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Abstract— Most mobile robotic systems use internal represen-

tations of the gathered information that is not intuitively under-
standable by humans and that is inadequate for learning from
commonly available sources. The combination of object/place
classification and common-sense knowledge to semantic maps
found its way into indoor semantic mapping approaches in
order to improve human-robot interaction. The aim is to pass
complex task settings to the robot, so that it guides the search
for the solution itself. In this paper, we present a common
formal definition of semantic robotic maps as an extension of
hybrid maps introduced by Buschka [1]. We discuss different
criteria for design, classification and challenges of semantic
maps. Furthermore, we present an evaluation template based
on the definition, properties and challenges of semantic maps
for three well known semantic mapping approaches.

I. INTRODUCTION

In recent years, simultaneous localization and mapping

algorithms for mapping the environment with cameras, 2D

and 3D laser range finders have been developed and different

methods have been established, e. g., [2], [5], [7], [10]. Most

of the created maps are represented as a mixture of metrical

and topological data structures. For complex tasks such as

path and task planning, the representation of these maps has

to be simplified and adapted to the scenario that the robot

has to deal with.

Consider the task of fetching a cup of coffee. A robot

with a metric map representation and the ability of object

recognition has to search in a brute force manner in all open

space. Introducing some common-sense knowledge about

rooms including the probability of objects in a certain room,

the search could be guided to places with high probability

to places with lower probability.

The semantic mapping community can be subdivided on

the basis of the application domain indoor, urban and cross-

country environments. In literature, e. g., in [4], [9], [12],

[13], [15], different methods are available to create indoor

semantic maps with several sensors, such as cameras and/or

laser range finders and map representations. By contrast, for

outdoor environments, mainly place and object classification

on 3D laser range data and cameras have been presented.

Only a few publications present approaches establishing the

connection between object classification and common-sense

knowledge, e. g., [3], [8], [11], [14].

We first present a general formal definition of semantic

maps based on the definition of hybrid maps of Buschka [1]

in Section II. In Section III we discuss different criteria for

designing and classifying semantic maps and the challenges

of designing semantic maps. Based on an evaluation scheme,

we present well known semantic mapping approaches in Sec-

tion IV. We draw our conclusion of this work in Section V.

II. DEFINITION OF SEMANTIC MAPS

In this section, we present the formal definition of seman-

tic maps. We first present the basic definitions of how and

of what we are mapping. Then, we present the definitions of

different (robotic) maps and their probabilities. At the end,

we present the definition of semantic maps. The presented

definitions are rather nonrestrictive. The aim is to allow for

discussing different varieties of semantic maps in literature

and their mechanisms, without committing to any specific

formalism. We define maps and semantic maps in common,

as (semantic) maps are not limited to the robotic domain,

since the deployed sensors are also used in other domains.

A. Basic Definitions

When we talk about mapping and the formal definition

of maps, we first define what we want to map and how

to describe it. The idea of the following definitions in this

subsection is based on Niemann [6]. In this context, we have

a look at the definition of the world first and will be more

precise and detailed in the following.

The world consists of physical entities such as objects,

phenomena, etc. These entities are associated to a pose and

they are described by attributes.

Definition 1 (World): The world W is a physical space

defined as tuple W = 〈Y, P,Σ〉, where Y is a set of entities,

P is a set of poses and Σ is a set of attributes. Each entity

y ∈ Y will be associated with one pose p ∈ P by a function

p : y −→ p. Furthermore, each entity y can be associated a

subset of attributes by a function a : y −→ 2Σ.

For robotic tasks, the pose can be defined in an measurable

space and entities are usually objects or things such as

houses, cars, people, rooms, tables, cups and so on. Entities

will be assigned different attributes with the function a.

For example, the entities path or grass can be assigned the

attributes good or less drivable, cupboard can be assigned

contains cup. Attributes can be specialized, if necessary, e. g.,

to linguistic terms or real-valued measures.



Regarding the perception of humans or recordings of

sensors, these modalities only observe a limited field of view.

Therefore, the environment has to be defined as follows:

Definition 2 (Environment): The environment E is a sub-

set of W which describes a local area such as the

field of vision of humans or sensors. It is given by

W ⊇ E = 〈Y ′, P ′,Σ′〉 and consists of a subset of entities

Y ⊇ Y ′ located in the local area, a subset of corresponding

poses P ⊇ P ′ and a subset of attributes Σ ⊇ Σ′.

The design and use of semantic maps differs on the

intended application, such as for in- and outdoor maps. In

order to describe the intended application, the task domain

has to be defined as:

Definition 3 (Task domain): A task domain D is a subset

of E. It contains only entities, poses or attributes belonging

to a strictly limited application or subsection of the world.

It is given by the set E ⊇ D = {Ei | i = 1, . . . , n}.

The task domain can be observed by different sensors.

Based on the properties of different physical devices, we

define observations as:

Definition 4 (Observation): An Observation O is de-

fined as a tuple O = 〈Y ′, P ′, s〉, which can be mea-

sured by physical devices in E defined by D. Function

s : 〈Y, P,Σ〉 −→ 〈Y ′, P ′〉 maps the entities and poses of

E by representing sensor readings of an arbitrary physical

device.

B. Definition of Different Maps

Buschka [1] defines general and specific maps as in

Definition 5 - 8. We use his terminology and define his terms

using our previous Definition 1 - 4. In contrast to Buschka,

we changed Definition 6 from robot map to observation map,

because maps can be generated independent of any robotic

system or robotic application. First, we have to define a map

in common sense. If we look at the different types of maps

available, a set of entities observed will be mapped to a

subset of the environment and is limited to a task domain,

e. g., a road map or an underground map.

Definition 5 (Map): A map of E limited to D is a pair

M = 〈Y ′, g〉, where Y ′ is a set of entities and a function

g : Y ′ −→ 2E associates each element in Y ′ with a subset

of E.

When we talk about robotic maps or other map represen-

tations, the set of entities measured by the sensor system

is represented in a specific mathematical structure S, which

associates each element in Y ′ with a subset of E. Thus, an

observation map is defined as:

Definition 6 (Observation map): An observation map for

E limited to D is a tuple MR = 〈Y ′, f,S, pos〉, where Y ′ is

a set of entities, S is a mathematical structure. A function

pos : Y ′ −→ 2S associates each entity in Y ′ with a subset

of S and a function f : S −→ 2E associates each element in

S with a subset of E.

In practice, we map a task domain. Among others in

literature, metrical and topological representation types of

maps are presented. According to these representations, [1]

presents the definition of metrical and topological maps as:

Definition 7 (Metric map): A metric map for E limited

to D is a tuple MC = 〈Y ′, f, 〈S, d〉, pos〉as in Definition 6,

where structure S = 〈S, d〉 is ametric space with a distance

function d : S × S −→ R and associates a metric space S×S

to a real number.

Definition 8 (Topological map): A topological map for E

limited to D is a tuple MT = 〈Y ′, f, 〈N , E〉, pos〉 as in

Definition 6. The structure S = 〈N , E〉 is a graph with a set

of nodes N and a set of edges E ∈ N ×N .

Note that both definitions are an extension to Definition 6

and only the definition of S is different. Buschka introduced

a formalized definition which combines two or more maps

of different types of maps into one, called hybrid map.

Definition 9 (Hybrid map): A hybrid map for

E limited to D is a pair H = 〈M,L〉, where

M = {MC1
, . . . ,MCn

,MT1
, . . . ,MTm

} is a set of

maps for E, such that MCi
= 〈Y ′

i , fi, 〈Si, di〉, posi〉 or

MTi
= 〈Y ′

i , fi, 〈Ni, Ei〉, posi〉. L = {L1, . . . , Lp} is a set of

links, where Li = 〈xjl , xko
〉 such that xjl ⊆ Y ′

j , xko
⊆ Y ′

k

and j 6= k.

The applicability of Definition 9 to various established

map representations has been demonstrated in [1].

C. Properties of Hybrid Maps

Buschka defines three essential properties which have to

be satisfied for the usability of hybrid maps applied to

real world applications. Firstly, there has to be a function,

which enables a robot to localize itself in the consisting S
representing the map. Secondly, there has to be a function,

which allows for determining, if there is traversable space

in S of the map in order to move from pose A to B. And

thirdly, there has to be a map building function, which allows

for creating a map in a S based on actions of a robot. The

formal definition of this functions can be found in [1]. In

contrast to Buschka, we treat a robot as a physical entity of

the task domain. The presented functions can be adapted to

this definition.

According to Buschka, one major advantage of hybrid

maps is the ability to exploit the individual advantages of

each map component. Therefore, maps can be classified

according to their component co-operation into injection

and synergy. Injection evaluates if one component of the

hybrid map does not have a given usability, e. g., it is not

separable with respect to that usability. Synergy increases

the performance to a level that would be hard or impossible

to achieve by transferring information to another map, using

one single map component.

Three different dimension of hybridization of hybrid maps,

which apply also for semantic maps, were introduced by [1].

Firstly, he classified hybrid maps according to their hetero-

geneity. If at least two components of M of a hybrid map



are of essential different types, a map is heterogeneous and

otherwise homogeneous. Secondly, a map can be classified

according to its hierarchy. A hybrid map is hierarchical if

its components are hierarchically ordered and flat otherwise.

Thirdly, according to its separability, a hybrid map can

be classified as separable if each component can be used

independently from other components. A map is integrated

if each component needs the other ones in order to operate.

D. Definition of Semantic Maps

Next, we define our own semantic map in a common sense

such as Buschka for hybrid maps. We have to consider the

task domain and the goal of a semantic map. As described

above, we want to combine the classification of entities in

the map with common-sense knowledge to obtain knowledge

about a scene for better understanding and human-robot

interaction. In order to describe different steps to obtain the

semantic map, we first have to define classes that can be

obtained by classification. Niemann [6] defines classes for

the pattern recognition domain and the definition is adapted

to our approach as:

Definition 10 (Class): A set of entities Y can be de-

scribed by a set of classes Ω, which can be partitioned into

k subsets Ωκ, κ = 1, . . . , k. It is required that

Ωκ 6= ∅, Ωκ ∩ Ωλ = ∅, κ 6= λ and

k⋃

κ=1

Ωκ = Ω.

The function c : y −→ Ωκ assigns each y ∈ Y ′ of a set

of entities exactly one class Ωκ. As a partition implies a

equivalence relation, classes correspond to entities that have

some similarity with respect to a certain property. If neces-

sary, different partitions may exist to establish taxonomies

or hierarchies of concepts with respect to other properties.

During semantic mapping, entities are perceived by a

sensor and sensor data will be classified into classes. These

classes could be, for example, building, car, path, street or

grass. Good or less drivable normally are attributes, but in

case of specific applications, such as path planning, they can

also be classes.

The combination of classes and attributes can lead to high-

level functionality. In order to design algorithms dealing with

high-level functionality, semantic maps have to be defined as

a foundation.

Definition 11 (Semantic map): A semantic map for E

limited to D is a tuple Msem = 〈M,L,A〉, where M and L
are defined in Definition 9. A is a structure, which represents

knowledge about the relation between entities, classes and

attributes, also known as common-sense knowledge about

D. Generally, A can be defined in an arbitrary way and has

to allow for inference.

In literature, A is defined, e. g., as a graph based structure

or an ontology. The application of the definition to semantic

maps in literature will be presented in Section IV.

III. PROPERTIES AND CHALLENGES OF SEMANTIC MAPS

The formal definitions of the three essential functions

presented in Subsection II-C apply also for semantic maps

as they are an extension of the definition of hybrid maps.

In the following, we present different criteria for the design

and evaluation of semantic maps.

Semantic maps can be distinguished based on common-

sense knowledge. On the one hand, the acquisition of the

common-sense knowledge can be different. The knowledge

can be modeled by the user or by the application of a

common-sense database of the task domain. Additionally,

common-sense knowledge about the task domain can be ac-

quired by human-computer interaction and/or can be inferred

during the mapping process based on acquired classification

results and knowledge. On the other hand, the point in time

when the knowledge is available for the robotic system can

be modeled differently. In most of the cases, the knowledge

is available at the beginning of the mapping process. On the

other side, the knowledge acquisition can be modeled as first

step of the mapping process, such that the knowledge will

be acquired by the system before the mapping by human-

computer interaction. If the semantic knowledge is available

at the beginning of the mapping process, the knowledge

can be adapted by the system through the mapping pro-

cess by human-computer interaction or new classification

results with reliable probability. The aim of common-sense

knowledge is to infer from classified entities in the envi-

ronment to attributes or vice versa. Here, the representation

of the common-sense knowledge and the applied inference

algorithms are distinguishable. One established method is

to model a semantic mapping system with different layers

such as sensor data, map information, classified entities

and common-sense knowledge. In contrast, different layers

with different abstraction levels can be modeled and the

common-sense knowledge can be represented over different

abstraction levels and not as separate layers. The knowledge

can be modeled in a probabilistic and non-probabilistic

manner. Graph based representations, such as directed, undi-

rected and mixed graphs, or ontologies and corresponding

inference methods are established methods for knowledge

representation.

Semantic maps can be build from several sensor data.

Multi-model and uni-modal approaches can be differentiated.

The sensors used for map building, entity classification etc.,

can be divided into different classes. Most of the approaches

use depth information, obtained by laser range finders, time

of flight, structured light sensors or stereo data, or camera

information obtained by one or more cameras or RGB-D

sensors such as the Kinect.

The introduced semantic map from Definition 11 enables

a lot of different applications. In the following, some basic

functionalities, applications and queries will be presented,

which could be supported by a semantic map that satisfies

Definition 11. The semantic mapping system should support

the recognition of entities in particular parts of the map and

the classification of entities by assigning an entity a class



or an attribute. Additionally, the system should allow for

inferring from a given class of an entity to an attribute or

a set of attributes or to infer between an attribute or set of

attributes of an entity to the corresponding class. Given a

point in the world or a position in the data structure of the

map, it should be possible to obtain an entity at this position.

The presented definition also supports complex tasks, such as

to infer a probable pose of an entity or a set of entities which

has not been previously observed according to the class or

attributes of a part of the map. It could also be possible to

search for special entities in a predefined part of the map.

Furthermore, the definition allows for detecting localization

errors in the map by reasoning about the expected location of

entities and to deal with ambiguities in the map or ambiguous

classifications of attributes or entities in a part of the map.

In addition to the presented properties, functionality and

queries many principled design decisions have to be made,

when considering the creation of a semantic map and one

has to deal with a lot of challenges which arise during

this process. One basic decision is to decide how many

layers should be modeled for the semantic mapping system

and how the common-sense knowledge will be integrated.

That depends in principle on the applications based on the

semantic map. During the modeling of the system, one has

to decide how many topological and metric components

are used for map creation and representation and how are

these structures connected with each other. A challenge is to

combine common-sense knowledge from different sources

and different time points during the mapping process. If it is

acquired for the application of the semantic map, the design

of the system has to deal with the increasing amount of

information over time during the mapping process. Systems

applied for complex task settings have to deal with large-

scale semantic information of the common-sense knowledge.

The challenge is to use the most appropriate knowledge

representation and suitable inference algorithm. An appro-

priate solution has to be found based on the knowledge

representation and inference, if the system has to handle

ambiguous observations in relation to the common-sense

knowledge during the mapping system. One issue could

be how to learn new information for the common-sense

knowledge about the environment.

The presented properties and challenges are neither ex-

clusive nor complete for all application domains. Hence, an

extension or improvement for complex and more detailed

scenarios is possible.

IV. APPLICATION OF SEMANTIC MAPS

The evaluation of hybrid maps is based on the following

properties: usability, co-operation and hybridization. The

application of the definition to hybrid maps was presented

in [1]. In the following, we present an evaluation template

according to the definition, properties and challenges of

semantic maps presented in Section II and III. The evaluation

criteria of [1] is out of the scope of this evaluation, since the

main usabilities are self-evident for semantic mapping.

Fig. 1: Multi-hierarchical semantic maps presented by

Galindo et al. [4] (Figure reproduced and adapted from [4]).

In the following, we will apply this evaluation scheme:

Description: General introduction of the semantic map-

ping system and its components.

Representation: Detailed description of the components

of the semantic map and application to Definition 11.

Properties: Description of the presented properties of the

semantic mapping system based on Section III.

We present the application to the evaluation template in

the following for a selection of papers.

A. Multi-Hierarchical Semantic Maps

Description: Galindo et al. [4] introduce a multi-

hierarchical approach dealing with a spatial and semantic

representation of indoor office environments. They present a

spatial and conceptual hierarchy which are connected by an

anchoring process. An overview sketch is shown in Figure 1.

The spatial hierarchy enables to reliably plan and execute

robotic tasks by storing spatial and metric information from

the robot environment. The spatial hierarchy is divided into

three dimensions. On the lowest level, images of objects and

local grid maps are stored. In the second level, the topology

of the space is represented by nodes (open areas) and edges

(navigable space between open areas) and in the upper level

the whole spatial environment is represented in one node.

The conceptual hierarchy provides the spatial perspective

with a human-like interface and inference capabilities on

symbolic reasoning by modeling semantic knowledge about

the robot environment. All concepts derive from the common

ancestor in the upper level. In the level below, general cate-

gories and in the level below that level, specific concepts are

derived from the upper level. In the lowest level, individual

instances are represented.

Representation: A semantic map is defined for the task

domain indoor environment with the aim to infer about

room types according to the appearance of objects and

rooms. The map is defined as Msem = 〈M,L,A〉, where

M = {MC1
, . . . ,MCn

,MT1
, . . . ,MTm

} is a set of maps

for E. In case of multi-hierarchical maps, there are local



Fig. 2: Conceptual spatial map representation of Zender et al.

[15] (Source: [15]).

metric components MCi
(occupancy grid maps) associated

one per node to a topological component in the spatial

hierarchy. There are topological components MTi
with dif-

ferent abstraction levels. In the spatial hierarchy, the second

layer represents the topology of space and in the conceptual

hierarchy, the layer defines specific concepts. L is liable to

create links between entities in different (types of) maps.

For the presented map representation, there are links be-

tween topological and metric components, e. g., between the

local workspace and the topology of space in the spatial

hierarchy. Links between different topological components

are also present between the topology of space and the

specific concept layer. The representation of the semantic

common-sense knowledge about the task domain is defined

as graph based structure A = 〈NA, EA〉. The knowledge

is represented in the conceptual hierarchy, in the specific

concept layer as well as in links between the different layers.

In the specific concept layer, classes as well as properties

are linked together. The connection between the individual

instances and the specific concept links entities with classes

and properties. Between the specific concept and general

category classes are linked with attributes.

Properties: Multi-hierarchical semantic maps can be ap-

plied to map building, navigation and detection of local-

ization errors. The conceptual hierarchy provides the spa-

tial perspective with a human-like interface and inference

capabilities on symbolic reasoning by modeling semantic

knowledge about the robot environment.

B. Multi-Layered Conceptual Spatial Map Representation

Description: The work of Zender et al. [15] extends

the previous presented system by a multi-layered spatial

representation consisting of metric, navigation, topological

and conceptual map layers. The different layers are presented

in Figure 2. The first three layers are used for mapping and

the last one for reasoning. There are three main subsystems

involved in constructing, maintaining and using the spatial

representation: the perception subsystem for evaluation of

sensory input, the communication subsystem for situated

spoken dialog and the subsystem for multi-layered concep-

tual spatial mapping, that bridges the gap between sensor-

based maps and the human-like spatial representation. The

metric map used in the conceptual spatial map is a line

based map and represents the part of the space that can

be described by lines. The navigation map connects nodes

and edges representing the trajectory of the robot and nodes

are labeled by the classes room, corridor and doorway. The

topological map divides a set of nodes in the navigation map

into areas. The conceptual map on the one hand contains an

innate conceptual ontology that defines abstract categories

for rooms and objects and how they are related. On the other

hand, information extracted form sensor data and/or given

through situated dialogue about the actual environment is

represented as tokens that instantiate abstract concepts.

Representation: A multi-layered conceptual spatial

map is defined as Msem = 〈M,L,A〉, where

M = {MC1
, . . . ,MCn

,MTnav
,MTtop

} is a set of maps for

the task domain of office environments. The navigation

graph is a topological map MTnav
, which links small sets

of local metric line maps MCi
into a global frame work and

also builds the basis for the topological map MTtop
. L links

entities of the metric, navigation and topological map. In the

presented approach, the sensor data is classified into different

classes in the navigation map and in the topological map

into different topological areas. Attributes in this example

are the concepts represented in the conceptual map, which

can be derived by previously human-generated models or

human-computer interaction. The common-sense knowledge

about indoor environments is represented as a OWL-DL

ontology. It connects sets of classified entities of the metric,

navigation and topological map to attributes which allows

for connecting the conceptual map and the other maps.

Properties: The conceptual knowledge is encoded as an

OWL-DL ontology and a description-logic reasoner is used

to classify spatial areas into corridors and different rooms

such as kitchen and office. The combination and evaluation

of acquired knowledge by human computer interaction and

the asserted knowledge within the context of the initiate

conceptual ontology enables the reasoner to infer more

specific categories for known areas. The conceptual spatial

map can be applied to map building, object recognition, door

detection, place classification, navigation and reasoning.

C. Large-scale Semantic Mapping and Reasoning

Description: Pronobis et al. [9] present one main ap-

proach to develop an autonomous indoor service robot,

which is able to create large-scale semantic maps and plan

complex tasks. The semantic mapping system is divided

into four layers on three hierarchy levels. A sketch of the

layers is illustrated in Figure 3. The first hierarchy consists

of the sensory layer, which represents camera and laser

data, a metric map and the spatial information of features

calculated from the data. The second hierarchy consists of

two layers, the categorical layer and the place layer. The

categorical layer represents room shape, appearance, objects

and landmark models and the place layer contains the places,

paths and place holders. The highest hierarchy represents

the conceptual layer, which compromises common-sense

knowledge about concepts, relations between those concepts

and instances of spatial entities.

Representation: The large-scale semantic

map is defined as Msem = 〈M,L,A〉, where

M = {MCsen
,MTsen

,MTpla
,MTcat

} is a set of maps



Fig. 3: Approach for large-scale semantic mapping and

reasoning of Pronobis et al. [9] (Source: [9]).

for the task domain of office environments. The sensory

layer is a hybrid map, where the camera and laser data

and the spatial information of features calculated on the

data are represented in a topological map MTsen
and the

corresponding grid maps in a metric map MCsen
. The

place layer is represented as topological map MTpla
,

where the nodes contain places and place holders and

the edges contain the paths between the places and place

holders. The representation of the categorical layer is not

uniquely described in [9], but is assumed as topological,

MTcat
, according to the links between the categorical and

conceptual layer. There are no links L between sensory,

place and categorical layer. The common-sense knowledge

is modeled as graph A = 〈NA, EA〉 by nodes and directed

and undirected edges as relations between concepts, and

describing instance knowledge as relation between either

instances and concepts or instances and other instances.

Entities are associated with attributes of the categorical

layer and classes, such as room types and objects.

Properties: The inference between the conceptual and the

other layers is realized by a chain graph model. The graph

models both directed casual as well as undirected symmetric

or associative relationships including circular dependencies

originating from possible loops in the topological graph

and enables the classification of parts of the topological

map into room categories by inference on the chain graph.

Relations in the common-sense knowledge are either pre-

defined, acquired or inferred. The probability of existence

of an object of a certain category in a certain type of

room is first bootstrapped using a part of the Open Mind

Indoor Common Sense database. The probabilistic relational

conceptual representation is capable to perform uncertain in-

ference about some concepts solely based on their relations to

other concepts rather than direct observations. Hence, spatial

reasoning about the unexplored space is now possible. The

semantic mapping system can be applied to map building,

object recognition and localization, door detection, place

classification and reasoning.

V. CONCLUSION

In this paper, we presented a high-level overview of

existing work on semantic mapping and a principle formal

definition of semantic maps. We described requirements,

properties and challenges of semantic maps, which have to

be fulfilled to allow the combination between classification,

mapping and common-sense knowledge. Additionally, we

presented an evaluation scheme and applied it to well-known

semantic mapping approaches.

VI. ACKNOWLEDGMENTS

This work was partially funded by the Deutsche

Forschungsgemeinschaft (DFG) under research contract

PA 599/11-1.

REFERENCES

[1] P. Buschka. An Investigation of Hybrid Maps for Mobile Robots. PhD
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[5] R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard.
g2o: A General Framework for Graph Optimization. In Proc. of ICRA,
pages 3607–3613, 2011.

[6] H. Niemann. Pattern Analysis and Understanding. Springer Verlag,
1990.

[7] E. Olson. Real-Time Correlative Scan Matching. In Proceedings of

the IEEE International Conference on Robotics and Automation, pages
4387–4393, 2009.

[8] I. Posner, D. Schroeter, and P. M. Newman. Online Generation of
Scene Descriptions in Urban Environments. Robotics and Autonomous

Systems, 56(11):901–914, 2008.
[9] A. Pronobis and P. Jensfelt. Large-scale Semantic Mapping and

Reasoning with Heterogeneous Modalities. In Proc. of ICRA, pages
3515–3522, 2012.
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