
Formal Methods-Based Maximally Satisfying Action Planning

Jana Tumova, Alejandro Marzinotto, Dimos V. Dimarogonas, Danica Kragic

Abstract— We focus on synthesis and execution of action
plans for an autonomous robot, where the action refers to a
“simple” motion or manipulation task, such as “go from A to
B”, or “grasp a ball”. Due to imprecisions in the robot’s sensors
and actuators, an action execution attempt might succeed as
well as fail, resulting in a possible infeasibility of the desired
robot’s goal. In this work, we propose a formal methods-based
framework that allows to cope with such situations; to express a
complex robot mission, to automatically compute a maximally-
satisfying reactive action plan, and to interface the action plan
with the robot’s low-level controllers.

I. INTRODUCTION

Recent research has shown that temporal logics can
formalize many complex, high-level, recurrent task, such
as surveillance (“periodically visit region A”), sequencing
(“visit region A, then B, then C”), safety (“always avoid
region D”), and their combinations. Interfaces have been
designed between temporal logics and user-friendly speci-
fication languages, such as structured English, or graphical
representations. Leveraging ideas from formal verification,
algorithms have been developed to automatically synthesize
a discrete plan that guarantees the satisfaction of a given
temporal logic goal. Various discrete robot models and high-
level plans have been coupled with the robot’s continuous
workspace and controllers. All in all, these ingredients ad-
vance the formal methods-based approach to translating a
user-input high-level mission into a robot’s provable mission
satisfaction.

While the approach has gained a considerable amount
of attention in robot motion planning context [1], [2], the
literature focused on motion and manipulation planning has
been, to our best knowledge, limited to several standalone
studies [3], [4]. In this work, we aim to enhance the temporal
logic planning of “where to go” with “what to do” there. We
devote specific focus to the uncertain outcome of a motion or
manipulation task execution; we consider that such an action
can succeed or fail.

Related work includes techniques for reactive temporal
logic planning e.g., synthesis for nondeterministic systems,
or general-reactivity goals [2]. Other closely related works
aim at planning under unsatisfiable temporal logic goals,
where the authors focus on least-violating planning with
respect to a proposed metric [5], [6].

The authors are with the Centre for Autonomous Systems, Royal Institute
of Technology (KTH), SE-100 44 Stockholm, Sweden. J. Tumova and D.
Dimarogonas are also with the Automatic Control Lab and the ACCESS
Linnaeus Center. A. Marzinotto and D. Kragic are also with Computer Vi-
sion and Active Perception Lab. This work was supported by the EU STREP
RECONFIG. e-mail: {tumova|almc|dimos|dani}@kth.se.

A. Objectives

Our goal is to propose a formal methods-based framework
that 1) bridges the high-level plan with the low-level motion,
grasping, and other controllers, 2) is modular and extensible
to handle different robots and their capabilities, 3) is reac-
tive and able to cope with the unreliability of the robot’s
sensors and actuators leading to failures of its actions, and
4) guarantees that the temporal logic task is met as closely
as possible in case it cannot be met completely.

This extended abstract summarizes the key ideas of the
proposed solution and we include an illustrative example
of a NAO robot executing walking, ball grasping and ball
dropping motion primitives. The details can be found in the
full version of this paper [7].

II. OUR APPROACH

Our approach to the above problem is inspired by the
existing formal methods-based hierarchical motion planning
framework (see, e.g. relevant overview papers [1], [2]).
Similarly as in some related literature we assume that the
robot’s states and action capabilities are at the highest level of
abstraction captured through a finite, discrete state-transition
system. Note that this does not mean that the transition
system is input explicitly, it can be as well automatically
generated from other robot’s models [1], [2]. The set of states
of the transition system encode the possible states of the
robot, such as its position in the environment, or the object
it is carrying. The transitions of the system abstract the action
primitives, such as “move from position A to position B”, or
“grasp a ball” and the corresponding evolution of the robot’s
states upon a successful execution of an action primitive.
Due to imprecisions in robot’s sensors and actuators, each
attempt to execute an action might result into a success
(transiting into another state) or a failure (staying in the same
state). As the specification language, we use a surveillance
fragment of the State-Event Linear Temporal Logic (SE-
LTL) allowing to impose requirements and restrictions on a
long-term evolution of both the robot’s states and its actions.

The proposed solution comprises two standalone steps:
(1) maximally satisfying high-level planning in which we
synthesize a reactive, discrete plan that satisfies the formula
as closely as possible, and (2) low-level plan execution in
which we translate the plan into a robot’s hybrid controller.

A. Maximally Satisfying High-level Planning

To synthesize a maximally satisfying plan, we first for-
mally define a measure of the level of noncompliance of
a robot’s behavior (i.e. a trace of the transition system)
with respect to the given SE-LTL formula. Following the

automata-based approach to model checking and similar
ideas as in [5], we translate the SE-LTL formula into an
equivalent Büchi automaton. We construct a specialized
weighted product automaton that captures not only the traces
of the transition systems that satisfy the Büchi automaton
(hence also the SE-LTL formula), but also the level of
noncompliance of the individual traces through its weights.
We prove a correspondence between the length of the lasso-
shaped accepting runs in the product automaton and the level
of noncompliance of the traces of the transition system. The
remainder of the solution builds on a systematic exploration
of the product automaton via standard graph algorithms.

The resulting discrete plan is reactive. It is formalized
through an Input/Output (I/O) automaton that reads as an
input a success/failure status of the previous action execution
attempt and outputs the next action to be executed.

B. Action Plan Implementation

The I/O automaton obtained in the previous step serves a
discrete action plan for an abstract model of the considered
robotic system. However its application in a dynamical
system itself is not straightforward. We propose an automatic
translation of the I/O automaton into a Behavior Tree (BT)
that maps abstract action primitives onto their respective
continuous controllers and hence serves as a bridge between
the high-level planning and the low-level robot control layers.

The idea of using BTs as a hybrid control interface has
been recently proposed in [8], resulting in an open source BT
library for the Robot Operating System (ROS) [9]. The main
feature indicating that BTs are suitable for a middle-layer
controller representation is their modularity; every sub-tree
of a BT can be treated as a standalone entity that represents
a certain action or a task. BTs are built using sub-tree blocks
in a hierarchical fashion, subsuming thus multiple levels
of abstraction and allowing to easily replace an abstract
action/task node with a concrete action/task implementa-
tion [8]. Additionally, BTs are equipped with control-flow
nodes to capture various conditional, or sequential sub-tree
executions, hence making BTs an appropriate formalism for
reactive controllers.

With the translation from I/O automata to BTs, we con-
clude the proposed solution to maximally satisfying planning
and its execution by a robot.

III. EXPERIMENTS

We implemented the proposed solution in Robot Operating
System (ROS) and tested it in a NAO robot testbed illustrated
in Fig. 1. To demonstrate the results of our approach,
we consider two different SE-LTL tasks involving motion
between regions, grasping and dropping a ball. The grasping
action has shown as the most critical, often failing one. Thus,
for simplicity of presentation, in Fig. 1 we depict resulting
trajectories while considering only grasping action failures.

IV. FUTURE WORK

As a future work, we will explore an option to update the
BT upon a run of a system instead of its offline generation.

Fig. 1: Left: Example of a NAO robot’s workspace partitioned
into 9 regions; 6 rooms and 3 corridor regions. We assume the
following set of action and motion primitives: r, b, l, t (move to the
neighboring region on the right, bottom, left, or top, respectively),
grab (grab a ball), drop (drop the ball), and sit . The robot’s state
is compound of the region the robot is present at and whether or
not it holds a ball. The robot is not allowed to cross a black line,
and therefore the motion primitives r, b, l, t are not enabled in all
the states. Middle: Illustration of the (cyclic) solution for a task
“periodically grab a ball in R6 and drop it in R2”: GF(R4∧grab∧
F(R2 ∧ drop))∧GF sit. The yellow star represents the sit action.
The filled and empty circles depict grasp and drop, respectively.
The black arrows illustrate the behavior before grasp is attempted.
The continuation of one cycle after a successful and a failed grasp
is in green and red, respectively. Notice, that after a grasp failure,
room R2 is not visited as R2 ∧ drop cannot be satisfied. Right:
Illustration of the task “periodically grab a ball in R4 or in R5 and
drop it in R2”: GF((R4∧grab∨R5∧grab)∧F(R2∧drop))∧GF sit.

Furthermore, we will focus on finer classification of actions
than success or failure; we plan to introduce a probabilistic
measure of an action success and algorithms to extend the
level of satisfaction to the expected one.

Acknowledgement: We would like to thank Meng Guo and
Michele Colledanchise for their help on the NAO testbed.

REFERENCES

[1] A. Bhatia, M. R. Maly, L. E. Kavraki, and M. Y. Vardi, “Motion
planning with complex goals,” Robotics Automation Magazine, IEEE,
vol. 18, no. 3, pp. 55 –64, 2011.

[2] H. Kress-Gazit, T. Wongpiromsarn, and U. Topcu, “Motion planning
with complex goals,” Robotics Automation Magazine, IEEE, vol. 18,
no. 3, pp. 65 –74, 2011.

[3] M. Guo, K. H. Johansson, and D. V. Dimarogonas, “Motion and
action planning under LTL specifications using navigation functions and
action description language,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2013, pp. 240–245.

[4] S. Chinchali, S. C. Livingston, U. Topcu, J. W. Burdick, and R. M.
Murray, “Towards formal synthesis of reactive controllers for dexter-
ous robotic manipulation,” in Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), 2012, pp. 5183–5189.

[5] J. Tumova, G. C. Hall, S. Karaman, E. Frazzoli, and D. Rus, “Least-
violating control strategy synthesis with safety rules,” in Proceedings
of the 16th International Conference on Hybrid Systems: Computation
and Control (HSCC). ACM, 2013, pp. 1–10.

[6] M. R. Maly, M. Lahijanian, L. E. Kavraki, H. Kress-Gazit, and M. Y.
Vardi, “Iterative temporal motion planning for hybrid systems in par-
tially unknown environments,” in Proceedings of the 16th International
Conference on Hybrid Systems: Computation and Control (HSCC).
ACM, 2013, pp. 353–362.

[7] J. Tumova, A. Marzinotto, D. V. Dimarogonas, and D. Kragic, “Max-
imally satisfying LTL action planning,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2014. To appear.

[8] A. Marzinotto, M. Colledanchise, C. Smith, and P. Ögren, “Towards a
unified behavior trees framework for robot control,” in Proceedings of
the IEEE International Conference on Robotics and Automation (ICRA),
2014, pp. 5420–5427.

[9] A. Marzinotto, M. Colledanchise, and I. Tjernberg. (2013) Behavior
trees library for the robot operating system (ROS). [Online]. Available:
https://github.com/almc/behavior trees

https://github.com/almc/behavior_trees

	Introduction
	Objectives

	Our Approach
	Maximally Satisfying High-level Planning
	Action Plan Implementation

	Experiments
	Future Work
	References

