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Abstract— This paper builds on recent work towards sam-
pling based motion planning and task planning using linear
temporal logic (LTL) in an effort to increase the planning
capabilities of autonomous underwater vehicles (AUVS). To
generate low-cost paths that execute multiple coverage tasks,
the planner generates a discrete abstraction that considers the
workspace of the AUV and a mission specification expressed
in LTL. Sampling-based motion planning is used to generate
a motion tree which is then mapped to states in the LTL
mission specification corresponding to a determinisstice finite
automaton (DFA) inducing an equivalence class. Heuristics
imposed over the discrete abstraction are employed in order
to estimate the feasibilty of expanding the motion tree from
an equivalence class to a new automaton state. Results in this
paper provide an overview of existing work.

I. INTRODUCTION

Mission planning for autonomous underwater vehicles
(AUVs) requires the ability to reason over both the continu-
ous and discrete domain. Complex AUV missions incorpo-
rating inspection tasks, perpetual surveillance, maneuvering
through restrictive environments, etc. call for a planner with
capabilities indicative to both the robotics and artificial intel-
ligence (AI) communities. Complexity arises in the temporal
scope of the mission, traversing different areas and sampling
data uses considerable amounts of energy when having to
combat time varying ocean currents that may impede the
motion of the vehicle. While considerable amounts of work
has been performed in researching optimal paths for AUVs
in time varying ocean currents, there has been little work
done in planning low-cost paths for AUVs while considering
multiple objectives. Recent works involving AI planning with
AUVs has included constraint-based temporal planning [1]
and planning using PDDL domain descriptions for AUVs [2]
where plans are executed and modified in real-time.

The objective of this project is to develop a planning
framework that uses a model of the world including time-
varying ocean currents to quickly plan and re-plan feasible
paths for the AUV that execute the high-level mission
described by a user efficiently. Breaking down the mis-
sion specification as a series of discrete tasks using linear
temporal logic (LTL) allows for the planning algorithm to
take the ordering of tasks away from the user, removing
potential user error as well as the inefficient ordering of
tasks. LTL combines propositions, logical (∧ and, ∨ or, ¬
not) and temporal (© next, ♦ eventually, � always, ∪ until)
connectives in order to describe complicated tasks as a series
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of discrete actions. As an example, the task of sampling data
from multiple regions while remaining collision free can be
described as

�πsafe ∧ ♦πA1
∧ . . . ∧ ♦πAn

(1)

where πsafe represents a propositional variable that describes
a mission element. In this example, πsafe represents the
proposition “No Collisions” which is preceded by the “al-
ways” operator, i.e. “always remain collision free”. πsafe is
joined using the logical operator “and” with other proposi-
tions πAN

, “sample area AN”, which are preceded with the
“eventually” operator. The result of this LTL specification
is the sentence “Always remain safe and eventually sample
area A1 and . . . eventually sample area AN”.

II. METHOD

The work in this project builds off of prior work towards
a synergistic combination of layers of planning (Syclop) [3].
The approach combines sampling based motion planning
with discerete planning using LTL, treating the planning
problem as a probabilistic search over a hybrid continuous
and discrete space. Planning with LTL provides a framework
to handle task ordering while guiding the motion search
through high level objectives. Specifically, the workspace of
the AUV is decomposed into discrete regions using a proba-
bilisti roadmap (PRM). The physical adjacency between each
region is captured in the edges of a graph whose verticies cor-
respond to the decomposed regions. The regions of the graph
are then labeled with propositions from the LTL specification
that are satisifed within eah region. The discrete abstraction
is then defined as A×D. Abstract states 〈z, r〉 are composed
of the automaton states z ∈ Z and decomposition regions
r ∈ R. Once the abstration is constructed, heuristic costs
that take into account the distances between an accepting
automaton state and an abstract state 〈z, r〉 are computed
using Dijkstra’s single-source shortest-path algorithm where
the weight is defined as the distance between two verticies
of the abstraction.

Sampling-based motion planners are then invoked in order
to create the motion tree, T . Starting at the root of the
tree, the corresponding abstract state of verticies in T can
be determined by mapping which regions r the tree passes
through and what automaton states z are visited. This induces
an equivalence class Γ〈z,r〉 consisting of all the vertices that
map to 〈z, r〉.

The motion tree T is expanded from Γ〈z,r〉 by first
selecting a vertex from Γ〈z,r〉 and then extending a collison-
free and dynamically feasible trajectory starting from the



state associated with the vertex v. The selection of v is
designed to promote growth towards new automotaun states
by selecting points to expand the motion tree using regions
in D = (R,E) that have yet to be visited. The vertex v is
selected by finding the nearest vertex to the newly sampled
point.

III. EXPERIMENTS AND RESULTS

The approach is tested on a simulated environment using
the MOOS-IvP [4] framework in order to obtain an accurate
AUV simulator. MOOS-IvP uses a second order system to
simulate the dynamics of an AUV using heading, depth,
and speed as control inputs. The ocean floor is a simulated
map created by adding random peaks and valleys as shown
in Fig. 2 . Ocean currents are modeled using the HYbrid
Ocean Coordinate Model (HYCOM) [5] in order to generate
realistic time-dependent ocean currents, see Fig. 1. These
experiment conditions provide a challenging environment
due to changes in topography and ocean current. Dynamic
constraints are imposed on the AUV such that it must track
a certain distance from the ocean floor. Furthermore, in the
experiments different LTL specifications are considered, the
first being a coverage mission that requires the AUV to visit
each area of itnerest:

φ1 =

n∧
i=1

♦πAi
.

where an area Ai is defined as a box, placed at random
inside the test environment. Here the mission specificiation
leaves it up to the planner to decidce the appropriate ordering
of areas to visit. The second mission is a covereage mission
with a pre-defined sequence that the AUV most follow:

φ2 = β∪(πA1∧((πA1∨β)∪(πA2∧(. . . (πAn−1∨β)∪πAn)))),

where β = ∧ni=1¬πAi

Fig. 3 provides a summary of the results when varying
the number of areas of interest in the misssion specifica-
tions. The speedup in computational time is due to the
use of equivalence classes that capture the progress made
by the planner which then informs heuristics defined over
the discrete abstraction. Further speedups can be attributed
to the use of PRMs in the construction of the workspace
decomposition.

IV. DISCUSSION

This paper focused on mission and motion-planning for
AUVs and how to enhance the capabilities of current AUV
control systems by taking into account operations as ex-
pressed by LTL specifications. The proposed approach is a
planner which considers a hybrid discrete and continuous
space when planning feasible low-cost motion trajectories
that execute the high level mission specification described
by the user by combining the expantion of a motion tree
with a discrete search through an automaton representing
an LTL specification. The project is currently ongoing and
future research includes moving the planner into a replanning
framework for use on a system in real-time.

Fig. 1. An example of ocean currents generated by HYCOM in a 2-D
map with two obstacles. Arrows are the direction of current velocity and
the color indicates magnitude.

Fig. 2. An example of an environment used in one of the experiments.
Areas of interest are displayed as red boxes with spherical obsticals
obstructing the path of the AUV.
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(a) task φ1: “all” (b) task φ2: “sequencing”
Fig. 3. Results when comparing the proposed approach (labeled as new) to
prior work [6]. Bars indicate one standard deviation. A missing data point in
the graph indicates the method timed out before obtaining a solution. Results
include the time to construct the DFAs from the LTL formulas (in the order
of milliseconds). For the proposed approach, results also include the time
to construct the roadmap abstraction, which took between 0.1s–0.4s.
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