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Abstract— Reliability is a key challenge for intelligent robot
systems. In order to address this challenge, runtime failure
detection and diagnosis (FDD) is an essential task to maintain
autonomous operation. The complexity of fully fledged robot
systems and the included noise in system observations com-
plicate this task. In this paper, we present our Qualitative
Bayesian Failure Diagnosis (QBFD) for precise and robust
failure estimation. Our approach uses a Dynamic Bayesian
Network to model uncertainties of the measurements while
considering temporal relations. Instead of detailed a priori
knowledge of system dynamics, our approach models cause-
effect relations. These relations are, in practice, more intuitive to
specify. As a consequence, we reduce the level of needed system
knowledge and therefore increase the practical applicability. We
evaluate the quality in respect to two reference approaches in
extensive simulations. Due to our results, we are confident that
our proposed approach provides comparable, if not superior,
estimation quality, while simultaneously reducing the level of
needed model details. Furthermore, we provide evidence that,
given a proper system decomposition, high quality estimates are
possible using general observations, like the resource usage.

I. INTRODUCTION

Recent advances in the field of Artificial Intelligent (AI)
yield to constantly improved and increasingly intelligent
autonomous robot systems. As a consequence of the ongo-
ing progress in the fields of robotics and AI, complexity
of such robot designs grows fast. In fact, most of these
systems have reached a level of complexity where manual
administrative efforts of maintaining a reliable system are
getting demanding and error-prone. Considering the main
design objective, namely reliable autonomous operation in
unstructured every day tasks, manual administrative efforts
needs to be minimized. Hence, stable autonomous operation
and reliability have to be considered as one of the major
current challenges on the way to real world applications.

In order to contribute to this challenge, manual efforts of
human operators should be reduced by combining reliability
engineering with AI techniques to create an autonomous
control mechanisms for detecting, diagnosing, and recovering
system failures [1]. In such a design, high quality of failure
detection and diagnosis (FDD) is essential. Indeed, correct-
ness and robustness are main quality properties of FDD [2].

However, the combination of these techniques in a FDD
approach faces multiple problems in the robot domain.
Continuous system monitoring is an essential requirement for
FDD. However, system monitoring is rarely initially included
in the system architecture [3]. Moreover, a late integration
often causes high integration efforts [4]. As a consequence,
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monitoring support is often omitted, where the integration
efforts seems too high. In practice, the coverage of the
monitored system state is limited. Therefore, late integration
of monitoring tends to provide only a partial overview of the
system state, often based on easily accessible general system
information. Hence, the limited amount of available state
information further complicates reliable failure estimation.

Furthermore, FDD often incorporate robot-specific knowl-
edge of the system dynamics [5]. The system dynamics, usu-
ally represented in a model, describe the expected behavior
of the system in a given situation. However, the complexity
and uncertainty of physical systems, like robots, make a
precise dynamic model of a complete system a difficult and
time consuming task. In practice, comprehensive and precise
knowledge representation in models are rarely available [6].

Additionally, operation of autonomous robots are com-
putational expensive. However, FDD have to work in soft
real-time to enable a timely recovery as well. Efficiency is,
therefore, an essential requirement in FDD design.

In summary, FDD for robot systems have to deal with
limited state information, imprecise knowledge of the system
dynamics, and the requirement of minimal resource usage.
In this paper, we present the Qualitative Bayesian Failure
Diagnosis (QBFD) that is designed to cope with uncertainty,
ignorance of the dynamics, and efficiency. Our approach
is based on a Dynamic Bayesian Network (DBN) that
is inherently able to deal with time-related and uncertain
observations. The approach relies on restricted knowledge
of cause-effect relations of single components instead of a
dynamic model of the complete system. Therefore, the FDD
problem is segmented to reflect the distinct components of
the system, like object detection, decision making, localiza-
tion, and so on. Each segment is dedicated to analyze one
specific component. The resulting component-based scope
of the FDD enables an intuitive way to specify component
specific failures (causes) and consequent results (effects).

The rest of the paper is organized as follows: the next
section describes related work. Section III describes the
proposed approach, while Section IV presents experimental
results. Simulation experiments have been performed in
which related diagnostic approaches, discussed in Section
II, are compared to the results of the presented approach.
The paper concludes with a summary.

II. RELATED WORK

In general, diagnostic methods comprise of two basic
components: a priori domain knowledge and search strategy
[7]. In this section, we discuss FDD paradigms [2], [7],
[8] based on their used a priori knowledge and place our



contribution in this context. The basic a priori knowledge
is a set of defined failures and the relationship between the
observations and these failures. A diagnostic system may
have them explicitly, e.g. in a table, or it may be inferred
from some source of domain knowledge. We distinguish this
in explicit and model-based a priori knowledge.

Explicit knowledge is often derived from empirical knowl-
edge or may be compiled from past experience with the sys-
tem. Approaches based on past system data are referred to as
process history-based knowledge [8] or data-driven [6], while
methods that uses a predefined set of symptoms are called
fault-signature approaches (FS) [9]. Here, a fault signature, or
pattern, is a vector of symptoms for each defined failure. The
goal is to find the best match of the current observations to a
set of known symptom patterns for each possible failure. A
search strategy formulated as a logical diagnosis rule is often
used to realize the matching, as demonstrated in RoboCup
by [10]. This common implementation of a FS approach has
the advantage of an empirical configuration of the needed
a priori knowledge and provides reliable diagnostic results.
However, the quality of the results is highly application
specific and depends on manual, subjective specification.
As a consequence, observation variations and specification
errors often impair robustness and correctness of the results.

Beside using explicit knowledge, a priori domain knowl-
edge may be developed from a fundamental understanding of
the system using first-principles knowledge. Such knowledge
is referred to as model-based knowledge [11]. The model-
based a priori knowledge can be further classified as quali-
tative or quantitative.

In quantitative models, this understanding is expressed in
terms of mathematical functional relationships between the
inputs and outputs of the system based on some fundamental
insight of the dynamics of the system. This relation can be
expressed in different mathematical models, as presented in
[11], [7]. In the Multi Model Adaptive Estimation (MMAE)
[5], Kalman filters are used to formulate this model. Here,
each system failure is modeled as a separate Kalman filter.
The residual between the estimates of a model and the
real process behavior is used as an indicator for failure
identification. Typically, the model with the minimal residual
is chosen for the diagnostic estimate. Due to the properties
of the Kalman filtering, the estimates are efficient in terms of
resource usage and robust in respect to disturbances of the
observations. However, the specification of the underlying
process model is hard, requires expert knowledge of the
system dynamics, and significant experience in filter design.
Therefore, the performance of this approach is good, but the
integration effort is considered high.

In qualitative models these relationships are expressed in
terms of qualitative functions centered around distinct units
in a system, like failure symptoms. The qualitative models
can be developed either as qualitative causal models or ab-
straction hierarchies [7]. Different approaches exist to model
the cause-effect relationship for these approaches, e.g. Fault
Trees [12], signed digraphs [13], or quantitative physics.
Though, qualitative models have a number of advantages, the

major disadvantage is the generation of spurious solutions.
Our approach, as described in detail in Section III, follows

the qualitative representation of the a priori knowledge.
Instead of using dynamic knowledge of the system, we model
cause-effect relations. These relationships are considered
to be more intuitive to specify and, therefore, this should
facilitate the development of the model. Uncertainties are
inherently addressed in a DBN to counter the robustness
problems of the FS. Furthermore, time relations, like in
the process history-based methods are expressed in temporal
relations in the DBN. Furthermore, we decompose the system
in components to reduce the problem complexity.

III. FAULT DETECTION AND DIAGNOSIS
Our work focuses on a FDD design that incorporates the

special requirements of the robot domain. This includes the
capability to deal with uncertain noisy measurements and
ignorance to a comprehensive and precise system model.

Many of the modern robot systems are modular and consist
of multiple components with clearly defined and limited
interfaces. Therefore, the dependencies between components
are limited. To reduce the overall complexity of the approach,
we subdivide the FDD problem in multiple separate tasks,
one for each component.

While it is difficult to monitor intrinsic details of a
component, it is much easier to observer multiple general
characteristics. The operating system offers a wealth of
general, but easily accessible, characteristics for software
components, like CPU usage, memory usage, number of
threads, and so on. Therefore, our approach combines mul-
tiple general component characteristics to determine reliable
state estimates.

Instead of using dynamic knowledge, we propose a qual-
itative approach based on cause-effect relations. Therein,
we only consider direct causal relations of assumed failures
(causes) to the consequent effects. No comprehensive dy-
namic model needs to be specified. This knowledge is con-
sidered more intuitive and, hence, the modeling is expected
to be easier.

The task of the FDD is to estimate the state of each system
component separately. In order to conclude a global system
state, the atomic estimates can be recombined in accordance
to the system structure as found in [14]. A high quality
estimate of each component is therefore essential.

In the following, we will focus on FDD for software
components of a robot system. To develop such a component
related FDD approach, we start to specify the problem
description in a formal way to clarify the design goal.

A. Formal Problem Description

We assume that the robot system provides monitoring
capabilities to observe at least a subset of the system’s state
information. Furthermore, we suppose that the monitoring
system provides a finite set O of time-variant system ob-
servation on(tn), where n ∈ {1, ..., N}. A subset of these
observations Ok is related to a specific component k,

Ok := {o1(t1), o2(t2), ..., oN (tN )}. (1)



Each of these observations have to be considered as a
noisy measurement. These observations represent the current
update information for the component k. The domain of the
observations are expected to be real-valued on ∈ R and the
number of elements in the set are assumed to be finite. The
first task of the FDD is to detect a failure. Therefore, the
FDD needs to estimate the current general component state
Sk.

Sk := {sok, sfailure} (2)

This set contains two states: the failure free state sok and
the failure state sfailure. The second task of a FDD is the
failure diagnosis. Failure diagnosis identifies root causes fm
of a failure. We assume that there exist only a finite set
m ∈ {1, ...,M} of possible root causes for a component k.

Fk := {f1, f2, ..., fM} (3)

The challenge, which we have to address, is to develop a
function fdd that maps observations Ok to estimates of a
state (detection) Sk and a set of root causes (diagnosis) Fk.

fdd : Ok → Sk ×Fk (4)

B. Bayesian Failure Detection and Diagnosis

We develop the given problem in the framework of prob-
ability theory. In equation 4, our problem is defined by
the estimates s ∈ Sk and f ∈ Fk based on a set of
current observations o ∈ Ok. We interpret these elements as
random variables (S,F ,O) of an atomic event in the joint
probability distribution P (S,F ,O). The estimation problem
is now related to the determination of the atomic event’s
probabilities.

The monitoring system provides continuous updates of
the system state. This is represented as evidence of the
observations O. Note that we do not require evidence for
every observation, as incomplete evidence is sufficient. Based
on the given evidence, the detection and diagnosis task can
be reformulated as conditional probabilities:

P (S = sn |O) P (F = fm |O) (5)

However, the inference of these atomic events can become
intractably complex for a growing number of variables and
is rather unnatural to specify [15]. An efficient way to
describe a joint probability distribution is a graphical model,
e.g. a Bayesian Network (BN). More specifically, we use a
Dynamic Bayesian Network (DBN) to address the time of
the observations on(tn). A DBN is a directed acyclic graph
G = (V,E), whose nodes V := {X1, X2, ...XP } are random
variables X . The edges E := {e1, e2, ..., eQ} in the graph
represent direct dependencies between the nodes P (Xi|Xj).
As before, i 6= j are indices of the corresponding set. To
include a priori domain knowledge, we exclude edges in the
graph [15].

eq = P (Xi|Xj) = P (Xi) eq /∈ E (6)

In order to derive the structure of the graphical model, we
discuss some assumption of the domain:

• Single-Fault: We assume that a component can only
suffer one failure at a time. Therefore, we summarize
all possible causes for failures (root causes) as states
in one random variable FT . To complement the state
probabilities to one, we add the state named fok.

P (F1, ..., Fm)→ P (FT ) =< f1, ..., fM , fok > (7)

• Observer-Independence: Observations are modeled as
separate nodes and assumed to be independent from
each other. Edges between observations are excluded
from the graph.

P (Oi |Oj)→ P (Oi) (8)

• Causality: The observations Oi are modeled as a direct
causal result from the root causes FT .

P (Oi |FT ) (9)

• Direct-Diagnosis: The states of the detection are mod-
eled as direct consequences of the root causes. The sum
of all root cause probabilities, excluding the normal
state, determines the failure detection sfailure proba-
bility.

P (S |FT ) (10)

As a result, we get a more compact structure with a
reduced number of edges.
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Fig. 1. left: fully meshed BN; right: BN with included domain knowledge

In order to model the dynamic progression of the observa-
tions, we define temporal transitions. Therefore, this compact
graphical model needs to encompass both: the observation
model (see Figure 1) and the transition model. The temporal
behavior of a DBN is modeled in a finite set of discrete
equidistant time steps 0 : t. Thus, each random variable X
has an instantiation for each time slice Xt. We continue to
include domain knowledge in order to further reduce the
complexity of the model:

• Markov-Assumption: In a Markov-Assumption ran-
dom variables Xt only depend on random variables
one time step earlier Xt−1. As specified, the state
node S only depends on the root causes FT . As a
consequence, the state node is independent from the
last state estimate.

P (FTt |FT0:t) = P (FTt |FTt−1) (11)

• Markov-Sensor-Assumption: In addition to the
Markov-Assumption, we assume that the observation
nodes Ot are independent in respect to time.

P (Ot |FT0:t,O0:t) = P (Ot |FTt) (12)



These assumptions reduce the temporal model of the
proposed DBN to one temporal transition.

P (FTt |FT0:t,O0:t) = P (FTt |FTt−1,Ot) (13)
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Fig. 2. Dynamic Bayesian Network for Fault Detection and Diagnosis

In order to complete the proposed DBN, we discuss
the structure of the temporal transition P (FTt |FTt−1). In
accordance with the Single-Failure-Assumption, a failure has
to be resolved before a new failure can occur. Therefore, we
prohibit direct transitions from one failure FTt−1 = fi to the
next FTt = fj . This is represented as zeros in the transitional
matrix.

P (FTt |FTt−1) =


θ1 0 · · · e1
0 θ2 · · · e2
...

...
. . .

...
r1 r2 · · · θM+1

 (14)

Here, the probability to stay in a given failure state
P (FTt = fm |FTt−1 = fm) is denoted by θm, while the
probability to recover from a failure P (FTt = fok |FTt−1 =
fm) is denoted by rm. The failure occurrence probability
P (FTt = fm |FTt−1 = fok) is given by em.

The probability of a successful recovery r and an enduring
failure θ depend on the quality of diagnosis and recovery.
There exist various failure models to estimate the failure
occurrence probability [16]. These models are often based
on the development process, like the testing time. Hence,
values of these variables are domain specific and can not be
specified in general.

Using Bayesian inference methods [15], we can infer the
probability of all the states of S and FT . However, the FDD
method needs to provide one distinct estimate for detection
and diagnosis. In order to make the decision of the estimates,
we apply a maximum a posteriori estimation (MAP) (shown
for the detection task).

ŝ = argmaxSP (S|O) = argmaxS
P (O|S)P (S)∫

S
P (O|S)P (x)dx

IV. EVALUATION

To demonstrate the efficiency of QBFD, we conducted
simulations to evaluate the quality in terms of the proper-
ties: correctness and robustness. The correctness property is
defined as the ratio of the correct estimates to all estimates.
The robustness property, in addition, captures the behavior
of the approach in respect to disturbances. In this context,
disturbances are understood as uncertainties represented as
noisy measurements or modeling errors due to wrongly
specified model parameters.

In order to ground this evaluation, we compare our results
with two reference approaches. One reference is a FS ap-
proach. The diagnostic rule is formulated in propositional
logic and is designed to maximize the reliability of the
estimates. As the second reference, we choose a model-based
approach. Therefore, we implemented the MMAE approach
[5], described in Section II.

The proposed QBFD builds on cause-effect relations mod-
eled in a DBN and continuous state updates. While our
evaluation focuses on the software layer of a robot system,
we expect QBFD to be directly usable to robots hardware
layer as well. Therefore, external sensors to observe the phys-
ical component state need to be integrated, like temperature,
voltage, current, sound, and so on.

A. Simulation Setup

The setup of the experiment consists of a simulated robot
system, a monitoring component, an implementation of the
FDDs under evaluation, and a component to trigger predeter-
mined failures. Beside the failure simulator, all components
are basic parts of the RoSHA architecture [1]. RoSHA is
designed to integrate failure recovery features for already
existing robot systems.The simulation system consists of
multiple components to reflect modular data processing and
inter-component communication of most modern robots.

In order to observe current state information, we use
the Capability and Reliability Manager (CARE) [17] for
system monitoring. CARE provides adaptive and efficient
monitoring services to limit monitoring resource overhead
[3]. In this setup, the adaptation controls the observation
frequency. We use no support of the components that are part
of the simulated robot system. Therefore, the results, in this
experiment setup, are purely based on general, component-
independent monitoring information. Most of this informa-
tion, like CPU are directly accessible from the operating
system. Additionally, CARE monitors the inter-component
communication to provide information on general commu-
nication characteristics, like message frequency or message
content. The observed characteristics in this simulation are
the CPU usage, memory usage, number of threads, message
frequency, and console output frequency.

In the experiment, we focus on the analysis of one specific
component of the system. In accordance to the RoSHA
architecture, QBFD and the reference FDD approaches are
implemented as a plug-in for a system-wide diagnostic
system. Due to the decomposition of the system, each plug-
in analyses one component. The implementation of QBFD
is based on the SMILE library [18].

Finally, we use an additional component, the failure simu-
lator, to trigger a set of predefined failures. In our experiment,
we support failure types that are related to general processing
faults, like blocking of the processing, uncontrolled process-
ing, and component crashes. More specifically, our reference
failures for these general fault types are deadlocks (DL),
endless loops (EL), and crashes (NP). Faults in the algorithm
of a component are case-specific and therefore not addressed
in this simulation.



Fig. 3. Diagnosis results in respect to disturbance. left: FS approach; middle: QBFD; right: MMAE approach

B. Experiment Procedure

We design a run of an experiment to trigger alternately
failure states and operational states. A run continues until all
specified failure types are triggered, see Figure 4.
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Fig. 4. QBFD results for run 1 with mean: 0 and variance: 0

Due to misleading former observations, the occurrence of
wrong FDD results is concentrated directly after state tran-
sitions. Thus, we kept the time intervals between occurring
failures (MTBF) short (3 minutes) to model a demanding
evaluation scenario. More realistic practical MTBF values
are around 12 hours [19], [20].

In order to determine the robustness property, we iterate
over discrete values of the disturbed situation. For the FS
reference approach, we need to discretize the continuous
values to ground the logical symbols of the diagnostic rule. In
order to ensure unified disturbance parameters, independent
of concrete value ranges, we specify the disturbance model
as a Gaussian distribution, where the mean and variance
settings are modeled as factors in respect to the center and
the width of the discretization interval. In our experiment,
we vary the mean setting in the interval [−1,−0.875, ..., 1]
and the variance in the range [0, 0.125, ..., 2]. Furthermore,
we conduct five runs to get a good average for each estimate.

C. Discussion of the Results

We represent the correctness and robustness properties for
each approach in a separate plot, see Figure 3. High values
of the correctness property present highly reliable estimates.
A next to constant function curve implies a high degree of
robustness for a given correctness level. Additionally, we
present the combined results in a contour plot to provide
a direct comparison. The border lines represent the values

where the approaches drop below a certain level of quality.
Figure 5 illustrates this for a 90% correctness property.
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Fig. 5. Border lines for a 90% correctness quality requirement

All considered approaches provide high correctness val-
ues for the diagnostic task in a low disturbance config-
uration (96.05% (QBFD), 95.85% (MMAE), 96.39% (FS)
for disturbance-free configuration). Results of the detection
task in a disturbance-free configuration are nearly identical
(96.04% (QBFD), 97.05% (MMAE), 96.39% (FS)). While in
the FS and the QBFD the detection is a direct consequence
of the diagnosis (see equation 10), and therefore provides,
beside numerical deviations, similar results, the MMAE ap-
proach significantly improves its correctness property. As de-
picted in Figure 3, the FS approach seems robust against ad-
ditional introduction of an offset (mean), while it is sensitive
to the variance of the disturbance. The MMAE reacts more
robust to high level disturbance. The underlying Kalman
filters are designed to process noisy data and, therefore, are
assumed to be the cause for that. However, the diagnostic
correctness in a low disturbance setting is significant less
(see Figure 3, right). This is a consequence of the adaptive
monitoring. The adapted observation intervals may produce
incomplete observation vectors, what impairs the MMAE
performance. Simulations with unified observation intervals
show higher correctness results.

QBFD is inherently more robust against incomplete obser-
vation evidences. Therefore, we experience high robustness
(until a middle level of disturbance), while simultaneously
providing high correctness values. The drop in highly dis-
turbed areas is very likely to be caused by discretization
effects in the grounding process of the discrete random
variables. While the FS approach shares the same implemen-



tation of the discretization process, the temporal Recursive
Bayesian Filtering seems to stabilize the estimates.

We evaluate our approach in an exaggerated setting with
short state durations of 3 minutes, instead of several hours in
a real-world setup. Extending the state duration, the results
converge asymptotically to 1. see Figure 6. In experiments
with a MTBF of 15 minutes, the correctness values increase
to over 99%. Further increasing the MTBF to 60 minutes,
we even exceed correctness values of 99.8%. The drop of
the FS results is due to unexpected low memory usage
observations. In contrary, MMAE and QBFD are robust to
these disturbances.
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As a consequence, the presented results are two folded.
While the MMAE approach provides the best properties for
the detection task, the QBFD, due to its superior correctness,
seems to be a good choice for the diagnostic task. Note, that
the presented results are based on an adaptive monitoring
[3]. Given a complete observation set, additional experiments
have shown that the MMAE approach provides high quality
for detection and diagnosis.

However, the MMAE relies on a detailed knowledge of
the component dynamics. This specification is not trivial, nor
intuitive. As a consequence, the implementation of such an
approach is demanding, especially for complex and dynamic
systems, like robots. In contrary, the QBFD uses cause-effect
relations as a priori knowledge that are considered to be more
intuitively to specify. Therefore, we argue that the integration
process is facilitated, while ensuring adequate FDD results.
In summary, the QBFD results are a good compromise
between integration effort and estimation quality.

V. CONCLUSIONS

The task of failure detection and diagnosis faces special
challenges in the robot domain, namely noisy observa-
tions and imprecise knowledge of the systems dynamics.
In this paper, we present a FDD approach that addresses
these challenges. We propose a FDD based on a Dynamic
Bayesian Network to model both the inherent uncertainty
of the domain and the temporal relation of the estimates.
Furthermore, we decompose the robot system in atomic
components and analyze each separately. As a consequence,
the responsibilities of the FDD tasks are limited to one
specific component and hence the complexity is reduced.
Furthermore, our approach relies on cause-effect relations
instead of dynamic a priori knowledge. These relations are

claimed to be more intuitive to model, and therefore the mod-
eling complexity is expected to be reduced further. Moreover,
the conducted experiments provide evidence that general
observations, like CPU usage and message frequency, are
sufficient for reliable FDD estimates. In fact, the evaluation
results are based exclusively on general system observations,
while still providing reliable FDD estimations. Therefore,
it seems that the necessary degree of inherent monitoring
support of components is limited. In the evaluation, we
compare our proposed FDD with two different reference
approaches in respect to correctness and robustness. Due to a
combination of high estimation quality and reduced modeling
complexity, QBFD seems preferable for the robot domain.
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