execution.
Aside from such bookkeeping issues, the crucial prob-

lem in this transformation involves resolving nondetermin-
ism. The IOA interpreter solves this problem by requiring
the user to supply a nondeterminism resolution (NDR) pro-
gram, called a schedule, to each source of nondeterminism in
the definition of an automaton [KCD+02a,KCD+02b]. The
schedule contains fire statements to tell the interpreter what

4

type Ballot = t u p l e o f ordering: Int

automaton Global1
s i g n a t u r e

input fail(i: Node), init(i: Node, v: Value)
output decide(i: Node, v: Value)
i n t e r n a l makeBallot(b: Ballot),

abstain(i: Node, B: Set[Ballot]),
assignVal(b: Ballot, v:Value),
vote(i: Node, b: Ballot),
internalDecide(b: Ballot)

s t a t e s
initiated: Set[Node] := {},
proposed: Set[Value] := {},
decided: Set[Node] := {},
failed: Set[Node] := {},
ballots: Set[Ballot] := {},
succeeded: Set[Ballot] := {},
val: Array[Ballot, Null[Value]] := constant(nil),
voted: Array[Node, Set[Ballot]] := constant({}),
abstained: Array[Node, Set[Ballot]] := constant({})
quorums: Set[Set[Node]],
dead: Set[Ballot] := {}

t r a n s i t i o n s
input init(i, v)

e f f i f ¬(i ∈ failed) ∧ ¬(i ∈ initiated) then
initiated := initiated ∪ {i};
proposed := proposed ∪ {v}

f i
input fail (i)

e f f failed := failed ∪ {i}
i n t e r n a l makeBallot(b)

pre ¬ (b ∈ ballots);
e f f ballots := ballots ∪ {b};

i n t e r n a l assignVal(b, v)
pre b ∈ ballots ∧ val[b] = nil ∧ v ∈ proposed

∧ ∀ b ′ :Ballot (b ′ .ordering < b.ordering ⇒
val[b ′] = embed(v) ∨ b ′ ∈ dead)

e f f val[b] := embed(v)
i n t e r n a l vote(i, b)

pre i ∈ initiated ∧ ¬(i ∈ failed)
∧ b ∈ ballots ∧ ¬(b ∈ abstained[i])

e f f voted[i] := voted[i] ∪ {b}
i n t e r n a l abstain(i, B)

pre i ∈ initiated ∧ ¬(i ∈ failed)
∧ voted[i] ∩ B = {}

e f f abstained[i] := abstained[i] ∪ B;
f o r aBallot:Ballot in B do

i f ∀ aNode:Node (aNode ∈ quorums
⇒ aBallot ∈ abstained[aNode])

then dead := insert (aBallot, dead);
f i ;

od;
i n t e r n a l internalDecide(b)

pre b ∈ ballots
∧ ∃ q:Set[Node] (q ∈ quorums

∧ ∀ j:Node (j ∈ q ⇒ b ∈ voted[j]))
e f f succeeded := succeeded ∪ {b}

output decide(i, v)
pre i ∈ initiated

∧ ¬(i ∈ decided) ∧ ¬(i ∈ failed)
∧ ∃ b:Ballot (b ∈ succeeded

∧ embed(v) = val[b])
e f f decided := decided ∪ {i}

Fig. 2. A ballot-based implementation of consensus in IOA

transitions to execute, along with code for control and initial-
izing helper variables. Such schedules are analogous to test
suites. The sample schedule

schedule
s t a t e s
theNodes: Set[Node] :=

insert([0], insert([1], insert([2],
insert([3], insert([4], insert([5], {}))))))

do
f i r e i n t e r n a l defineQuorums(theNodes);
f i r e input init([0],[1]);
f i r e input init([1],[2]);

f i r e input fail([5]);
f i r e i n t e r n a l makeBallot([0]);

causes the IOA interpreter to execute five actions and to pro-
duce the following output:

1: internal defineQuorums(([0] [1] [2] [3] [4] [5]))
in automaton Global1

2: input init([0], [1]) in automaton Global1
3: input init([1], [2]) in automaton Global1
4: input fail([5]) in automaton Global1
5: internal makeBallot([0]) in automaton Global1

In the Paxos case study, we wrote schedules to execute
Global1 with different interleavings of actions, some caus-
ing nodes to fail or to abstain from a ballot. The suite used
3 nodes, 20 ballots, and fixed schedules that permitted little
ordering nondeterminism. We did not use structured test gen-
eration methods to produce the schedules, nor did we evalu-
ate them according to specific criteria (e.g., statement cover-
age). Instead, we simply selected executions that illustrated
what we felt was the normal behavior of the automaton (and
that exercised every action). In our experience, using simple
schedules like these is adequate for the purpose of dynamic
invariant detection. Occasionally, as noted in Section 5.2, a
preliminary test run reports an unexpected invariant, which
indicates a deficiency in the test data that should be corrected.
Moreover, as happened in another case study involving the
Peterson mutual exclusion algorithm, a preliminary test run
can uncover a bug in the IOA transcription of an algorithm.

5 Dynamically detecting likely invariants

A proof of a simulation relation often depends on invariants
and on auxiliary lemmas. Machine verification requires that
such lemmas be stated and proved explicitly, even if they
seem like bookkeeping details to the user. These parts of the
proof may not be very interesting or they may be relatively
simple; thus, automating them holds promise. Consequently,
the third step in our method is to generate candidate invari-
ants and lemmas automatically by using dynamic invariant
detection to analyze execution data from the IOA interpreter.

Three potential problems with this third step are that the
lemmas it produces may be unsound, incomplete, or not very
useful. Despite these potential pitfalls, this step tends to per-
form well in practice. We discuss the output of dynamic in-
variant detection for the case study in Section 5.1 and how to
cope with the three potential problems in Section 5.2.

5.1 Invariant detection results for the case study

For Paxos, invariant detection with Daikon produced 27 po-
tential invariants. Most were easy for a human to classify.
Half (14) of the proposed invariants are clearly false; they are
artifacts of the test suite, such as that the size of a quorum is
2 (because there are 3 nodes in the tests) or that, in the tests,
nodes do not fail after they have decided. Almost half (10)
are clearly true; some of these are alternate formulations of
others. (Being obviously true, however, does not imply that

5

they would be easy for a person to come up with.) Only the
last 3 require any substantial effort to classify. Users can ig-
nore them, think hard about them, or expand the test suite to
try to falsify them.

Four of the true invariants proved helpful in the simula-
tion relation proof in Section 7. These four were:
Inv1: ∀ anIndex:Node

(size(voted[anIndex] ∩ abstained[anIndex]) = 0)
Inv2: val.values.val(nonNull) ⊆ proposed
Inv3: size(succeeded ∩ dead) = 0
Inv5: succeeded ⊆ ballots

(We have added the names Invi for convenience in this pre-
sentation.)

A full proof of the Paxos simulation relation required six
invariants: five for the simulation relation proper, and one
more for one of the above invariants. The two missing in-
variants were:
Inv4: ∀ b:Ballot ∀ b ′:Ballot (val[b] 6= nil ∧ b ′

< b ⇒
val[b ′] = val[b] ∨ b ′ ∈ dead)

Inv6: ∀ b:Ballot (b ∈ succeeded ⇒
∃ q:Set[Node] ∀ n:Node

(q ∈ quorums ∧
(n ∈ q ⇒ b ∈ voted[n])))

These two invariants are outside Daikon’s grammar, so
it neither checked nor reported them. Daikon does not re-
port invariants with existential quantifiers, nor does it report
those with more than a given number of subterms. This is
not a fundamental limitation, but a design choice that re-
duces Daikon’s computational requirements and, more im-
portantly, the number of false positives or unhelpful invari-
ants Daikon would otherwise report. Section “Invariant List”
of the Daikon user manual, available with the Daikon distri-
bution at http://pag.lcs.mit.edu/daikon, lists all
the invariants that Daikon checks and reports; the full gram-
mar for an earlier version of Daikon appears in another pa-
per [ECGN01]. Users can easily add new invariants to the
Daikon system. Section 8 discusses other ways of improving
this grammar.

5.2 Discussion of dynamically detected invariants

We now discuss how to cope with potential problems in the
invariant detector output.

First, dynamic invariant detection is unsound: reported
properties are true over the test suite, but there is no guarantee
that the test suite fully characterizes the execution environ-
ment of the program. This does not hinder us, for two reasons.
First, we use all of the dynamically detected invariants to help
in proposing, understanding, and verifying program proper-
ties, but we use a theorem prover to ensure that the lemmas
we use in proofs are sound. Second, most of the output in our
case study was correct, and those that were not were easily-
corrected artifacts of the test suite (execution scheduling). For
example, in one set of executions, Daikon reported that the
size of the failed variable was a constant. We corrected this
by randomizing failures in our schedule, thereby improving
the quality of the test suite for its use in Section 6. In general,
simply covering every interesting aspect of each action seems
to be adequate.

Second, dynamic invariant detection is incomplete: the
proposed invariants may be insufficient for verification, be-
cause some true invariants are not reported. As noted above,
Daikon restricts the set of invariants it checks for two rea-
sons: to conserve runtime and, more importantly, to reduce
the number of false positives that it reports (the more prop-
erties it checks, the larger the number of false or non-useful
properties it will report).

In the Paxos case study, Daikon proposed four of the six
required invariants. This reduced the amount of particularly
non-imaginative human effort required to construct the the
correctness proof, even though it did not eliminate all such
human effort.

It is notable that Inv3, although true and necessary for
the proof, was not provable in isolation: establishing it re-
quired use of Inv6. In other words, dynamic invariant detec-
tion postulated a useful simple property (Inv3) whose proof
is complicated (because it requires Inv6). This ability to de-
compose a proof into parts demonstrates a strength of our
technique: it is easy to check properties dynamically, even if
they have complicated proofs that are beyond the capabilities
of completely automatic static tools.

Third, some reported properties may be true but not use-
ful. As an example, Daikon reported a number of properties,
such as decided ⊆ initiated, which we did not use in
the proof. Daikon uses heuristics to prune useless facts, for
instance, by limiting output based on variable types. How-
ever, it is impossible for a tool to know what a human will
find desirable in a given situation. We found that although
there were over a dozen true but irrelevant invariants, it was
easy to pass over the uninteresting ones — and examining
them helped us solidify our understanding of the algorithm
and the implementation. Thus, a moderate amount of extra
information does not distract or disable users.

The reported properties may be more than are strictly nec-
essary. A machine-checked proof may not require all the re-
ported invariants. Furthermore, as for proofs in general, there
may be an alternative proof that requires fewer invariants. In
any event, it is reasonable to first obtain a complete machine-
verified proof and then to simplify it. Automating this task
(possibly following Rintanen [Rin00] by iterating to a mini-
mal fix-point of invariants) is future work. We did not have to
perform such a reduction in our case study.

6 Paired execution

The fourth step in our method is appropriate when attempting
to verify a simulation relation. As noted in Section 2.2.1, the
IOA interpreter can help users formulate and test the validity
of a forward simulation relation, prior to such a verification.
In this section, we discuss how a schedule and other infor-
mation can help in executing paired automata, during which
the IOA interpreter tests the conditions of the relation. This
scheduling will later be useful in guiding verification.

A forward simulation relation is a predicate that relates
the states of two automata (see Definition 1). Figure 3 defines

6

forward s i m u l a t i o n from Global1 to Cons:
Cons.initiated = Global1.initiated ∧
Cons.proposed = Global1.proposed ∧
Cons.decided = Global1.decided ∧
Cons.failed = Global1.failed ∧
∀ v:Value (v ∈ Cons.chosen ⇔

∃ b:Ballot (b ∈ Global1.succeeded
∧ Global1.val[b] = embed(v)))

proof
s t a r t
Cons.initiated: Set[Node] := Global1.initiated;
Cons.proposed: Set[Value] := Global1.proposed;
Cons.chosen: Set[Value] := {};
Cons.decided: Set[Node] := Global1.decided;
Cons.failed: Set[Node] := Global1.failed

f o r i n t e r n a l defineQuorums(S: Set[Node], B: Set[Ballot])
i gnore

f o r input init(i: Node, v: Value) do
f i r e input init(i, v) od

f o r input fail(i: Node) do
f i r e input fail(i) od

f o r output decide(i: Node, v: Value) do
f i r e output decide(i, v) od

f o r i n t e r n a l makeBallot(b: Ballot) i gnore
f o r i n t e r n a l abstain(i: Node, B: Set[Ballot]) i gnore
f o r i n t e r n a l vote(i: Node, b: Ballot) i gnore
f o r i n t e r n a l assignVal(b: Ballot, v: Value) do

i f ¬(b ∈ Global1.succeeded) then ignore
e l s e i f ∃ b:Ballot (b ∈ Global1.succeeded

∧ Global1.val[b] 6= nil) then ignore
e l s e f i r e i n t e r n a l chooseVal(v)
f i od

f o r i n t e r n a l internalDecide(b: Ballot) do
i f b ∈ Global1.succeeded then ignore
e l s e i f Global1.val[b] = nil then ignore
e l s e i f ∃ b:Ballot (b ∈ Global1.succeeded

∧ Global1.val[b] 6= nil) then ignore
e l s e f i r e i n t e r n a l chooseVal(Global1.val[b].val)
f i od

Fig. 3. Forward simulation relation and step correspondence (proof block)
from the Global1 specification (Figure 2) to the Cons implementation
(Figure 1).

a forward simulation relation from Global1 to Cons. Paired
execution requires such a correspondence to resolve nonde-
terminism. Usually, the designer of an implementation has an
idea of the step correspondence. The IOA toolkit allows the
designer to annotate the program with this correspondence.
Hence, Figure 3 also specifies how each step in the imple-
mentation Global1 corresponds to a sequence of steps in the
specification Cons.

The proof block in Figure 3 describes a step correspon-
dence for use in testing the simulation relation. With this
proof block, the paired interpreter can execute the specifica-
tion automaton in lockstep with the implementation automa-
ton. The proof block contains two sub-blocks, corresponding
to the two conditions required for a simulation relation (Defi-
nition 1). The first sub-block, which begins with start, shows
how to start the specification automaton.1 The second sub-
block contains an entry for each action of the implementation
automaton; this entry provides an algorithm for producing an
execution fragment of the specification automaton. Syntacti-
cally, each entry uses a fire statement to tell the interpreter to
fire the corresponding specification action. A proof block may

1 The set of legal start states of the specification automaton is determined
by the states block in its code; the start block selects a particular start
state, which may depend on the start state of the implementation automaton.

also contain a third sub-block that declares auxiliary variables
used by the step correspondence.

In Figure 3, the simulation relation is the identity on all
state variables of Cons except chosen, which is not a state
variable of Global1. The simulation relation defines chosen
in Cons to contain a value v if and only if there is a successful
ballot in Global1 with value v. The proof block is straight-
forward for the start state and for the external actions: each
external action in the implementation automaton is matched
by the action with the same name in the specification automa-
ton. The internal actions start, makeBallot, abstain, and
vote are matched by an empty execution sequence of the
specification automaton.

In the Paxos case study, the IOA interpreter was able to
reveal two problems with the following more naive treatment
in the proof block for the internal actions assignVal and
internalDecide.

f o r i n t e r n a l assignVal(b: Ballot, v: Value) i gnore
f o r i n t e r n a l internalDecide(b: Ballot) do

f i r e i n t e r n a l chooseVal(Global1.val[b].val) od

First, given a schedule that executes the internalDecide

action twice in Global1, the interpreter discovers that the
precondition for chooseVal fails the second time it is exe-
cuted in the lockstep execution of Cons. Second, assignVal
needs to fire chooseVal if a ballot has been decided inter-
nally but does not yet have a value assigned; hence we must
fire chooseVal when firing assignVal, but only if no other
ballot in Global1.succeeded has a non-nil value. Most of
this case analysis is necessary because Global1 allows bal-
lots to be voted on (and to succeed) before they are assigned
values.

This nondeterminism makes the algorithm more general,
but it complicates the correctness proof. Hence it was helpful
to use paired simulation to debug the details of the step cor-
respondence and arrive at the formulation shown in Figure 3.

7 Verifying a simulation relation in LP

The last step in our method is to prove the simulation rela-
tion (or invariant) using a theorem prover. This guarantees
the soundness of our technique. As described above, theorem
provers generally require human input in the form of lemmas
and proof tactics. Here we describe how the results of Sec-
tions 5 and 6 can be used to generate this input automatically.
First, the invariants suggested by dynamic invariant detection
become candidates lemmas, thereby saving the user time in
finding auxiliary invariants needed for verification. Second,
the annotations for paired execution provide a proof outline.

Recall from Definition 1 that verifying a simulation rela-
tion requires verifying both a start condition and a step condi-
tion. Translation tools in the IOA toolkit use the proof block
for a simulation relation to generate proof tactics for each
condition.

7

7.1 Start condition

The start condition requires finding a witness start state b of
the specification automaton. In LP, the proof obligation is

s t a r t (a:States[A]) ⇒

∃ b:States[B] (s t a r t (b) ∧ F(a, b))

The IOA tools extract the witness b from the imperative state-
ments in the start section of a proof block, which define initial
values for the state variables in the specification automaton
in terms of the initial values for the state variables in the im-
plementation automaton. In the Paxos case study, the proof
script generator translated the start section of Figure 3 into
the following commands for LP:
d e c l a r e o p e r a t o r

StartRel: States[Global1] → States[Cons]
..

a s s e r t
StartRel(a:States[Global1]) = [{},{},{},{},{}]
..

p r o v e
s t a r t (a:States[Global1])
⇒ ∃ b:States[Cons] (s t a r t (b) ∧ F(a, b))

..
r e s u m e by ⇒

r e s u m e by s p e c i a l i z i n g b t o StartRel(ac)
qed

Here, the two resume by commands direct LP to begin the
proof by using its built-in implication tactic, which assumes
the hypothesis and replaces the universally quantified vari-
able a by a fixed constant ac, and then using StartRel(ac)
as the witness for the existential quantifier ∃ b. In the case
study, these commands are sufficient to complete the proof of
the start condition.

7.2 Step condition

The step condition requires finding a witness execution β of
the specification automaton for each transition of the imple-
mentation automaton. The proof script generator formulates
this proof obligation for LP as follows:
p r o v e

F(a:States[A], b:States[B])
∧ step(a, alpha: Actions[A], a ′ :States[A]) ⇒

∃ beta:ActionSeq[B]
(execFrag(b, beta) ∧ F(a ′ , last(b, beta))
∧ trace(beta) = trace(alpha))

..

It also generates a proof script that divides the proof into
cases based on the kind of the action a (using the command
resume by induction on a, which directs LP to proceed by
structural induction on the datatype of a) and generating lem-
mas to handle the details of the individual cases. For exam-
ple, it generates the following lemma and proof script from
the proof block for the init action in the Paxos case study.
p r o v e

F(a:States[Global1], b:States[Cons])
∧ step(a, init(i, v), a ′) ⇒

∃ beta:ActionSeq[Cons]
(execFrag(b, beta) ∧ F(a ′ , last(b, beta))
∧ trace(beta) = trace(alpha))

..
r e s u m e by ⇒

r e s u m e by s p e c i a l i z i n g beta t o init(ic, vc) * {}
qed

LP finishes the proof of this lemma automatically, as it also
does for the fail, makeBallot, abstain, and vote ac-
tions.

The proof scripts for the lemmas for the assignVal and
internalDecide actions are themselves divided into cases,
in accordance with the for statements for those actions in the
proof block. For example, the proof script generator produces
the following lemma and script for the internalDecide ac-
tion.
p r o v e

F(a:States[Global1], b:States[Cons])
∧ step(a, internalDecide(b:Ballot, a ′) ⇒

∃ beta:ActionSeq[Cons]
(execFrag(b, beta) ∧ F(a ′ , last(b, beta))
∧ trace(beta) = trace(alpha))

..
r e s u m e by ⇒

r e s u m e by c a s e s bc ∈ ac.succeeded
% True case

r e s u m e by s p e c i a l i z i n g beta t o {}
% Elseif case

r e s u m e by c a s e s ac.val[bc] = nil

% True case

r e s u m e by s p e c i a l i z i n g beta t o {}
% Elseif case

r e s u m e by c a s e s
∃ b:Ballot (b ∈ ac.succeeded

∧ ac.val[bc] 6= nil)
% True case

r e s u m e by s p e c i a l i z i n g beta t o {}
% False case

r e s u m e by s p e c i a l i z i n g beta t o
chooseVal(ac.val[bc].val) * {}

LP needs further assistance, in the form of invariants Inv1
through Inv5, to finish the proof of this lemma. Invariant
Inv2 is used when the action chooseVal is the witness ex-
ecution for InternalDecide; there it shows that the value
being chosen belongs to Cons.proposed. The other four in-
variants, which show that all ballots not in Global1.dead

have identical or nil values, help establish that changes to
Global1.succeeded and Global1.val preserve the sim-
ulation relation.

When proof blocks are more complicated than those in
the Paxos case study, the job of the proof script generator is
correspondingly more complicated. For example, in for en-
tries in the proof block, the generator must expand sequences
of conditional statements into nested conditionals. The proof
script generator expands a for entry containing

i f P1 then f i r e a1 e l s e f i r e a2 f i
i f P2 then f i r e a3 e l s e f i r e a4 f i

into one that contains nested conditionals such as
i f P1 then

i f P2 then f i r e a1 f i r e a3 e l s e f i r e a1 f i r e a4 f i
e l s e

i f P2 then f i r e a2 f i r e a3 e l s e f i r e a2 f i r e a4 f i
f i

in order to generate the appropriate case splits in the proof
script.

8

Of course, invariants used to establish a simulation rela-
tion must be verified themselves. Here, too, the interpreter
and invariant detector provide help. First, invariants some-
times require other invariants in their proofs. In the Paxos
case study, only Inv3 required auxiliary invariants (Inv1 and
Inv6), one of which Daikon detected. Second, the statement
of complicated invariants such as Inv6 can be tested via sim-
ulated execution; once stated properly, the proof of this in-
variant was rather simple.

Our techniques do not completely eliminate the need for
human guidance in proving invariants and simulation rela-
tions. They can automatically discover, and prove with little
human assistance, invariants such as Inv1, Inv2, and Inv5.
They cannot yet discover invariants such as Inv4 and Inv6,
even though their proofs are simple. And although they dis-
cover invariant Inv3, which is simple, the proof of this in-
variant using LP requires moderate human guidance.

8 Future work

There are at least three ways to extend this research. First, the
dynamic invariant detector could be improved, in order to find
more lemmas for proofs and to increase human insight re-
garding program behavior. For example, boolean expressions
appearing in IOA program code could be used as templates in
the grammar of invariants. Since these templates come from
the semantics of the program, they are likelier to be useful in-
variants. For example, in Paxos, Inv4 closely resembles the
precondition for the assignVal transition.

Second, improved static analysis of I/O automata could
generate more detailed proof scripts. For example, in per-
forming case splits, we currently examine if statements in the
annotations for paired execution, but we could also look at if
statements within the effects code of the automaton itself.

Third, we are extending our tools to use the Isabelle/HOL
logic system and theorem prover [Pau93,Gor89]. Since Is-
abelle has a larger user community and a more extensive set
of libraries, this may make our methodology accessible to
more people. Further, we can state theorems about invariants
and forward simulation relations in Isabelle/HOL’s higher
order logic. This allows us to prove the soundness of our
method for verifying invariants and simulation relations.

9 Conclusion

Theorem provers can be used to reason soundly about the cor-
rectness of general infinite state systems. Machine-checked
proofs provide more assurance than hand proofs, but incur
a cost in terms of human interaction. Our methodology re-
duces, but does not eliminate, the human effort required for
formally proving properties of programs. In particular, our
methodology partially automates some of the tedious, low-
level aspects of using a theorem prover, freeing the user to
focus on the proof itself.

Our methodology integrates simulated execution, which
runs a distributed algorithm with a test suite on a unipro-
cessor, with theorem proving. Exploratory analysis based on
such executions is a well-known technique for building intu-
ition and performing inexpensive sanity checks. Our method-
ology extends the use of run-time techniques in two ways.

First, we use a dynamic invariant detector to generalize
over observed executions and report logical properties that
are likely to be true of the program. This technique proposes
properties that would otherwise have to be synthesized by a
person. Such properties can reveal unexpected properties of
a program, and they can buttress understanding more effec-
tively than can be done merely examining execution traces.
Most importantly for our methodology, such properties can
provide invariants and lemmas that simplify proofs and re-
duce theorem proving effort.

Second, we leverage the effort used to build good test
suites to produce scripts for theorem provers, which mirror
the form of the scripts for driving paired executions.

We have illustrated the use of the methodology, and of
a toolset that supports the methodology, by means of a case
study that formally proves the correctness of an implementa-
tion of consensus based on Lamport’s Paxos protocol.

References

[AHM+98] Rajeev Alur, Thomas A. Henzinger, F.Y.C. Mang,
Shaz Qadeer, Sriram K. Rajamani, and Serdar Tasiran.
Mocha: Exploiting modularity in model checking. In
Proceedings of the Tenth International Conference on
Computer-aided Verification, volume 1427 of Lecture
Notes in Computer Science 1427, pages 521–525, 1998.

[Bog00] Andrej Bogdanov. Formal verification of simulations
between I/O automata. Master of engineering the-
sis, Massachusetts Institute of Technology, Cambridge,
MA, September 2000.

[ECGN00] Michael D. Ernst, Adam Czeisler, William G. Gris-
wold, and David Notkin. Quickly detecting relevant
program invariants. In ICSE 2000, Proceedings of the
22nd International Conference on Software Engineer-
ing, pages 449–458, Limerick, Ireland, June 7–9, 2000.

[ECGN01] Michael D. Ernst, Jake Cockrell, William G. Gris-
wold, and David Notkin. Dynamically discovering
likely program invariants to support program evolution.
IEEE Transactions on Software Engineering, 27(2):1–
25, February 2001. A previous version appeared in
ICSE ’99, Proceedings of the 21st International Con-
ference on Software Engineering, pages 213–224, Los
Angeles, CA, USA, May 19–21, 1999.

[GG91] Stephen Garland and John Guttag. A guide to LP,
the Larch Prover. Technical report, DEC Systems Re-
search Center, 1991. Updated version avaliable at URL
http://nms.lcs.mit.edu/Larch/LP.

[GHG+93] John V. Guttag, James J. Horning, S. J. Garland, K. D.
Jones, A. Modet, and J. M. Wing. Larch: Languages
and Tools for Formal Specification. Texts and Mono-
graphs in Computer Science. Springer-Verlag, New
York, 1993.

9

[GL98] Stephen J. Garland and Nancy A. Lynch. The
IOA language and toolset: Support for design-
ing, analyzing, and building distributed systems.
Technical Report MIT/LCS/TR-762, Laboratory
for Computer Science, Massachusetts Institute
of Technology, Cambridge, MA, August 1998.
URL http://theory.lcs.mit.edu/tds/
papers/Lynch/IOA-TR-762.ps.

[Gor89] M. J. C. Gordon. HOL: A proof generating system for
higher order logic. In G. Birtwistle and P. A. Subrah-
manyam, editors, Current Trends in Hardware Verifica-
tion and Automated Theorem Proving, pages 73–128.
Springer-Verlag, 1989.

[GSV01] Yuri Gurevich, Wolfram Schulte, and Margus
Veanes. Toward industrial strength abstract state
machines. Technical Report MSR-TR-2001-98,
Microsoft Research, 2001. URL for software
http://www.research.microsoft.com/
foundations/asml/.

[KCD+02a] Dilsun Kırlı, Anna Chefter, Laura Dean, Stephen J.
Garland, Nancy A. Lynch, Toh Ne Win, and Antonio
Ramirez-Robredo. The IOA simulator. Technical Re-
port MIT-LCS-TR-843, MIT Laboratory for Computer
Science, July 2002.

[KCD+02b] Dilsun Kırlı, Anna Chefter, Laura Dean, Stephen J.
Garland, Nancy A. Lynch, Toh Ne Win, and Antonio
Ramirez-Robredo. Simulating nondeterministic sys-
tems at multiple levels of abstraction. In Proceedings
of Tools Day 2002, pages 44–59, Brno, Czech Repub-
lic, August 2002. Also available as Masaryk University
Technical Report FI MU-RS-2002-05.

[Lam98] Leslie Lamport. The part-time parliament. ACM Trans-
actions on Computer Systems, 16(2):133–169, May
1998.

[LT89] Nancy A. Lynch and Mark R. Tuttle. An introduction to
Input/Output automata. CWI-Quarterly, 2(3):219–246,
September 1989.

[LV95] Nancy Lynch and Frits Vaandrager. Forward and back-
ward simulations — Part I: Untimed systems. Infor-
mation and Computation, 121(2):214–233, September
1995.

[LY01] Leslie Lamport and Yuan Yu. TLC – The
TLA+ Model Checker. Compaq Systems Re-
search Center, Palo Alto, California, 2001. URL
http://research.microsoft.com/users/
lamport/tla/tlc.html.

[Lyn96] Nancy Lynch. Distributed Algorithms. Morgan Kauf-
mann Publishers, Inc., San Mateo, CA, March 1996.

[McM98] Kenneth L. McMillan. The SMV Language. Cadence
Berkeley Labs, 2001 Addison Street, Berkeley, CA 94
704, USA, 1998. URL http://www.cis.ksu.
edu/santos/smv-doc/.

[NE02a] Jeremy W. Nimmer and Michael D. Ernst. Automatic
generation of program specifications. In Proceedings
of the 2002 International Symposium on Software Test-
ing and Analysis (ISSTA), pages 232–242, Rome, Italy,
July 22–24, 2002.

[NE02b] Jeremy W. Nimmer and Michael D. Ernst. Invariant in-
ference for static checking: An empirical evaluation. In
Proceedings of the ACM SIGSOFT 10th International
Symposium on the Foundations of Software Engineer-
ing (FSE 2002), pages 11–20, Charleston, SC, Novem-
ber 20–22, 2002.

[Pau93] Lawrence C. Paulson. The Isabelle reference manual.
Technical Report 283, University of Cambridge, Com-
puter Laboratory, 1993.

[PLL00] Roberto De Prisco, Butler Lampson, and Nancy Lynch.
Fundamental study: Revisiting the Paxos algorithm.
Theoretical Computer Science, 243:35–91, 2000.

[PLS+] Roberto De Prisco, Nancy Lynch, Alex Shvartsman,
Nicole Immorlica, and Toh Ne Win. A formal treat-
ment of Lamport’s Paxos algorithm. Manuscript.

[PRZ01] Amir Pnueli, Sitvanit Ruah, and Lenore Zuck. Auto-
matic deductive verification with invisible invariants. In
Tools and Algorithms for the Analysis and Construction
of Systems (TACAS), volume 2031 of LNCS, pages 82–
97, Genova, Italy, April 2–6, 2001.

[Rin00] Jussi Rintanen. An iterative algorithm for synthesizing
invariants. In Proceedings of the Seventeenth National
Conference on Artificial Intelligence and Twelfth Con-
ference on Innovative Applications of Artificial Intelli-
gence, pages 806–811, Austin, TX, July 30–August 3,
2000.

10

