
Execution Knowledge for Execution Monitoring:
what, why, where and what for?

Štefan Konečný? and Federico Pecora? and Alessandro Saffiotti?

Abstract— Despite the progress made in planning and
robotics, autonomous plan execution on a robot remains
challenging. One of the problems is that (classical) planners
use abstract models which are disconnected from the sensor
and actuation information available during execution. This
connection is typically created in a non-systematic way by some
system-specific execution software. In this paper we propose
to explicitly represent Execution Knowledge that encodes the
connection between planning models and the actual actions
and observations for a given physical system. We present an
execution monitoring framework in which Execution Knowl-
edge captures the expectations about physical plan execution.
A violation of these expectations indicates an execution failure.

I. INTRODUCTION

In the infancy of AI and Robotics the problems of planning
and plan execution monitoring were closely intertwined.
Automated planning was meant to animate robots, and robots
were meant to execute automatically generated plans. This
paradigm was embodied in Shakey the Robot which was
running STRIPS [1] to plan and PLANEX [2] to execute
plans. Later, planning and robotics went their separates ways
addressing problems prevalent in their respective domains:
abstract planning, and executing actions on robots. Because
of this, the question: “How to autonomously execute and
monitor the execution of automatically generated plans?” has
been under-addressed.

Classical planners rely on Planning Knowledge, an ab-
stract model describing the properties and the dynamics of
the system. When the plan is executed, the real evolution
of the system may differ from the one anticipated during
planning. This is due to action failures, noisy sensors and ac-
tuators, and environment dynamics independent of the robot
which were abstracted away in the Planning Knowledge. The
robot can partially observe the complete state of the system
through its sensors and information from its actuators. In this
paper we call this information Situational Knowledge.

Execution Monitoring typically consists of three subtasks:
fault detection, fault identification and fault recovery. This
paper focuses on fault detection, which is the process of
assessing whether there is a significant discrepancy between
the observed state of the system and the state anticipated at
planning time. Fault identification deals with identification of
different faults and fault recovery specifies how to recover
from faults.

Planning Knowledge captures the system at the level
of detail necessary for means-end reasoning and it typi-

? Center for Applied Autonomous Sensor Systems, Örebro
University, S-70182 Örebro, Sweden. Email: {sky, fpa,
asaffio}@aass.oru.se

cally assumes successful execution of planned actions. It
does not describe how this assumption can be verified or
contradicted from the available Situational Knowledge for
a given physical system. In this paper we focus on this
additional information, which we call Execution Knowledge,
representing the expected future observations resulting from
a nominal (or failed) execution. We encapsulate all platform
and domain-dependent information about physical execution
into Execution Knowledge.

A good reason to keep Execution Knowledge separate
from Planing Knowledge is the possibility to employ dif-
ferent representation and reasoning mechanisms. We will
discuss how qualitative temporal relations — not included
in Planning Knowledge — can be used for fault detection in
a scenario involving a PR2 robot1 that delivers a mug.

Execution Knowledge is not reduced to describing the
nominal execution or expected failures of an individual
action w.r.t. to Situational Knowledge. It may explicitly
describe relations between observations related to different
actions. The dependency between these actions may be
specific to the executed plan and to the physical robotic
system. Expressing these relations in the Planning Knowl-
edge is often cumbersome from the representational and/or
computational point of view.

In this paper we propose an Execution Monitoring frame-
work in which separate Planing and Execution Knowledge
are compiled into a constraint based representation of past
observations, expected future observations, and relations
between all these — called the Execution Network. This Ex-
ecution Network is updated by an Execution Monitor which
decides whether a received observation is relevant to the
current execution (as specified by the Execution Network).
The Execution Monitor also generates complex observations
from simpler ones, detects failures, and dispatches actions
based on information from the Execution Network.

II. THE EXECUTION MONITORING FRAMEWORK

Figure 1 shows how the separate sources of knowledge
– Planning Knowledge (PK), Execution Knowledge (EK)
and Situational Knowledge (SK) – are used for execution
monitoring. PK is used by the Planner to generate a plan.
EK contains additional expectations about execution and
specifies how to validate these expectations based on avail-
able SK for the specific environment and platform. The
Network Constructor takes PK, the plan, and EK to create

1PR2 (Personal Robot 2) is a robotic platform developed by Willow
Garage http://www.willowgarage.com



the Execution Network (EN). The EN represents instantiated
expectations about the execution of a plan. Nodes in EN
represent the expected actions and observations, while edges
represent the expected qualitative temporal relations between
the nodes.

The EN is maintained by the EM during execution. For
each observation, the EM checks whether it is relevant to the
execution, i.e., whether it corresponds to a node in the EN
(an expectation). If so, the observation is added to the EN,
and a link (called an “anchor”) is established between the two
nodes (the observation and the expectation). If an anchored
observation is updated so that it violates some expectation,
the EM detects a failure. The EM also dispatches actions
based on temporal information encoded in EN.

The practical difficulties connected to plan execution, and
therefore the interest to distinguish and separate the above
three types of knowledge, can be appreciated already from
very simple examples. Below we use the well known Blocks
World domain, where a robotic arm is employed to stack
blocks on a table.

Fig. 1. Execution Monitoring framework. The modules are coloured
according to the knowledge they use. The black modules use multiple
forms of knowledge. This paper focuses on Execution Knowledge and the
Execution Monitor that maintains the Execution Network, which are marked
by a thick.

A. The Blocks World Scenario

The Blocks World (BW) is a prototypical example of a
planning problem in which many abstractions are made: the
robotic arm is either holding a block or it is empty; it can
move only in two dimensions — up until the maximum
height, down until it reaches the topmost block of a stack,
and in discrete steps left and right to build stacks. The goal
is to achieve a desired configuration of blocks2.

B. Planning Knowledge

The level of abstraction of the considered actions can
range from low level commands sent to the crane’s servos
to high level abstract instructions. Using the latter approach
is more practical for several reasons: the resulting plan is
comprehensible to humans, as it abstracts away the physical
properties of the crane and of the environment, such as
whether the connection between the rail and gripper is soft or
rigid, or the weight and size of the blocks; an abstract domain
allows to use techniques developed in classical planning, and
to reuse the same planning representation across different
(constructions of) cranes and environments.

2Even under these extremely simplifying assumptions, most interesting
problems in the Blocks World domain are NP-Hard [3].

For the sake of the present discussion, we adopt a STRIPS-
like representation of the planning domain. The World Model
represents the abstract state of the world by a set of logical
predicates and the closed world assumption is adopted. It
also specifies the circumstances in which an action can
be executed through preconditions and how a successful
execution of an action will alter the world state through
effects. All this knowledge constitutes PK.

In the Block Worlds domain unstack(?b1,?b2) can be
executed only if the crane is above the concerned block
(above(?b1)), the block is on top of the stack (top(?b1)),
and it is supported by some other block ?b2 (on(?b1,?b2)).
These are the preconditions of the action. If the action
unstack(?b1,?b2) is executed successfully in the physical
environment, the gripper will hold ?b1 and ?b2 will be
the top block. To reflect this the PK has to specify that
holding(?b1), top(?b2) should be added and on(b1),
top(b2) should be removed from the PK.
moveOver(?l1,?l2) has one precondition, namely

above(?l1). It has two effects: the old location
above(?l1) is removed from PK and the new location
above(?l2) is added into PK. We shall focus our discussion
on these two actions. Our analysis can be easily adapted for
other actions used in this domain: stack, pick, and place.

C. Situational Knowledge

SK is the knowledge the robot has about the current state
of the system. It consists of directly perceived information
from robot’s actuators and sensors; and information derived
from it, which will be discussed in the EK section.

To reason about the temporal aspects of SK within EK,
SK has to represent time. All observations in SK and
expectations in EK are expressed through fluents:

Definition 1: A fluent is a pair ψ = (p, [st, ft]), where
• p is a ground atom p = P (t1, . . . , tn) with terms
{t1, . . . , tn}, where P is a predicate symbol

• [st, ft] is an interval where st, ft ∈ N represent the
start time and finish time of the fluent, respectively.

For simplicity we assume discrete time. p can represent
information directly available from sensors (direct observa-
tions) or elements from PK which have to be verified during
Execution Monitoring (derived observation).

In our BW scenario, the crane has controllers for vertical
and horizontal motion, and for the gripper. These controllers
communicate their state, which contributes to SK. The verti-
cal controller cY (changing the y coordinate of the gripper)
can be in one of the three states {lower, raise, idle}. ψ =
(cY (lower), [5,∞)) represents that the vertical controller
started to lower the gripper at time 5 and the movement is
still being executed. ψ = (cY (lower), [5, 10]) specifies that
the controller has stopped the lowering movement at time
10. For brevity we shall refer to a fluent by its predicate,
i.e., cY (lower) instead of ψ = (cY (lower), [5, 10]) for the
rest of this paper. Note that we do not know whether the
movement has actually occurred in the physical world, we
only know that the controller was active. The horizontal con-



troller cX can be in states {left, right, idle}. The gripper
controller cG can be in states {open, close, idle}.

Proprioception produce (pX, pY ) representing the exact
continuous x and y coordinates. pH is a discretized version
of pY w.r.t. to the block size — pH(3) indicates that gripper
is at the height to grasp the top block from a stack of 3. pG
is produced by a pressure sensor inside the gripper and has
the two possible values {open, close}.

A camera placed inside the gripper can observe the top
block, e.g., oa(b1) for b1, or detect oa(t1) if there is no
stack. The camera sight is occluded when a block is held,
resulting in oa(occluded). The known size of the block can
be used to estimate the discretized distance od (w.r.t. block
size) between the camera (and the gripper) and the block.

The fluent holding is produced by the EM based on EK
which, we will discuss next.

D. Execution Knowledge

EK contains generic knowledge about the physical execu-
tion of actions given the specific platform and environment.
For instance, EK specifies the expected temporal relations
between the state of the controllers and the position of the
crane. It may also include geometric parameters like the size
of the blocks or their precise position. EK is specific to a
given scenario, environment and physical platform.

In this paper we use Allen Interval Algebra [4] (AIA)
relations to capture temporal expectations about execution.
These binary relations impose restrictions on temporal or-
dering of start times and finish times of the two involved
fluents (see Figure 2). We use AIA relations because they
conveniently represent flexible temporal relations and allow
for temporal reasoning in polynomial time [18], [17]. EK
contains relations between variables (e.g., ?b1). Relations
between instances (e.g., b1) are generated by the Network
Constructor.

Fig. 2. Graphical representation of some of the Allen Interval Algebra
relations: before (b), meets (m), overlaps (o), equals (e) and during (d).

For moveOver(?l1,?l2), EK encodes specific tempo-
ral expectations about the the preconditions and effect of
the action. The expectation that the gripper has to be
above(?l1) before cX is activated can be expressed execu-
tion through oa(?b1){o}cX(left). Since the exact position
of ?b1, posX(?b1), is specified in EK, we could use
proprioception — pX(posX(?b1)) instead of oa(?b1). EK
may also encode information about how observations relate
to one another. For example, the fact that proprioception
and perception should not contradict each other is expressed
through pX(posX(?b1){e}oa(?b1). Violation of this relation
indicates that at last one of the sensors is unreliable.

If the gripper is holding ?b1, b1 could be dropped during
the movement. Since PK assumes that every action will

succeed, this is not modelled in PK. We can use propriocep-
tion to detect the opening of the gripper during movement:
cX(left){d}pG(closed). With cX(left){d}oa(occluded)
perception can be used to the same end.

Execution of the unstack(?b1, ?b2) action requires
three movements: lowering the open griper, closing it, and
raising it. This translates in the expected controller activa-
tions cY (lower)1{m}cG(close) {m}cY (raise). The low-
ering must reach the appropriate height h = posY (?b1).
EK can be designed so that a failure in the executed
behaviour signals a specific error. The gripper can be
lowered to a slightly lower height h = posY (?b1) − ε
so as to “tap” the top of the stack and see whether
it is not lower than expected. If that were the case,
cY (lower){d}pH(posY (?b1)) would be observed, instead
of the expected cY (lower){o}pH(posY (?b1)). For a stack
taller then expected, the observed relation would be {b}.

When the stack has the expected height, the top block
can be grasped, i.e., cG(close){d}pH(posY (?b1)) . If
pH(posY (?b1)){o}pG(closed) is indeed detected during
execution, the derived fluent holding(b1) is added into SK
by the EM, and its start time should be set to the time of
observation. This case indicates that EK can be used not
only to detect failures, but also to inferred “higher-level”
knowledge (in this case, the knowledge of holding(b1)). In
this example, the added fluent models the occurrence of a
predicate which appears in PK, and which is used as the a
precondition of stacking and effect of unstacking actions.

A similar set of relations describes the situation when
holding(b1) should be closed by the Execution Monitor,
i.e., the gripper should be at a proper height to release
b1. If pG(open) is observed outside of this context, b1
was dropped and a failure should be detected. Instead of
trying to specify a context when pG(open) cannot occur
(e.g., cX(left){d}pG(closed)), we try to specify the context
when it can, which is much easier.

III. REALIZATION ON A PR2

The BW scenario is very stringent, e.g., it assumes that
manipulated object have the same shape, weight and size.
The arm is specifically designed to manipulate this specific
type of blocks. Yet even so, we have shown how non-trivial
EK can be used to capture sophisticated nominal conditions
of execution, and to recognize failures that would otherwise
be difficult to ascertain through direct observation. We now
turn our attention to a sophisticated general purpose platform,
a Willow Garage PR2 (see Figure 4). The PR2 has an
omnidirectional base, a torso with adjustable height, a head
equipped with a stereo camera and a Kinect sensor, and two
arms, each equipped with a gripper. We consider an example
in which a PR2 has to perform the following task:

The robot has to deliver mug m1 to table
t1. It does not hold m1, but it knows that
it stands on counter c1. It has to execute
the following plan (using its right arm r1):
drive(c1), dock(c1), observe(c1),



pick(m1,r1), undock(), drive(t1),

dock(t1), observe(t1), place(m1,r1)

A. Planning Knowledge

The planning domain has the same level of ab-
straction as BW. Preconditions and effects in the pro-
duced plan are robotAt(c1), docked(c1), on(m1,c1),
holding(m1,c1). The corresponding fluents are produced
by the EM based on EK and SK.
drive and the two object manipulation actions (pick,

place) require platform specific preparation. This prepa-
ration is modelled in PK through the action dock, an
abstraction of a series of specific operations that include
adjusting the torso and arm postures so as to be at the same
level of the table and prepared for manipulating objects on
it (similarly for the action undock). Since these auxiliary
actions are platform-specific and absent from PK, they will
be introduced and discussed in the context of EK. The PR2
can manipulate different objects in different environments.
The required motion cannot be pre-specified through a simple
schema like in the Blocks World, and is calculated online
for the exact position and shape of the manipulated object.
A dedicated observe action is provided to symbolize the
acquisition of these data for pick(m1,r1).

B. Situational and Execution Knowledge

Some fluents in SK are created directly by sensors detect-
ing the state of single actuators (i.e., pG(gHalfClosed, r1)
for the gripper on the right arm). Fluents representing
the joint state of multiple actuators (i.e., the arm posture
aGrasp) or more abstract concepts are created from such
basic fluents.

EK specifies the exact metric position of the furniture (e.g.,
pos(c1) for c1). It also specifies metric relations describing
when robotAt(c1) holds given the current position of
the robot and of pos(c1). Now that we know how to
verify instances of robotAt, EK can refer to the general
robotAt(?l1) to express expectations about execution. For
instance, drive(?l1){o}robotAt(?l1) represents the expec-
tation that drive(?l1) will reach its goal.

The auxiliary actions used in EK are
mTorso,mBasemArm and mGripper. mTorso changes
the torso posture, mArm the arm posture. mBase moves
the robot very close to the furniture (even sliding the base
underneath the table), switching off the obstacle avoidance
(which is not the case for drive). The exact location where
to move is specified in EK and is calculated w.r.t. pos(c1).
mGripper(open, ?a1) opens and mGripper(close, ?a1)
closes the gripper. The gripper sensor produces fluent
gOpened, gClosed, gHalfClosed. The last one is
produced if mGripper(close) cannot close gripper
completely (due to a blocking object).

After the dock(?l1) action, the torso should be high
(tUp) to observe and reach ?l1, and the arm should
be in an appropriate posture to manipulate objects on
?l1 (aGrasp). This must be achieved before mBase

moves close enough to ?l1, otherwise ?l1 could ob-
struct mTorso and mArm. In EK these expectations
are expressed through mTorso(tUp){b}mBase(?l1) and
mArm(?a1, aGrasp){b}mBase(?l1). Note that EK does
not specify the relative order of mTorso(tUp) and
mArm(?a1, aGrasp); both actions could be executed in
parallel, or a relation forcing the desired ordering could be
added into EK. If all the auxiliary actions terminate with
success without violating the specified temporal relations,
the EM adds a fluent docked(?l1) to SK. Thus, EK specifies
how to bridge the gap between PK and directly observed SK.

A similar set of relations is used to describe undock(),
which should bring the torso low and the arm close to the
body to increase stability during drive, ideally using the
configuration tDown, aTucked. To which extent this is pos-
sible depends on the size and shape of the manipulated ob-
ject, i.e., for the m1 only tMiddle, aCarry is possible. The
Network Constructor decides which configuration should be
used when it generates the instantiated EN, based on the plan.
Again, if all auxiliary actions terminate successfully within
expectations then the EM closes the docked(?l1) fluent.

EK specifies that holding(?o1, ?a1) is produced if the
gripper tries to close in the presumed location of the object
?o1 and it cannot close entirely due to the grasped object,
i.e., mGripper(close, ?a1){o}pG(gHalfClosed, ?a1).
This is expected in the context of mGripper(close, ?a1){d}
pick(?o1, ?a1){o}holding(?o1, ?a1),
pG(gHalfClosed, ?a1){e}holding(?o1, ?a1). When
the EM starts the holding(?o1, ?a1) fluent, it also finishes
the fluent on(?o1, ?f1), where ?f1 represents the supporting
furniture. A detection of pG(gHalfClosed, ?a1) outside of
this context signals a failure. The situation is described in

Fig. 3. The state of the EN when the robot has reached c1 and is closing
the gripper.

Figure 3, which represents expectations about pick(m1, r1)
at the point in time when the robot has reached c1 and
is closing the gripper. Green boxes represent observed
fluents (either through proprioception or perception). Blue
and purple boxes represent expectations: blue ones will
eventually be anchored to observations, whereas purple ones
will eventually be anchored to inferences from observations
(e.g., holding can be inferred from gripper status and
position). Edges are temporal relations expressed in AIA.
The blue ones are modelled in EK (and are therefore
unknown to the planner), whereas purple ones are temporal
interpretations of causal dependencies in PK (e.g., that
holding is not just a consequence of picking, but that it
begins to occur before the picking action is over). Yellow
edges anchor observations to expectations, and are hence
constraints imposing temporal equality.

Analogously, place(?o1, ?a1){o}holding(?o1, ?a1)



specifies the context when holding(?o1, ?a1)
and pG(gHalfClosed, ?a1) can finish. If
pG(gHalfClosed, ?a1) is detected outside of this context,
we detect the dropping of ?o1 independently of the executed
action (e.g., undock, drive, dock). Which temporal
constraints are suitable to capture (PK) relations between
preconditions, actions and effects is discussed in [5].

EK can capture relations which are not explicit
in the PK. For instance the fact that robot’s
base stays still during observe and pick

is expressed as observe(?l1){d}robotAt(?l1),
pick(?o1, ?a1){d}robotAt(?l1) (see Figure 4). Since
the pick(?o1, ?a1) movement is very precise, it should be
not attempted if the base moved unexpectedly.

C. Execution on a PR2

The Network Constructor produces an EN representing all
the expectations about the execution of the specific plan with
respect to the EK, as explained in the previous section.

Currently, we assume that EK specifies the exact co-
ordinates in metric space corresponding to robotAt(c1).
Alternatively, the Network Constructor could perform spatial
reasoning and the coordinates could be calculated w.r.t. to
task, environment and the used platform.

The Execution Monitor needs to establish whether the re-
ceived observation is relevant to execution, i.e., corresponds
to an expected observation. For instance, tMiddle could
be the effect of mTorso or and intermediary observation
preceding the desired tDown. The former may derive from
the execution of an undock action while the robot is holding
an object (recall, in real life the robot cannot lower the torso
completely if holding an object as this may collide with
its base). The latter may simply be an intermediate state
“on the way” to achieving a tDown posture. To ascertain
whether the tMiddle observation should be anchored with
the corresponding expectation, the EM uses the source (the
torso sensor), the value of the observation, and temporal
relations expressed in EK. This process is called anchoring,
and resembles perceptual anchoring, specifically the Find
function [6].

The anchor is added explicitly into the EN as the tem-
poral constraint observation{e}expectation (since the two
fluents are assumed to represent the same event). The expec-
tations about start or finish time of fleunts connected to some
expectation in EN are updated according to the connecting
instantiated EK relation. Through these updates, some of the
anchored fluents may violate expectations from EK (e.g.,
a presumed precondition finishes before the corresponding
action could be started). In these cases the old anchor is
removed and the EM will try establish a new one with a
future observation. This behaviour increases the robustness
in face of irrelevant or imprecise observations.

The EM also dispatches actions. In absence of explicit
temporal relations in EK restricting when to dispatch an
action, each action is dispatched immediately when all of its
precondition are observed to hold. EK can specify for which
observations it makes sense to wait, e.g., an arm posture can

be delayed or started/finished prematurely due to sensory
noise; conversely, a mug will not appear on the table on its
own later and a failure to detect the mug should be treated as
a failure. Separating these two cases increases the robustness
of execution in face of imprecise and delayed observations.

Fig. 4. The PR2 picking up m1

The EN was used to both execute and monitor the mug
delivery plan in the GAZEBO simulator with a standard
PR2 platform. The observe action obtains information
about objects from GAZEBO. This means that we get
perfect object recognition and identification. The simu-
lated environment contains three tables and four chairs.
The Execution Monitor could reliably detect cases of the
mug slipping out of the grasp during the execution of
undock, drive, dock, observe. It also exhibited a de-
gree of robustness against irrelevant and noisy observations
of arm postures.

Our approach has been integrated into the architecture of
the project RACE [7]. The SHOP2 [9] HTN-planner was
used for planning and the MetaCSP-framework [8] was used
to implement the EN.

IV. RELATED WORK
PLANEX [2] was arguably the first Plan Execution Moni-

tor. PK is transformed into a a triangle table which explicitly
expresses the dependency of an action on effects of another
action. The authors assumed that PK is directly observable.
We do not need such an assumption in our approach, as EK
models explicitly the relations between elements of SK and
PK. Furthermore, while a triangle table is generated from PK
only, we use both PK and EK to produce EN. The PLANEX
approach was designed to efficiently find the next action to
execute, given the observed SK. Therefore PLANEX could
decide to execute repeatedly or skip (unnecessary) parts of
the plan. We consider these features part of our future work.

Hierarchical architectures [11], [10], [12] employ trans-
lation modules to bridge the gap between high level PK
and low level SK. These modules translate instructions
from high to low level and translate the resulting low level
progress information/error messages back to high which
are deliberated upon. As a result, what we call EK is
scattered throughout the system, and often not expressed
implicitly. This works well with independent actions which
can be considered separately, e.g., the possible failure of mug
slipping out of grasp would be considered in four separate



actions: undock, drive, dock, observe. We avoid this
by maintaining an explicit EK.

In [13], Temporal Action Logic (TAL) is used to repre-
sent both EK and PK. The DyKnow knowledge processing
middleware specifies how derived observations are generated
form direct ones. In our approach, this information is explicit
in EK and is also used for anchoring/filtering out irrelevant
observations. The authors also discuss how EK could be
generated automatically from PK and be adapted during
execution depending on the currently executed actions. We
also generate EK from PK, but we add additional knowledge
to EK as well.

In the RoboEarth project [14], a robot can query a database
to receive a platform-agnostic “action recipe” (similar to a
plan). This recipe is translated into a CRAM plan, a partially
ordered set of goals (not actions), reflecting the capabilities
of the specific platform. These goals are on the level of
abstraction of PK. Procedural information how to achieve
the goal or detect progress/failure (based on observations)
during execution is delegated to processing modules, and
thus remains implicit.

A finite State Machine architecture [15] is often used for
Execution Monitoring. The user has to define the states, the
transitions and information flow between the states (which
loosely corresponds to PK). The states correspond to actions
(or sub-plans) and contain (often implicitly) all EK necessary
for Execution Monitoring. In our approach, EK is explicit,
thus making it easy to adapt and useful for reasoning about
dispatching and anchoring.

In [16], a partially ordered plan and a set of temporal
constraints is converted into a generalized representation.
The executor uses this representation to decide which action
to dispatch next. This is similar to how PK is augmented by
EK to obtain the EN we use for dispatching. This work was
not evaluated on a robot, and so the problem of connecting
SK and PK was not addressed.

V. DISCUSSION AND FUTURE WORK

Autonomous execution and execution monitoring of plans
on a robot remains challenging. The main problem is how
to connect abstract Planning Knowledge (PK) to sensor and
actuation information obtained during execution — Situa-
tional Knowledge (SK). To this end we propose to use a
dedicated Execution Knowledge (EK) formally representing
the expectations about future observations in a specific
system and their connections to Planning Knowledge (PK).

Since EK is separate from PK, it can use different for-
malisms and reasoning mechanisms, e.g., qualitative tempo-
ral relations as discussed in this paper. EK encapsulates for-
mally specified platform- and environment-specific knowl-
edge. This eases the adaptation of behaviour across platforms
(through modifying EK) and the (re)use of platform agnostic
PK. EK also contains information absent from PK related to
anticipated failures, permissible context of observations and
relations between independent actions. For future work we
will explore other suitable formalisms to represent EK.

Currently PK, the plan, EK and SK are used to create an
Execution Network (EN). The Execution Monitor updates
this network during execution based on its current state and
SK. A discrepancy between SK and the EN indicates that the
environment is in an unexpected state. This state may be also
better then expected: some actions may be skipped or altered.
The Execution Monitor could detect such opportunities and
adapt the EN, the plan or trigger replanning.

If the detected discrepancy is not reflected in PK, replan-
ning is not a feasible strategy. Instead, the EM could leverage
EK and perform auxiliary actions observing or altering the
system state sufficiently to find a new plan. Another recovery
strategy would be to reschedule actions or reconsider an
anchor between between an element of PK and SK, where
both anchoring and scheduling rely on EK.

ACKNOWLEDGMENT

This work is supported by the EC 7th Framework Program
under Project RACE (Robustness by Autonomous Compe-
tence Enhancement, grant no. 287752).

REFERENCES

[1] Fikes, R. E.; Nilsson N. J,, STRIPS: A New Approach to the
Application of Theorem Proving to Problem Solving, in Artif. Intel.,
vol. 2, no. 3/4, pp. 189-208, 1971

[2] Fikes, R. E., Monitored Execution of Robot Plans Produced by
STRIPS, IFIP Congress ’71, no. 55, 1971

[3] Helmert, M., Complexity Results for Standard Benchmark Domains
in Planning, in Artif. Intel., vol. 143, no. 2, pp. 219-262, 2003

[4] Allen, J.F., Towards a General Theory of Action and Time, in Artif.
Intel., vol. 23, no. 2, pp. 123-154, 1954

[5] S̆. Konec̆ný; S. Stock; F. Pecora; A. Saffiotti, Planning Domain +
Execution Semantics: a Way Towards Robust Execution?, Qualitative
Representations for Robots, AAAI Spring Symposium, 2014

[6] S. Coradeschi and A. Saffiotti, An introduction to the anchoring
problem, in Robot. Auton. Syst., vol. 43, no. 2, pp. 85-96, 2003.

[7] S. Rockel; B. Neumann; J. Zhang; K. S. R. Dubba; A. G. Cohn; S̆.
Konec̆ný; M. Mansouri; F. Pecora; A. Saffiotti; M. Günther; S. Stock;
J. Hertzberg; A. M. Tomé; A. J. Pinho; L. S. Lopes; S. von Riegen; L.
Hotz, An Ontology-based Multi-level Robot Architecture for Learning
from Experiences, Designing Intelligent Robots: Reintegrating AI II
WS, AAAI Spring Symposium, 2013

[8] F. Pecora, The Meta-CSP Framework: a Java API for Meta-CSP based
reasoning, http://metacsp.org, 2013

[9] Nau, D. S.; Au, T.-C.; Ilghami, O.; Kuter, U.; Murdock, J. W.; Wu,
D.; Yaman, F., SHOP2: An HTN planning system, in J. Artif. Intell.
Res., vol. 20, pp. 379-404, 2003

[10] Firby, R. J., Adaptive Execution in Complex Dynamic Worlds, PhD
thesis, 1989, Yale University

[11] R. Alami; R. Chatila; S. Fleury; M. Ghallab; F. Ingrand, An Archi-
tecture for Autonomy, in Int. J. Robot. R., vol. 17, pp. 315-337, 1998

[12] McGann, C.; Py, F.; Rajan, K.; Ryan, J.; Henthorn, R., Adaptive
control for autonomous underwater vehicles, AAAI, 2008

[13] Doherty, P.; Kvarnström, J.; Heintz, F., A temporal logic-based
planning and execution monitoring framework for unmanned aircraft
systems, Auton. Agent. Multi-Ag., vol. 19, no. 3, pp. 332-377, 2009

[14] di Marco D.; Tenorth M.; Häussermann K.; Zweigle O.; Levi. P,
RoboEarth Action Recipe Execution, IAS, 2012

[15] Bohren, J.; Rusu, R.B.; Gil Jones, E.; Marder-Eppstein, E.; Pantofaru,
C.; Wise, M.; Mosenlechner, L.; Meeussen, W.; Holzer, S., Towards
autonomous robotic butlers: Lessons learned with the PR2, ICRA, pp.
5568-5575, 2011

[16] Muise, Ch.; Beck, J. Ch.; Mcilraith, S. A., Flexible Execution of Partial
Order Plans With Temporal Constraints, IJCAI, pp. 2328-2335, 2013

[17] Dechter, R.; Meiri, I.; Pearl, J., Temporal Constraint Networks, in
Artif. Intel., vol. 49, no. 1-3, pp. 61-95, 1991

[18] Floyd, R.W., Algorithm 97: Shortest path, in Commun. ACM, vol. 5,
no. 16, pp. 345-348, 1962


