
TIOA Tutorial

Stephen J. Garland, Dilsun Kaynar, Nancy A. Lynch,

Joshua A. Tauber, and Mandana Vaziri

Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology

May 22, 2005

The timed input/output (TIOA) modeling framework [2, 3] is a mathematical framework that
supports the description and analysis of timed systems. The TIOA language is a modeling language
that provides notations for describing timed I/O automata precisely.

The TIOA language is a variant of the IOA language [1], which can be used to describe basic
I/O automata with no timing information. TIOA extends and formalizes the descriptive notations
used in [2, 3] and supports a variety of analytic tools. These tools range from light-weight tools,
which check the syntax of automaton descriptions, to medium-weight tools, which simulate the
action of an automaton, and to heavier-weight tools, which provide support for proving properties
of automata.

1 Introduction

Timed input/ouput automata provide a mathematical model suitable for describing time-dependent
behavior in concurrent systems. The model provides a precise way of describing and reasoning about
system components that interact with each other through discrete actions as well as the continuous
evolution of internal state components over time.

2 Timed input/output automata

The fundamental object in the TIOA framework is a timed (I/O) automaton, which is a kind
of nondeterministic, possibly infinite-state, state machine. The state of a timed automaton is
described by a valuation of state variables that are internal to the automaton. The state of a timed
automaton can change in two ways: instantaneously, by the occurrence of a discrete transition, or
over an interval of time via a trajectory, which is a function that describes the evolution of the state
variables. Trajectories may be continuous or discontinuous functions.

TIOA transitions are associated with named actions, which are classified as input, output, or
internal. Input and output actions are used for communication with the automaton’s environment,
whereas internal actions are visible only to the automaton itself. The input actions are assumed
not to be under the automaton’s control, whereas the automaton itself controls which output and
internal actions should be performed.

The communication of a timed automaton with its environment is limited to discrete transitions
associated with actions shared between the automaton and its environment. The TIOA framework
does not model continuous information flow between a timed automaton and its environment; this
kind of modeling would require a ful-fledged hybrid automaton model [4].

The time domain in TIOA is the set of real numbers (in [3] additional time domains are con-
sidered). States of automata consist of valuations of variables. Each variable has both a static
type, which defines the set of values it may assume, and a dynamic type, which gives the set of
trajectories it may follow. We assume that dynamic types are closed under some simple operations:
shifting the time domain, taking subintervals, and pasting together intervals.

A trajectory for a set V of variables describes the evolution of the variables in V over time;
formally, it is a function from a time interval that starts with 0 to valuations of V ; that is, a
trajectory defines a value for each variable at each time in the interval.

A typical example of a timed automaton is a time-bounded FIFO message channel.
Formally, a timed (I/O) automaton A consists of the following six components:

2

• A set X of internal variables.

• A set Q, which is a subset of all possible valuations of X.

• A set of initial states, which is a non-empty subset of the set of all states.

• A signature, which lists disjoint sets of input, output, and internal actions of A.

• A discrete transition relation, which contains triples of the form (state, action, state), and

• A set of trajectories for X such that τ(t) ∈ Q for every τ ∈ T and every t in the domain of τ .

Dilsun: Do we need to call the variables “internal”? Is Q the set of states? Why doesn’t it
contain all valuations?

An action π is said to be enabled in a state s if there is another state s′ such that (s, π, s′) is a
transition of the automaton. Input actions are enabled in every state; i.e., automata are not able
to “block” input actions from occurring. The external actions of an automaton consist of its input
and output actions.

The transition relation is usually described in precondition-effect style, which groups together
all transitions that involve a particular type of action into a single piece of code. The precondition
is a predicate (that is, a boolean-valued expression) on the state indicating the conditions under
which the action is permitted to occur. The effect describes the changes that occur as a result of
the action, either in the form of a simple program or in the form of a predicate relating the pre-
state and the post-state (i.e., the states before and after the action occurs). Actions are executed
indivisibly.

Trajectories are defined using invariants, algebraic and differential equations, and “urgency”
conditions that specify when time must stop to allow a discrete action to occur.

3 Using TIOA to formalize descriptions of timed I/O automata

We illustrate the nature of timed automata, as well as the use of TIOA to define the automata,
by a few simple examples. Figure 3.1 contains a simple TIOA description for an automaton,
Timeout(u:Real, M:Type), that awaits the receipt of a message of type M from another process.
If u time units elapse without such a message arriving, the automaton performs a timeout action,
thereby “suspecting” the other process. When a message arrives, it “unsuspects” the other process.
The automaton may suspect and unsuspect repeatedly. The automaton is parameterized by the
timeout period u and the type M of the messages received by Timeout(u:Real, M: Type).

The automaton Timeout has two state variables: suspected is a boolean that is set to true when
a timeout occurs, and clock is a real number that represents a timer running at the same speed as
realtime. The initial value of suspected and clock are \ioafalse’ and 0. The value of the automaton
parameter u is constrained to be strictly greater than 0.

The transitions of the automaton Timeout are given in precondition/effect style. The input
action receive (m) has no precondition, which is equivalent to having true as its precondition. This
is the case for all input actions; that is, every input action in every automaton is enabled in every
state. The effect of receive is to reset clock to 0 and to set suspected to false (in case it had been
true before). The output action timeout can occur only when it is enabled, that is, only in states
in which suspected is false and clock =u. Its effect is to set suspected to true.

3

automaton Timeout (u : Real , M: type) where u > 0
signature

input r e c e i v e (m: M)
output timeout

states
suspected : Bool := f a l s e ,
c l ock Real := 0

transitions
input r e c e i v e (m)

e f f c lock := 0 ;
suspected := f a l s e

output timeout
pre ¬suspected ∧ c lock = u
e f f suspected := true

trajectories
trajdef suspected

invariant suspected
evolve d(c lock) = 1

trajdef notsuspected
invariant ¬suspected
stop when c lock = u
evolve d(c lock) = 1

Figure 3.1: TIOA description of a timeout process

4

The two trajectory definitions suspected and notsuspected correspond to two “modes” of the
Timeout automaton. While the suspected flag is false , the clock advances with rate 1, that is,
with the same rate as realtime, and time cannot go beyond the point at which clock =u. While
the suspected flag is true there is no condition on time-passage; the clock may keep advancing with
rate 1. Note that trajectories do not need to be followed until a stopping condition is reached;
however, if a stopping condition is reached then time must stop. At this point, a discrete action
may occur if it is enabled.

4 Data types in TIOA descriptions

[[Have to incorporate material on dynamic types, AugmentedReal etc.]]
TIOA enables users to define the actions and states of I/O automata abstractly, using mathe-

matical notations for sets, sequences, etc., without having to provide concrete representations for
these abstractions. Some mathematical notations are built into TIOA; others can be defined by
the user.

The data types Bool, Int, Nat, Real, Char, and String can appear in TIOA descriptions without
explicit definition. Compound data types can be constructed using the following type constructors
and used without explicit definition.

• Array[I1, . . . , In , E] is an n-dimensional array of elements of type E indexed by elements
of types I1, . . . , In.

• Map[D1, . . . , Dn, R] is a finite partial mapping of elements of an n-dimensional domain with
type D1 × · · · × Dn to elements of a range with type R. Mappings differ from arrays in that
they are defined only for finitely many elements of their domains (and hence may not be
totally defined).

• Seq[E] is a finite sequence of elements of type E.

• Set[E] is a finite set of elements of type E.

• Mset[E] is a finite multiset of elements of type E.

• Null[E] is isomorphic to E extended by a single element nil .

In this tutorial, we describe operators on the built-in data types informally when they first appear
in an example.

Users can introduce additional data types and type constructors by defining vocabularies for
them. Each vocabulary introduces notations for a set of types and a set of operators. In fact, each
of the built-in data types is defined by a built-in vocabulary. For example, the following built-in
vocabularies provides notations for the Real data type and its associated operators. Each operator
has a signature that specifies the types of its arguments and the type of its result. Infix, prefix,
postfix, and mixfix operators are named by sequences of non-letter characters and are defined using
placeholders to indicate the locations of their arguments. Operators used in functional notation
(e.g., in max(a, b)) are named by simple identifiers.

vocabulary Real
imports NumericOps (type Real , type Real , type Real)

5

operators
− , abs : Real → Real

∗∗ : Real , In t → Real
i n t 2 r e a l : In t → Real

vocabulary NumericOps(T1 , T2 , T3 : type)
types T1 T2 T3
operators

+ , − , ∗ , / , min , max : T1 , T2 → T3
< , ≤ , > , ≥ , = , �= : T1 , T2 → Bool

\end (IOA}

As thes e examples i l l u s t r a t e , a vocabulary can import notat ion s from
another vocabu lar i e s , and i t can be parameter ized to make operator notat i on s
such as \ ioa ‘ < : Real , Real→Bool ‘ a v a i l a b l e for the \ ioa ‘ Real ‘ data type .

A vocabulary can d e f i n e a type con s t ructor , as in the f o l l ow in g bu i l t−in
vocabulary for the \ i oa ′ Null ′ con s t ructor .
\begin {IOA}
vocabulary Null defines Null [T]

operators
n i l : → Null [T]
embed : T → Null [T]

. va l : Nul l [T] → T

The identifier T in this vocabulary is a type parameter, which is instantiated any time the con-
structor Null is used to provide operator notations appropriate for that use. Thus, if x is a variable
of type Null[Int], then one can write embed(x).val =x.

User-defined vocabularies can introduce notations for enumeration, tuple, and union types anal-
ogous to those found in many common programming languages. For example,

vocabulary sampleVocab
types Color enumeration [red , white , b lue] ,

Msg tuple [source , des t : Process , contents : S t r ing] ,
Fig union [sq : Square , c i r c : C i r c l e]

can be imported by the definition of any other vocabulary or automaton to provide notations for
three data types it describes.

In this tutorial, some operators are displayed using mathematical symbols that do not appear
on the standard keyboard. Table 4.1 shows the input conventions for entering these symbols.

5 TIOA descriptions for primitive automata

Explicit descriptions of primitive automata specify their names, action signatures, state variables,
transition relations, and trajectories. All but the last of these elements must be present in every
primitive automaton description.

6

Logical Operator Datatype Operator

Symbol Meaning Input

∀ For all \A

∃ There exists \E

¬ Not ~

�= Not equals ~=

∧ And /\

∨ Or \/

⇒ Implies =>

⇔ If and only if <=>

Symbol Meaning Input

≤ Less than or equal <=

≥ Greater than or equal >=

∈ Member of \in

�∈ Not a member of \notin

⊂ Proper subset of \subset

⊆ Subset of \subseteq

⊃ Proper superset of \supset

⊇ Superset of \supseteq

� Append element |-

� Prepend element -|

Table 4.1: Typographical conventions

5.1 Automaton names and parameters

The first line of an automaton description consists of the keyword automaton followed by the
name of the automaton. As illustrated in Figure 3.1, the name may be followed by a list of
formal parameters enclosed within parentheses. There are two kinds of automaton parameters.
An individual parameter (such as u:Real) consists of an identifier with its associated type, and it
denotes a fixed element of that type. A type parameter (such as M:type) consists of an identifier
followed by the keyword type, and it denotes a type.Example of nondeterministic choice of initial
value for state variable

5.2 Action signatures

The signature for an automaton is declared using the keyword signature followed by lists of entries
describing the automaton’s input, internal, and output actions. Each entry contains a name and
an optional list of parameters enclosed in parentheses. There are two kinds of action parameters.
A varying parameter consists of an identifier with its associated type, and it denotes an arbitrary
element of that type. A fixed parameter consists of the keyword const followed by a term denoting
a fixed element of its type. Neither kind of parameter can have type as its type. Each entry in the
signature denotes a set of actions, one for each assignment of values to its varying parameters.

It is possible to constrain the values of the varying parameters for an entry in the signature using
the keyword where followed by a predicate. Such constraints restrict the set of actions denoted
by the entry.

7

5.3 State variables

As in the above examples, state variables are declared using the keyword states followed by a
comma-separated list of state variables and their types. State variables can be initialized using
the assignment operator := followed either by an expression or by a nondeterministic choice. The
order in which state variables are declared makes no difference: state variables are initialized
simultaneously, and their initial values cannot refer to the value of any state variable.

A nondeterministic choice (of the form choose variable where predicate) selects an arbitrary
value of the variable that satisfies the predicate. When a nondeterministic choice is used to initialize
a state variable, there must be some value of the variable that satisfies the predicate. If the predicate
is true for all values of the variable, then the effect is the same as if no initial value had been specified
for the state variable.

automaton Choice
signature output r e s u l t (i : In t)
states num: Int := choose n where 1 ≤ n ∧ n ≤ 3
transitions

output r e s u l t (i)
pre i = num

Figure 5.2: Example of nondeterministic choice of initial value for state variable

For example, in the automaton Choice (Figure 5.2), the state variable num is initialized nonde-
terministically to some value n that satisfies the predicate 1 ≤n ∧ n ≤3, i.e., to one of the values
1, 2, or 3 (the value of n must be an integer because it is constrained to have the same type, Int,
as the variable num to which it will be assigned).

It is also possible to constrain the initial values of all state variables taken together, whether
or not initial values are assigned to any individual state variable. This can be done using the
keyword initially followed by a predicate (involving state variables and automaton parameters),
as illustrated by the definition of the automaton Shuffle in Figure 5.3.1

In Figure 5.3, the initial values of the variable cut and the array name of strings are constrained
so that name[1], . . . , name[52] are sorted in two pieces, each in increasing order, with the piece
after the cut containing smaller elements than the piece before the cut. The constraint following
initially limits only the initial values of the state variables, not their subsequent values. (Note
that the scope of the initially clause is the entire set of state variable declarations.) The type
Array[cardIndex, String] of the state variable name consists of arrays indexed by elements of type
cardIndex and containing elements of type String (see Section 4). The swap actions transpose pairs
of strings until a deal action announces the contents of the array; then no further actions occur.

When the type of a state variable is an Array, Map, or tuple (Section 4), TIOA also treats the
elements of the array or mapping, or the fields in the tuple, as state variables, to which values can
be assigned without affecting the values of the other elements in the array or mapping or of the
fields in the tuple.

1At present, users must expand the . . . in the definition of the type cardIndex by hand. In the future, TIOA may
provide more convenient notations for integer subranges.

8

vocabulary cardDeck
types cardIndex enumeration [1 , 2 , 3 , . . . , 5 2]

automaton Shu f f l e
imports cardDeck
signature

internal swap (i , j : cardIndex)
output deal (a : Array [cardIndex , S t r ing])

states
dea l t : Bool := f a l s e ,
name : Array [cardIndex , S t r ing] ,
cut : cardIndex
i n i t i a l l y

∀ i : cardIndex (i �= 52 ∧ i �= cut ⇒ name [i] < name [succ (i)])
∧ name [5 2] < name [1]

transitions
internal swap (i , j ; local temp : S t r ing)

pre ¬dea l t
e f f temp := name [i] ;

name [i] := name [j] ;
name [j] := temp

output deal (a)
pre ¬dea l t ∧ a = name
e f f dea l t := true

Figure 5.3: Example of a constraint on initial values for state variables

9

5.4 Transition relations

Transitions for the actions in an automaton’s signature are defined following the keyword tran-
sitions. A transition definition consists of an action type (i.e., input, internal, or output), an
action name with optional parameters, an optional where clause, an optional precondition, and
an optional effect.

More than one transition definition can be given for an entry in an automaton’s signature. For
example, the transition definition for the swap actions in the Shuffle automaton (Figure 5.3) can
be split into two parts:

internal swap (i , j ; local temp : S t r ing) where i �= j
pre ¬dea l t
e f f temp := name [i] ;

name [i] := name [j] ;
name [j] := temp

internal swap (i , i)
pre ¬dea l t

The second of these two transition definitions does not change the state, because it has no eff
clause.

5.5 Transition parameters

Two kinds of parameters can be specified for a transition: ordinary parameters, corresponding to
those in the automaton’s signature, and additional local parameters. The ordinary parameters
accompanying an action name in a transition definition must match those accompanying the action
name in the automaton’s signature, both in number and in type. However, the keyword const does
not appear in transition parameters, and all transition parameters are treated as terms.

The simplest way to formulate the ordinary parameters for an action in a transition definition
is to erase the keyword const and the type modifiers from the parameter list in the signature;

In addition to these ordinary parameters, a transition definition can contain local variables,
which are specified after the ordinary parameters and the keyword local. Local variables can be
used for two purposes. As illustrated in Figure 5.3, they can be used as temporary state variables.
In addition, they can be used to relate the postcondition for a transition to its precondition.

5.6 Preconditions

A precondition can be defined for a transition of an output or internal action using the keyword
pre followed by a predicate. Preconditions cannot be defined for transitions of input actions. All
variables in a precondition must be parameters of the automaton, be state or local variables, appear
in parameters for the transition definition, or be quantified explicitly in the precondition. If no
precondition is given, it is assumed to be true.

An action is said to be enabled in a state if there are some values for the local variables of
one of its transition definitions that satisfy both the where clause and, together with the state
variables, the precondition for that transition definition. Input actions, whose transitions have no
preconditions, are always enabled.

10

5.7 Effects

The effect of a transition, if any, is defined following the keyword eff. This effect is generally defined
in terms of a (possibly nondeterministic) program that assigns new values to state variables. The
amount of nondeterminism in a transition can be limited by a predicate relating the values of state
variables in the post-state to each other and to their values in the pre-state.

If the effect is missing, then the transition has none; i.e., it leaves the state unchanged.

5.7.1 Using programs to specify effects

A program is a list of statements, separated by semicolons. Statements in a program are executed
sequentially. There are three kinds of statements:

• assignment statements,

• conditional statements, and

• for statements.

Assignment statements An assignment statement changes the value of a state or local variable.
The statement consists of the state or local variable followed by the assignment operator := and
either an expression or a nondeterministic choice (indicated by the keyword choose). As noted
in Section 5.3, the elements in an array or mapping, or the fields in a tuple, used as a state or
local variable, are themselves considered as separate variables and can appear on the left side of
the assignment operator.

The expression or nondeterministic choice in an assignment statement must have the same
type as the state or local variable. The value of the expression is defined mathematically, rather
than computationally, in the state before the assignment statement is executed.2 The value of the
expression then becomes the value of the state or local variable in the state after the assignment
statement is executed. Execution of an assignment statement does not have side-effects; i.e., it
does not change the value of any state or local variable other than the one on the left side of the
assignment operator.

Conditional statements A conditional statement is used to select which of several program
segments to execute in a larger program. It starts with the keyword if followed by a predicate, the
keyword then, and a program segment; it ends with the keyword fi. In between, there can be any
number of elseif clauses (each of which contains a predicate, the keyword then, and a program
segment), and there can be a final else clause (which also contains a program segment).

For statements A for statement is used to perform a program segment once for each value of
a variable that satisfies a given condition. It starts with the keyword for followed by a variable,
a clause describing a set of values for this variable, the keyword do, a program segment, and the
keyword od.

2If a program consists of more than a single assignment statement, then the states before and after the assignment
statements in the program may be intermediate states, which do not appear in the execution fragments of the
automaton.

11

vocabulary Packet
types Message , Node ,

Packet tuple [contents : Message , source : Node , des t : Set [Node]]

automaton Mult icast
imports Packet
signature

input mcast (m: Message , i : Node , I : Set [Node])
internal d e l i v e r (p : Packet)
output read (m: Message , j : Node)

states
network : Mset [Packet] := {} ,
queue : Array [Node , Seq [Packet]]
i n i t i a l l y ∀ i : Node (queue [i] = {})

transitions
input mcast (m, i , I)

e f f network := i n s e r t ([m, i , I] , network)
internal d e l i v e r (p)

pre p ∈ network
e f f for j : Node in p . dest do queue [j] := queue [j] � p od ;

network := d e l e t e (p , network)
output read (m, j)

pre queue [j] �= {} ∧ head (queue [j]) . contents = m
e f f queue [j] := t a i l (queue [j])

Figure 5.4: Example showing use of a for statement

12

Figure 5.4 illustrates the use of a for statement in a high-level description of a multicast algo-
rithm that has no timing constraints. Its first line defines the Packet data type to consist of triples
[contents , source , dest], in which contents represents a message, source the Node from which the
message originated, and dest the set of Nodes to which the message should be delivered. The state
of the multicast algorithm consists of a multiset network, which represents the packets currently in
transit, and an array queue, which represents, for each Node, the sequence of packets delivered to
that Node, but not yet read by the Node.

The mcast action inserts a new packet in the network; the notation [m, i , I] is defined by the
tuple data type (Section 4) and the insert operator by the multiset data type (Section 4). The
deliver action, which is described using a for statement, distributes a packet to all nodes in its
destination set (by appending the packet to the queue for each node in the destination set and
then deleting the packet from the network). The read action receives the contents of a packet at a
particular Node by removing that packet from the queue of delivered packets at that Node.

There are two ways to describe the set of values for the control variable in a for statement. The
first consists of the keyword in followed by an expression denoting a set or multiset of values of the
appropriate type, in which case the program following the keyword do is executed once for each
value in the set or multiset. The second consists of the keyword where followed by a predicate, in
which case the program is executed once for each value satisfying the predicate. These executions of
the program occur in an arbitrary order. However, TIOA requires that the effect of a for statement
be independent of the order in which executions of its program occur.

Using predicates on states to specify effects The results of a program can be constrained
by a predicate relating the values of state variables after a transition has occurred to the values
of state variables before the transition began. Such a predicate is particularly useful when the
program contains the nondeterministic choose operator. For example,

e f f name [i] := choose ;
name [j] := choose
ensuring name ′ [i] = name [j] ∧ name ′ [j] = name [i]

is an alternative way of writing the effect clause of the swap action in Shuffle (Figure 5.3). The
assignment statements indicate that the array name may be modified at indices i and j, and
the ensuring clause constrains the modifications. A primed state variable in this clause (i.e.,
name′) indicates the value of the variable in the post-state; an unprimed state variable (i.e., name)
indicates its value in the pre-state. This notation allows us to eliminate the local variable temp
needed previously for swapping.

There are important differences between where clauses attached to nondeterministic choose
operators and those attached to ensuring clauses. A where clause restricts the value chosen by
a choose operator in a single assignment statement, and variables appearing in the where clause
denote values in the state before the assignment statement is executed. An ensuring clause can be
attached to an entire eff clause; unprimed variables appearing in an ensuring clause denote values
in the state before the transition represented by the entire eff clause occurs, and primed variables
denote values in the state after the transition has occurred.

13

5.8 Trajectories

Trajectories of an automaton are defined following the keyword trajectories. A trajectroy def-
inition consists of a name, an invariant, an evolve clause, and a stopping condition. More than
one trajectory definition can be used to define trajectories of an automaton. For example, the
automaton Timeout in Figure 3.1 has two trajectory definitions.

Each trajectory definition defines a set of trajectories; the set of all trajectories for an automaton
is the concatenation closure of all of these sets (see [3] for the definition of concetanation for
trajectories).A trajectory belongs to the set of trajectories defined by a trajectory definition if it
satisfies the predicate in its invariant clause, the differential equations in the evolve clause and
the stopping condition expressed by the stop when clause. The stopping condition is satisfied by
a trajectory if the only state in which the condition holds is the last state of that trajectory. In
other words, time cannot advance once the stopping condition becomes true.

automaton ClockSync (u , r : Real , i : Index)
signature

input r e c e i v e (m: Real , j : Index , const i : Index) where j �= i ,
output send (m: Real , const i : Index)

states
nextsend : Real := 0 ,
maxother : Real := 0 ,
physc lock : Real := 0
i n i t i a l l y u > 0 ∧ (0 ≤ r < 1)

l e t l o g c l o ck = max(maxother , physc lock)

transitions
input r e c e i v e (m, j , i)

e f f maxother := max(maxother ,m)
output send (m, i)

pre m = physc lock ∧ physc lock = nextsend
e f f nextsend := nextsend + u

trajectories
trajdef always

stop when physc lock = nextsend
evolve (1 − r) ≤ d(physc lock) ≤ (1 + r)

Figure 5.5: Example showing trajectory definitions

The algorithm ClockSync is based on the exchange of physical clock values between different
processes in the system. The parameter u determines the frequency of sending messages. Processes
in the system are indexed by the elements of the type Index which we assume to be pre-defined.
ClockSync has a physical clock physclock, which may drift from the real time with a drift rate
bounded by r. It uses the variable maxother to keep track of the largest physical clock value of
the other processes in the system. The variable nextsend records when it is supposed to send its
physical clock to the other processes. The logical clock, logclock, is defined to be the maximum of

14

maxother and physclock. Formally logclock is a derived variable, which is a function whose value
is defined in terms of the state variables.

The unique trajectory definition in this example shows that the variable physclock drifts with
a rate that is bounded by r. The periodic sending of physical clocks to other processes is enforced
through the stopping condition in the trajectory specification. Time is not allowed to pass beyond
the point where physclock =nextsend.

References

[1] S. Garland, N. Lynch, and M. Vaziri. IOA: A Language for Specifying, Programming, and
Validating Distributed Systems. MIT Laboratory for Computer Science, Cambridge, MA, 2001.
Available at http://theory.lcs.mit.edu/tds/ioa.html.

[2] D. Kaynar, N. Lynch, R. Segala, and F. Vaandrager. Timed I/O automata: A mathematical
framework for modeling and analyzing real-time systems. In Proceedings of the 24th IEEE
International Real-Time Systems Symposium, pages 166–177, Cancun, Mexico, 2003. IEEE
Computer Society. Full version available as Technical Report MIT/LCS/TR-917.

[3] D. Kaynar, N. Lynch, R. Segala, and F. Vaandrager. The theory of timed I/O automata.
Technical Report MIT/LCS/TR-917a, MIT Laboratory for Computer Science, 2004. Available
at http://theory.lcs.mit.edu/tds/reflist.html.

[4] N.A. Lynch, R. Segala, and F.W. Vaandrager. Hybrid I/O automata. Information and Compu-
tation, 185(1):105–157, 2003. Also Technical Report MIT-LCS-TR-827d, MIT Laboratory for
Computer Science.

15

