
  

 

Abstract— The ultimate goal of our work is to develop a novel, 

integrated system for semi-autonomous robotic teleoperation by 

introducing an interfacing language shared by human operators 

and robots. This work presents a unified linguistic formalism 

based on the combinatory categorial grammar (CCG) and 

preliminary result towards the goal; we show that, using a 

language derived from a CCG, human-to-robot communication 

can be modeled as a hierarchical task network (HTN) planning 

problem, and robot-to-human communication as a plan 

recognition problem. 

I. INTRODUCTION 

The interest in the application of robots in the search and 
rescue missions, underwater or space explorations, and 
battlefield missions has significantly increased over the last 
two decades [4,12]. Fully autonomous robot operation would 
be ideal in these applications. However it is still quite 
challenging for robots to perceive, reason, and perform actions 
autonomously in unstructured and dynamic environments. As 
an alternative, teleoperating semi-autonomous robots is 
considered more realistic and viable, evidenced by many field 
robots in service [12]. The major technical challenges 
envisioned by these robotic teleoperation are facilitating the 
supervision of robots by operators who do not have expertise 
in robotics, lowering the operator’s workload, and the effective 
teleoperation with low-bandwidth, high latency, and 
intermittent communications [10-12]. 

Given a shared language between human operators and 
robots, robots could inform operators the task progression, 
what they expect they could do, and humans could request the 
robot perform tasks or course of actions. We believe this 
collaborative, semi-autonomous teleoperation via low-
bandwidth communication between humans and robots to 
yield significant improvement over the direct, non-
collaborative teleoperation, and to provide a solution to most 
of the challenges mentioned earlier.  

The ultimate goal of our work is to develop a novel, 
integrated system for collaborative, semi-autonomous 
teleoperation by introducing an interfacing language shared by 
human operators and robots. This work presents a preliminary 
work towards to the goal. The main contributions of this work 
are: (i) We   present a unified linguistic formalism for efficient 
human-robot interaction (HRI), based on a lexicalized 
grammar formalism called combinatory categorial grammar 
(CCG), (ii) We provides a new perspective for HRI in the 
context of planning and plan recognition 
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The remainder of this paper is organized as follows: related 
work is reviewed in Section II. We provide intuitions behind 
this work, and introduce the proposed system concept in 
Section III. In Section IV, an informal definition of CCG is 
given. Next, in Section V, we provide a unified linguistic 
formalism based on CCG to model (i)human-robot 
communication in teleoperation, in the context of planning 
plan recognition, and (ii)affordance-based object-action 
schema.. Finally, we conclude in Section VIII with summary, 
discussion and future work. 

II. RELATED WORK 

Application of techniques from linguistic theory to 
robotics is not new [8,9,13,14,17-19,21-27]. Artificial 
intelligence (AI) community and linguistic theory community 
have been cooperatively developing their research fields. In 
particular, as interest in HRI has grown, natural language 
processing became very active area of research [4]. Part of this 
work is heavily influenced and motivated by studies on 
linguistic plan recognition [5,6], and spoken language 
processing for HRI [21-27].  

Many systems have exploited the compositional structure of 
language to statically generate a plan corresponding to a 
natural language command [9,18]. Our work moves beyond 
this framework by providing a unified linguistic formalism for 
teleoperation of semi-autonomous robots. 

Our approach tightly combines high-level action planning 
and motion generation by providing new affordance-based 
object-action schema under the unified linguistic formalism. 
Others [18,21-27] have used generative and discriminative 
models for understanding human commands in natural 
language, but did not fully exploit the hierarchical nature of 
the linguistic structure and exploit the analogies between HTN 
planning framework. Some previous work focuses on the 
usage of instructions for tasks available on the web, and 
inferring about whether the robot has the capabilities for the 
instructions, and those systems usually need separate low-level 
language for execution of the high-level action plan [9,18], 
while we are providing a linguistic framework. This paper 
reports preliminary result on combining previous work in 
planning, plan recognition, natural language processing, and 
spoken-language-based HIR in robotics with a unified 
linguistic formalism. To authors’ best knowledge, our 
approach is novel in the sense that we provide a unified, CCG-
based linguistic formalism for teleoperation of semi-
autonomous robots. 
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III. CONCEPT OF THE PROPOSED SYSTEM 

Communication between humans and robots would be one 
of four types: Directives, Queries, Assertives, and Correctives 
[17-19]. In this work, we concentrate on the directives, as we 
are interested in the generation of task-oriented action 
sequences (planning), and monitoring of robot’s task 
execution (plan recognition) in robot teleoperation. 

Since communication with natural language is convenient 
for humans, many studies have proposed schemes for HRI 
based on natural language [4]. Although natural language is 
clearly an effective medium for human-human communication, 
it presents several problems when used for human-robot 
communications; Natural language descriptions tend to be 
underspecified, diverse, vague, or ambiguous for robot to 
understand [4,23,25-27]. Thus restricting natural language to 
a small finite set of linguistic expressions (i.e. a formal 
language) would mitigate these problems. 

A. Linguistic Planning and Plan Recognition 

Consider the following directive task description as an 
example. This example is motivated by one of the tasks in the 
DARPA Robotics Challenge [14], and will be used throughout 
the paper. For simplicity, we concentrate only core parts of the 
sentence (i.e. ignoring inflections, etc.) 

Robot pick up the wooden block from the ground 

We, humans, can easily rephrase the sentence as a compound 
sentence that consists of four sub-sentences representing the 
subtasks that must be performed for the original task: 

Sub-sentence #1: Robot move to near the block (if necessary). 

Sub-sentence #2: Then, robot search the grasp point. 

Sub-sentence #3: Then, robot grasp the block. 

Sub-sentence #4: Then, robot lift up the block. 

Sub-sentence 3 can also be further decomposed to clarify 
how associated subtasks are performed: 

Sub-sentence #3-1: Robot move (right) hand to the block. 

Sub-sentence #3-2: Then, robot close fingers. 

This decomposition process continues until all of the tasks are 
represented by primitive tasks that are not decomposable 
further. In the example above, a set of primitive tasks and the 
command pairs, , can be defined as follows: 

  = {(move to, GO_TO), (search, SEARCH), (move hand to, 

MOVE_HAND_TO), (close fingers, CLOSE_FINGERS), 
(lift up, MOVE_HAND_UP)}. 

Finally, the original task description can be executed by 
instantiating a sequence of actions with associated parameters): 

GO_TO;SEARCH;MOVE_HAND_TO;CLOSE_FINGERS;MOVE_HAND_UP 

where ; is the sequence operator from the dynamic logic 
[15,23]. 

This sequence of primitive tasks is essentially a plan for robot 
to perform the given (high-level or goal) task.  Note that the 
planning problem is easily solved by a proper hierarchical task 
decomposition based on human input (i.e. domain knowledge 

on how to decompose the task), and the task decomposition 
may not be unique. 

Figure 1 visualizes the resulting task decomposition. 

 

Figure 1.  Hierarchical Task Decomposition. 

The suitability of a given hierarchical task description 
depends on the level of granularity required. In the example, 
non-expert operators will most likely prefer describing tasks at 
level 0 as they might not have detailed knowledge on the 
primitive tasks. On the other hand, an expert operator may 
prefer specifying a given task step by step or reconfiguring its 
subtasks according to various circumstances; in such cases, 
interacting with robots at level 1 or level 2 is desirable. Thus, 
the hierarchy allows operators to interact with robots at various 
levels of task hierarchy. The hierarchical task decomposition 
potentially enhances the expressive power of our task 
description by building up its vocabulary while ensuring the 
interpretability of task as well as the interactivity by allowing 
human-robot interactions to take place at various levels of the 
hierarchy.  

Inferring on the current task progress or situation can be 
modeled as an inverse process of planning. This problem is 
known as plan recognition [5,6]. If a robot is aware of the task 
hierarchy as given in Fig. 1, and observes the execution of 
primitive tasks in sequence, the robot can make inference on 
the sub-tasks and even the original task by properly parsing the 
observation. For example, if the observation history at time t, 
is given by 

 = (GO_TO, SEARCH, MOVE_HAND_TO, CLOSE_FINGERS), 

the robot could report to the human operator that it just 
completed ‘Pick’ task, and, infer that the remaining sub-task 
to accomplish the goal task is ‘Lift up’ 

B. Teleoperation of Semi-Autonomous Robot 

We assume the robot is a model and task-based rational 
agent with limited capability; If the robot is (fully) autonomous, 
it should be able to keep track of the world state as well as a 
set of tasks/goals it is trying to achieve, chose an action that 
will lead to the achievement of its goals, and executes the 
action on its own [3]. Semi-autonomous robots, however, rely 
on inputs from human operators to some extent. In this work, 
we concentrate on the task-level communication between the 
human operator and the robot; a clear division of labor 
(between human operator and robot) is left for the future work, 
as it is another area of active research [4]. 

Fig. 2 is a conceptual description of the system we propose. 
The key idea behind the task-level communication is linguistic 
interpretation of planning; The core of the proposed 
teleoperation system has three components: translator, planner 
and plan recognizer (shaded boxes in Fig. 2). The translator 

 



  

parses operator’s commands (e.g. spoken natural language 
input, command line input) into a (shared) formal language. If 
the command is high-level, the planner decomposes into low-
level, primitive actions so that the robot can executes. This 
high-level communication is particularly beneficial under low-
bandwidth communication. We consider two main channels 
for robot-to-human communication: direct and indirect 
observation. The robot interprets the observation and “explains” 
via indirect, high-level communication channel. The 
“explanation” is close enough to natural language (i.e. 
structured/controlled natural language) so that human 
operators can understand without additional translation, and is 
preferred over chatty communication through the direct 
observation channel when the bandwidth is limited. 

 

Figure 2.  Teleoperation of Semi-Autonomous Robot 

IV. COMBINATORY CATEGORIAL GRAMMAR 

In this work, we will argue for building structures for the 
shared (translated, formal) language based on a particular 
lexicalized grammar formalism called the combinatory 
categorial grammar (CCG). This section serves as a brief 
introduction to CCG, summarizing previous work [5,6,15]. 

In CCG, elements like verbs are associated with a syntactic 
“category” which identifies them as functions, and specifies 
the type and directionality of their arguments and the type of 
their results.CCG uses a small set of combinatory rules (i.e. 
combinators) to combine rich lexical categories of ‘words’. 
Categories in CCG are either atomic or complex: 

(i) Atomic categories: A finite set of basic action categories 
 (i.e. ). These categories correspond to 

propositions that describe world states that result from 
executing actions (e.g. grasping the block). 

(ii) Complex categories: Complex categories are functions 
that take a set of arguments  and produce a 

result . 

For example, the complex category  is a 

functor category that takes an unordered set of arguments 
 and produces a result  where the slash 

indicates where the function looks for its arguments. Complex 
categories specify the type and direction of the arguments and 
the type of the result. Here, we use the “result leftmost” 
notation in which a rightward-combining functor over a 
domain B into a range A are written A/B, and leftward-
combining functor is written A\B.   

To parse sentences a number of combinators are required: 

•Forward & Backward application: ,  

•Forward & Backward composition: 

 ,  

CCG also allows one category to be “type-raised” into another 
category. For example, 

•Forward & backward type raising: 

 ,  

Steedman[15] noticed that combinators that contribute to 
the additional power of CCG(over traditional context-free 
grammars, CFGs), such as composition and type-raising, play 
key roles in modeling affordances and action-perception 
schemas. 

An instance of a CCG combinatory is obtained by 
substituting CCG categories for variables. To parse a sentence 
is to apply instances of CCG combinators so that the final 
category is derived at the end. For example,  

 (1) 

V. CCG-BASED UNIFIED LINGUISTIC FORMALISM 

In this section, we will show how a language derived from 
a CCG (i.e. strings of terminal symbols defined in a CCG) can 
be used for both planning and plan recognition more formally. 
An action language included in the formalism is a STRIPS-
style action description language [3] represented as primitive 
tasks (i.e. operators) in the Hierarchical Task Network (HTN). 
Let’s revisit the example considered in Section I (Figure 1). To 
achieve the goal task “Pick up” the robot must perform a 
sequence of actions GO_TO, SEARCH, MOVE_HAND_TO, 
CLOSE_FINGERS, and MOVE_HAND_UP. Note that 
GO_TO and SEARCH must be executed before 
MOVE_HAND_TO but are unordered with respect to each 
other. We consider plan recognition first to help readers 
understand the concept of CCG, and how CCG is used in the 
context of planning and plan recognition. 

A.  Plan Recognition using CCG 

One possible definition of the lexicon for the example is as 
follows: 

•  

•  

•  

•  

•  

To see how combinators introduced earlier combine with 
the lexicon to allow for parsing the observation of a sequence 
of primitive actions to recognize the high level goals, consider 
the following derivation: 

 



  

Step 1.  

Step 2.  

Step 3.    

The derivation explains the goal task “Pick up” is 
accomplished by performing sub-tasks categoris “PreGrasp” 
and “Grasp” in sequence. 

B. Planning using CCG: Hierarchical Task Network 

It is very natural to represent the hierarchical task structure 
from the previous section as a Hierarchical Task Network 
(HTN) [3,7]. Here we adopt a set-theoretic HTN formalism [7], 
and introduce the simple task network with partial-order 
forward decomposition [3]. At first, we define the operator and 
the task: 

Definition 1. Operator 

An operator is a tuple: 

 for each , 

where  is a finite set of proposition symbols,  is a 

precondition,  is an add list,  is a delete list, and  is a 

finite set of operators. 

Definition 2. Task 

A task is a specific activity that may be undertaken in the world. 
If a task is equivalent to a primitive action (i.e. operator), then 
the task is primitive. Otherwise, it is non-primitive (or 
compound).  

The task hierarchy can be represented using the concept of 
task network. A task network is a set of tasks that need to be 
performed, along with constraints on the tasks.  

Definition 3. Task Network 

A task network is a partially-ordered multiset of task 

names. A task network is a tuple  where 

•  is a finite nonempty set of task symbols. 

•  is a partial order over .  

•  is a map from  to a set of task names  

Tasks symbols serve the purpose of unique identifiers because 
task names may occur multiple times in the same task network. 
To expand the task network, we need to know how each task 
is decomposed into its’ sub-tasks. This task decomposition is 
represented by the concept of “method”: 

Definition 4. Method 

A method is a pair  where  is a task, 

 is a task network associated with the task t, and is a 

mapping that maps a task to its’ name. 

Definition 5. Task Decomposition 

A method  decomposes a 

task network  into a new task network . 

The decomposition process is, written , given by: 

     

   

 

   

 

If there is a finite sequence of task decompositions 

, then we write .  

Now we can formally define a HTN planning domain and 
the associated HTN planning problem: 

Definition 6. HTN planning domain 

An HTN planning domain is a tuple , 

where: 

•  is a finite set of robot states (represented by propositional 

symbols). 

•  is a finite set of compound task names. 

•  is a finite set of primitive task names. 

•  is a set of methods over task names. 

•  is a partial function for state transitions. If 

 is not defined, than  is not applicable in . 

Definition 7. HTN planning problem 

An HTN planning problem is a tuple , where 

 is an HTN domain,  is an initial 

state, and  is a task network over the task names in . 

 A task network is executable in a state  for domain  if 

task network  is primitive and there exists some total 

ordering over the tasks  in  and a sequence of state 

 such that 

 

An HTN planning problem is solvable if there is a sequence of 
decompositions  such that  is executable in .  

For the example we have, one possible definition of the HTN 
domain is as follows, 

•   is a finite set of compound task 

names. 

•  

is a finite set of 

primitive task names, with . 



  

•   

 is a finite set of task symbols 

•  

  

 

is the labeling mapping. 

• Task decomposition methods, 

 

 

Note that how the partial ordering of ‘Move to’ and ‘Locate’ 
with respect to ‘MOVE_HAND_TO’ is represented by using 

 operator, which was represented by using a category of 

type  in plan recognition. 

Formally, the vocabulary of HTN language  is a tuple

 where is an 

infinite set of variable symbols, is a finite set of constant 

symbols,  is a finite set of predicate symbols,  is a finite 

set of primitive task symbols,  is a finite set of compound 

task symbols, and  is an infinite set of 

symbols used for labeling tasks (i.e. task names). 

C.  Operator Command Translation with Semantic Mapping 

CCGs model the semantics (meaning) of operator’s 
commands as well as the syntax. Once operator’s command is 
parsed into a formal language, we assign meanings to the 
parsed lexical items. The formal language we adopt in this 
work is a dynamic logic which is a subset of first-order 
dynamic logic (FDL) as proposed in [23]. This dynamic logic 
is also used to define the affordance in the next subsection. The 
semantics is represented by λ -expressions [15,23]. With -

expressions and associated lexicon, we can translate (i.e. parse) 
operator’s commands into a formal language that robot can 
understand. For more details, readers are referred to [23]. 

A -expression is composed of variables (e.g. ), the 

abstraction symbols lambda ‘λ’ and dot ‘.’, and parenthesis ( ).  
The abstraction operator, λ , is said to bind its variable when it 
occurs in the body of the abstraction. Such variables are called 
bound variables. All other variables are called free variables. 
An expression that contains only bound variables is said to be 
closed. Closed λ-expressions are called combinators. For 
example, a λ abstraction  represents taking a single input 

 and substituting it into the expression . An application  

represents the act of calling function  on input  to produce 

. A -reduction states that an application of the form 

 reduces to the term . The symbol @ can be 

used in the -reduction (e.g.  

 to represent the function-argument 

relation more clearly [23]. For example, Table I shows an 
example of a formal language to translate operator command 
“Pick up the block”. 

TABLE I.  LANGUAGE TRANSLATION TABLE 

Operator language Formal language: Semantics 

Move to GO_TO:  

Search SEARCH:  

Reach out 
MOVE_HAND_TO:

 

Close fingers 
CLOSE_FINGERS: 

 

Lift up 
MOVE_HAND_UP: 

 
the block  

D.  Object & Action Representation: Affordance 

In robotic teleoperation, the robot interact with objects in 
the world, through actions. In this section, we provide 
affordance-based object-action schema, and show that we can 
represent the schema using CCG [15]. This object-action 
schema increases robot’s inference power for autonomy.
 Here we follow Steedman’s work [15] on formalizing 
affordance using CCG. 

Steedman [15] defined affordance as a relation between an 
object and an action. If we consider the block-pick-up scenario, 
for example, the relation between block (object) and lift-up 
(action) can be represented as follows, 

 

, 

Where  represents the standard or intuitionistic implication 

and  represents the linear logical implication indicating the 

change of the value of facts [15]. Actions are represented as 

functions using the lambda calculus and the linear logical 

implication. For example, 

 

Now we can define an object in terms of the affordances of 

the object; The set of actions associated with an object 

constitutes the affordances of block. For example, if we want 

a robot to perform three actions – reach out, close fingers, 

lift_up - with a block, then the affordance of a block can be 

defined(Steedman’s definition) as follows, 

 

Then, affordance-based object schema can be interpreted as a 

function which maps a block (object, ) into functions from 

their affordances (i.e. action ) to their results (state ). For 

example, the block schema can be represented as follows, 

 

The operation of turning an object of a given type into a 

function over those functions that apply to objects of that type 



  

can be represented by the type-raising ( ) combinatory in 

CCG: 

 

Then the block schema can be rewritten: 

 

VI. CONCLUSIONS AND FUTURE WORK 

This work presents a unified linguistic formalism for 
teleoperation of semi-autonomous robots based on CCG, 
which facilitates human-robot communications and robot 
autonomy. The hierarchical nature of human directives 
naturally leads us to a new perspective for human-robot 
communication in the context of HTN planning and plan 
recognition. The choice of CCG formalism allows us to adopt 
and apply an affordance-based object-action schema theory 
developed in linguistic community, and to incrementally 
process human-robot communication. If we fully exploit 
(mildly) context-sensitiveness of CCG, the formalism 
proposed in this work could provide means for incorporating 
rich context from human environment and generating human-
preferred motions [15,16]. 

On the other hand, we have carefully deferred many 
questions on potential issues: semantic ambiguities, 
disfluencies, under specifications, groundings, verifications 
just to name a few [17,18,21-27]. We have plans to extend the 
affordance-based object-action schema to better serve robot 
motion generation, and to apply the linguistic framework to 
low-level control to secure safe, real-time execution of 
commands [8,21]. Our near term goals include (i)to perform 
feasibility test of the proposed approach by building an on-line 
pipeline from operator command to robot action execution, 
and (ii)to migrate the system into our in-house, open-source 
articulated robot simulation environment, DART and Grip [20] 
for extensive simulation tests and the development of 
graphical user interface for teleoperation. 
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