
Towards Integrating Hierarchical Goal Networks and Motion Planners
to Support Planning for Human-Robot Teams

Vikas Shivashankar1, Krishnanand N. Kaipa2, Dana S. Nau3, and Satyandra K. Gupta4

Abstract— Low-level motion planning techniques must be
combined with high-level task planning formalisms in order
to generate realistic plans that can be carried out by humans
and robots. Previous attempts to integrate these two planning
formalisms mostly used either Classical Planning or HTN
Planning. Recently, we developed Hierarchical Goal Networks
(HGNs), a new hierarchical planning formalism that combines
the advantages of HTN and Classical planning, while mitigating
some of the disadvantages of each individual formalism. In
this paper, we describe our ongoing research on designing a
planning formalism and algorithm that exploits the unique
features of HGNs to better integrate task and motion planning.
We also describe how the proposed planning framework can
be instantiated to solve assembly planning problems involving
human-robot teams.

I. INTRODUCTION

Low-level motion planning techniques must be combined
with high-level task planning formalisms in order to generate
realistic plans that can be carried out by humans and robots.
A representative application scenario is planning for fence-
less assembly cells where robots can collaborate seamlessly
with humans to perform assembly tasks. The advent of
safer robots like Baxter and exteroceptive sensing based
safety systems [1] are making this human robot collaboration
(HRC) paradigm feasible. Some of the components required
to achieve safe and efficient HRC include assembly sequence
generation [2], task decomposition between human and robot
[3], system state monitoring (tracking human, robot, and
assembly parts) [4], automated instruction generation for
human operations [5], ensuring human safety [1], and recov-
ering from assembly errors [4]. In order to enable a coherent
integration among these modules, a high-level planner, inter-
leaved with low-level motion planners, is needed at several
levels of the system hierarchy.

For example, given a CAD model of a product to be
assembled, RRT based motion planning methods can be used
to generate improved assembly precedence constraints [2].
In turn, these constraints can be compiled into a high-level
planning problem. Humans and robots share complimentary
strengths in performing assembly operations. Therefore, the

1V. Shivashankar is a graduate student at Department of Computer
Science, University of Maryland, College Park svikas@cs.umd.edu

2K. N. Kaipa is a Research Assistant Professor at Department
of Mechanical Engineering, University of Maryland, College Park
kkrishna@umd.edu

3D. S. Nau is a Professor at Department of Computer Science and
Institute for Systems Research, University of Maryland, College Park
nau@cs.umd.edu

4S. K. Gupta is a Professor at Department of Mechanical Engineering
and Institute for Systems Research, University of Maryland, College Park
skgupta@umd.edu

planning framework must have the ability to incorporate
this knowledge in order to decompose the tasks effectively.
Further, an integral planner must be able to perform plan-
repair in order to handle contingencies during assembly
operations. The deviations causing these contingencies may
be of two types: (1) low-level deviations in the geometric
state without affecting the corresponding symbolic state
(e.g., human places part in a wrong posture), which can be
corrected at the motion planning level, or (2) deviations in the
symbolic state itself (e.g., human picks an incorrect part, and
an improved alternative assembly sequence may or may not
exist), which needs to be corrected at both levels of planning.

Task planning formalisms typically used to achieve this
integration are Classical Planning ([6], [7], [8], [9]) and Hi-
erarchical Task Network (HTN) Planning ([10], [11], [12]).
Classical planning is not scalable enough to handle complex
problems since it can’t leverage domain-specific knowledge,
and HTNs impose stringent completeness requirements on
domain models, which are difficult to guarantee in open,
dynamic environments. Therefore, solutions attempting to in-
tegrate these AI planning techniques into domains involving
real robots and humans are not very satisfactory.

In recent work [13], [14], we developed a new hierarchi-
cal planning formalism called Hierarchical Goal Networks
(HGNs) that combines aspects of HTN and classical planning
into a single framework. This is a hierarchical planning
formalism similar to HTN planning, but operates over hierar-
chies of classical goals instead of tasks. It thus can combine
the scalability and expressivity advantages of HTN planning
with the heuristic-search/reasoning capabilities of Classical
planning.

In this paper, we describe our ongoing work on integrating
HGNs with motion planners to build better planning systems.
The aims of this work are twofold:

1) Design a general-purpose planning-and-execution
framework that combines HGN planning and
execution-time plan-repair algorithms with off-the-
shelf motion planners

2) Formulate this planning framework in the context of
planning for human-robot teams in assembly cells.

The novelty in this approach comes from the interaction
between the heuristic search techniques of the HGN and
motion planners, and the particular way in which they
guide each other towards high-quality solutions. The HGN
planner, when invoking the motion planner, also passes to
it an upper bound τcost(a), where τ is a user-specified
tolerance parameter. The motion planner, being a heuristic
search planner, can detect when the lower bound on the best

Planning Problem

Plan Gen-
eration

HGN Planner

Motion Planner

Plan Structure Π

Execution-time Reasoner

Execution Monitor

sgeom ssym

update state

Motion
Plan Repair

deviated from
expectation?

HGN Plan
Repair

update
plan

update
plan

Fig. 1. System Architecture

possible solution it can generate exceeds this bound, and can
return failure at that point. This is especially useful in cases
when a bad goal configuration has been sampled, leading to
unsolvable problems. Similarly, motion plan costs are also
propagated to the task-planning level to update the heuristic
estimates of the symbolic actions, and used to determine
whether other actions might lead to better plan costs.

II. SYSTEM ARCHITECTURE

Figure 1 depicts our proposed architecture of the hy-
brid planning-and-execution system. This is similar to the
conceptual model of planning and execution proposed by
Nau [15], but specifically instantiated for planning domains
of interest in this paper, with motion planning algorithms,
HGN planning and plan-repair algorithms.

The system takes as input the planning problem P , which
provides descriptions of the (1) initial state, (2) goals to be
achieved, (3) base action models at the task-planning level,
(4) control primitives at the motion planning level, and finally
(5) procedures to translate between symbolic and geometric
state descriptions. Section III describes this in more detail.
P is first input into the Plan Generation module. In

this module, HGN planners and low-level motion planners
interactively synthesize an executable plan structure Π that
achieves the given goals when applied from the initial state
of the system. See section IV for more details on this module.

The plan Π is then input into the Execution-time Reasoner
module to (1) monitor plan execution, and (2) repair Π in
case the deviations of the system state from expectation
render the current plan inexecutable. These deviations can be

of two types: (1) low-level deviations in the geometric state
sgeom without affecting the corresponding symbolic state
ssym (e.g., human places part in a wrong posture) which can
be corrected at the motion planning level, or (2) deviations
in the symbolic state itself (e.g., human picks an incorrect
part, and an improved alternative assembly sequence may or
may not exist) which needs to be corrected at both levels of
planning. In both cases, Π is then updated with the new plan
and execution is resumed. These considerations are discussed
in Section V.

III. PLANNING FORMALISM

Formalisms for HGN planning, motion planning, and
integration between the two planning layers are presented
below:

A. Hierarchical Goal Network Planning

Task Planning Domain. We define the task planning
model MTP as a five-tuple (VD, VC ,O,M, γ). VD is the
set of discrete state variables in the domain; they evaluate
to either true/false (e.g. empty(arm1)=true) or to a
discrete object in the domain (e.g. pos(robot1)=loc1).
VC on the other hand represents the set of continuous
state variables in the domain, which can evaluate to a real
number (e.g. cpos(robot1,joint3)=4.78).We refer
to assignments to variables in VD and VC as symbolic and
geometric states; a system state s is a pair (ssym, sgeom).
O represents the set of primitive operator models in the

domain, which are model actions that are executable in a
single step at the task planning level. Each o ∈ O is a four-
tuple (name(o),pre(o),eff(o),cost(o)), where:
• name(o) represents the action name and its parameters
arg-list(o) = (V D

o , V C
o), which represent the dis-

crete and continuous arguments to o respectively;
• pre(o) = (preD

o ,pre
C
o) represents the preconditions

of o, representing conditions over the variables in V D
o

and V C
o respectively;

• eff(o) represents effects over V D
o that o produces as

a result of its application;
• cost(o) is a function that takes as input arg-list(o)

and returns a non-negative cost.
M represents the set of HGN methods, which models

domain-specific knowledge that suggests ways to decom-
pose goals into subgoals. Each m ∈ M is a four-tuple
(name(m),post(m),pre(m),subgoals(m)), where:
• name(m) represents the method name and its parame-

ters arg-list(m) = (V D
m , V C

m), which represent the
discrete and continuous arguments to m respectively;

• post(m) represents the goal condition defined over
V D
m that m is relevant for; m is thus triggered only when
post(m) is part of the goal condition being solved for;

• pre(m) = (preD
m,pre

C
m) represents the conditions

under which m is applicable, represented over the
variables in V D

m and V C
m respectively;

• subgoals(m) is a sequence of subgoals defined over
V D
m that needs to be achieved enroute to achieving
post(m).

Finally, γ represents the state transition function. A ground
instance a of an operator o is applicable in a state s if s
satisfies pre(a); the resulting state s′ = γ(s, a) reassigns
the state variables according to the assignments in eff(a).

Task Planning Problems. A goal network is a way
to represent the objective of satisfying a partially ordered
sequence of goals (hence one can think of it as a particular
kind of temporally extended goal). Formally, it is a pair
gn = (T,≺) such that:
• T is a finite nonempty set of nodes;
• each node t ∈ T contains a goal gt that is a DNF

(disjunctive normal form) formula over discrete state
variable assignments;

• ≺ is a partial order over T .
A HGN planning problem is a triple P = (MTP , s0, gn),
where MTP is a task planning model, s0 is the initial state,
and gn = (T,≺) is a goal network.

Definition 1. The set of solutions for P is defined as follows:
Case 1. If T is empty, the empty plan is a solution for P .
Case 2. Let t be a node in T that has no predeces-

sors. If s0 |= gt, then any solution for P ′ =
(MTP , s0, (T

′,≺′)) is also a solution for P , where
T ′ = T −{t}, and ≺′ is the restriction of ≺ to T ′.

Case 3. If action a is applicable in s0 and π is a solution
for P ′′ = (MTP , γ(s0, a), gn), then a ◦ π is a
solution for P .

B. Motion Planning

Let χ = Rd, d ≤ |VC | be the configuration space of the
system. Let χobs be the obstacle region; thus χfree = χ \
χobs represents the obstacle-free space. A motion planning
problem is a triple P = (χfree, x0, χgoal) where x0 is an
element of χfree and the goal χgoal is a subset of χfree.

A path σ : [0, 1] → Rd is a valid solution to P if
(1) it is continuous, (2) it is collision-free, i.e. σ(τ) ∈
χfree for all τ ∈ [0, 1], and (3) the boundary conditions are
satisfied, i.e. σ(0) = x0 and σ(1) ∈ χgoal.

C. Connecting Task and Motion Planning Levels

As shown in Section III-A, HGN planning, being a task
planning formalism, is primarily concerned with search for a
path through the symbolic state space induced by the discrete
state variables VD, while motion planners search for paths
through the geometric state space induced by the continuous
variables in VC . In order to connect these two levels of
planning, we must first provide a way to switch between
these two different state spaces: i.e. we must provide a way
to (1) generate candidate geometric states consistent with
a symbolic state, and conversely (2) generate the symbolic
state corresponding to a given geometric state.

We assume the provision of the following domain-specific
procedures as part of the domain description:
• Gensymwhich takes as input a geometric state sgeom

and generates the corresponding symbolic state ssym
• Gengeomwhich takes as input a symbolic state ssym and

generates a candidate geometric state sgeom.

There is a lot of flexibility in the definition of Gensym and
Gengeom. For instance, Gensym could be a classifier that is
learnt during the training stage [9] or a rule-based generator.
Similarly, Gengeom could be domain-specific geometric sug-
gesters [10], [11] or a simple sampling-based generator [12].

Thus, the overall planning problem P is a 3-tuple
(〈MTP , χfree,Gensym,Gengeom〉, s0, gn) where s0 and gn
are the initial state and the goal network respectively.

Definition 2. We can now provide the overall definition of
solutions for a planning problem P as follows. Let πsym be
a solution of the underlying HGN planning problem Psym =
(MTP , s0, gn).

Case 1. If πsym is empty, then Π = 〈〉 is a solution for P .
Case 2. Let πsym = a ◦ π′sym. Furthermore, let ssym1

be the symbolic state after a is executed. Let
sgeom0 be the projection of s0 onto the variables in
VC , and sgeom1 be the geometric state generated
by Gengeom for s1. If there exists a valid
solution σ to the motion planning problem
(χfree, s

geom
0 , sgeom1) and Π′ is a solution to P ′ =

(〈MTP ,Gensym,Gengeom〉, 〈ssym1 , sgeom1 〉, gn),
then Π = σ ◦Π′ is a solution to P .

IV. THE GoDeL ALGORITHM

Algorithm 1 is the GOAL DECOMPOSITION WITH LAND-
MARKS1 (GoDeL) planning algorithm, a HGN planning
algorithm [14], modified to integrate motion planning into
the plan generation.

A. Task Planning in GoDeL

Lines 3 – 6 specify the base cases of GoDeL. If these are
not satisfied, the algorithm nondeterministically chooses a
goal g with no predecessors and generates U , all method and
operator instances applicable in s and relevant to g. It then
chooses a u ∈ U with the lowest heuristic value to progress
the search (Lines 7 – 10). If u is an action, the state is
progressed to γ(s, u) (Line 11) and u is further refined into
an executable motion plan (Lines 13–25). Section IV-B talks
about this in more detail. Else, the subgoals of u are added
to G, adding edges to preserve the total order imposed on
subgoals(u) (Line 23). In either case, GoDeL is invoked
recursively on the new planning problem (Lines 21 and 25).

B. Motion Planning in GoDeL

Motion planners are used to refine actions at the task-
planning level into executable motion plans. GoDeL can use
any off-the-shelf motion planner; the only requirement is that
the motion planner should be able to provide an anytime
lower bound during the search. In other words, the motion
planner at any time should be able to provide a lower bound
on the best solution its going to find henceforth. Therefore
heuristic motion planners such as ARA∗ [16], R∗ [17], which
do (weighted) A∗ search are ideally suited for use here.

1Simplified for ease of presentation; this version doesn’t include the
auxiliary planning techniques needed to work with incomplete/incorrect
methods, as these aspects are orthogonal to the focus of this paper. Refer
to [14] for the full version of GoDeL.

Algorithm 1: A nondeterministic version of GoDeL.
Initially, (D, s,G) is the planning problem, and π is 〈〉.

Procedure GoDeL(D, s,G, π)1

begin2

if G is empty then return π3

nondeterministically choose a goal formula g in G4

without any predecessors
if s |= g then5

return GoDeL(D, s,G− {g}, π)6

U ← {(u, 0) : u is an operator/method instance7

applicable to s and relevant to g}
sort U in ascending order of hHGN (s, u,G)8

while U is not empty do9

remove (u, n) with min h value (= hu) from U10

if u is an action then11

for i=n to NumSamples do12

σs,u ← RefineAction(D, s, u)13

if σs,u 6= failure then14

hnew = |σs,u| − cost(u) + hu15

insert (〈u, σs,u〉,−1) into U with
h = hnew
if i < NumSamples then insert16

(u, i) into U , updating its heuristic
value using hnew
break17

18

19

else if (u, σs,u) is action, mot. plan pair then20

res1 ← GoDeL (D,UpdateState(s′, σs,u),21

G, π ◦ 〈u, σs,s′〉)
if res1 6= failure then return res122

else23

res1 ← GoDeL(D, s,subgoals(u) ◦G, π)24

if res1 6= failure then return res125

return failure26

end27

Algorithm 2: Procedure to refine an action at the task-
planning level into an executable motion plan. It takes
as input the action u and the current state s, and outputs
either a valid motion plan σs,u or failure. It also takes as
input two user-specified parameters, τ and NumSamples.

Procedure RefineAction(D, s, u)1

begin2

s′ ← γ(s, u)3

xs′ ← Gengeom(s, s′sym)4

σs,u ← MotionPlanner(χfree, sgeom,5

xs′ , τ × cost(u))
return σs,u6

end7

The motion planning in GoDeL is parametrized by two
extra user-specified constants, τ and NumSamples. The
model of any action u at the task-planning level has a cost
function which provides a rough estimate of how much any
refinement of u would cost. τ is an upper bound on the
number of times by which the motion plan cost is allowed to
overshoot cost(u). NumSamples is the maximum number
of geometric configurations the motion planner is invoked
on for a given symbolic state before backtracking.

When it reaches an action u, GoDeL invokes
RefineAction to generate a motion plan that refines u (Line
13). RefineAction picks a geometric configuration consistent
with u’s effects, and passes it to MotionPlanner along with
the upper bound of τ×cost(u). MotionPlanner thus either
returns a plan within this bound or returns failure. This
feature in particular helps in cases when no motion plan
exists, which RefineAction can now automatically detect
and stop the motion planner.

When GoDeL receives the motion plan σs,u, it inserts it
into U with heuristic value of σs,u (Line 15). It also reinserts
the original action u annotated with the number of samples
remaining with the heuristic value updated with σs,u (Line
16), as this is a more accurate estimate of the cost of u.

The purpose of this reinsertion is the following: suppose
cost(u) was overly optimistic and the real estimate of u,
|σs,u|, is significantly larger, we would like to give other
actions a chance to refine to cheaper motion plans. If σs,u is
indeed the best option, it would be removed from U in the
next iteration, and GoDeL will be recursively called in the
state resulting from it (Line 21). In this way, we are tightly
integrating task and motion planning search spaces by using
results from one to help direct the search in the other.

This process is repeated until either each action has been
refined NumSamples times and failed, in which case the
planner backtracks, or a recursive call on the state resulting
from a particular motion plan generates a valid plan, in which
case GoDeL succeeds and returns the generated plan.

V. EXECUTION-TIME REASONING TECHNIQUES

Once the Plan Generation module has generated a can-
didate plan Π, this is then provided to the Execution-time
Reasoner module for plan execution. This module consists
of three components:
• Execution Monitor: this keeps track of the current

value of the geometric state sgeom of the system via
sensors. In turn, the corresponding symbolic state ssym
is also continuously updated via the Gensym procedure
and monitored for deviations.

• Motion Plan Repair Algorithm: If the Execution
Monitor reports a deviation from sgeom without a
corresponding deviation for ssym, incremental plan-
repair algorithms at the motion planning level such as
LPA* [18], D* [19], etc can be used to repair the motion
plan and restore executability.

• HGN Plan Repair Algorithm: If either a deviation
from ssym was detected or the deviation from sgeom
could not be resolved at the motion planning level,

incremental plan-repair algorithms at the task-planning
level can be used to restore executability.

We are currently working on an incremental HGN plan-
repair algorithm that can repair symbolic plans during exe-
cution in the face of exogenous events and even changing
goals. Our approach involves repurposing HGN heuristics
used for planning to guide the plan repair process by iden-
tifying promising repair points in the plan structure. This
differentiates it from other hierarchical plan-repair algorithms
proposed in the literature [20], [21] which do blind plan
repair, which can lead to severely suboptimal solutions.

VI. RELATED WORK

Most of the related work on integration of task and
motion planning techniques either use Classical Planning
or Hierarchical Planning techniques.

Classical Planning. The seminal work in integrating
Classical Planning and Motion Planning is by Cambon et
al [6]. They use the FF planner as a heuristic estimator to
guide the search of the motion planner. Erdem et al [7]
integrate task and motion planning by extending the C+
action description language to allow incorporation of external
predicates which allow interfacing with external programs;
thus one could run arbitrary domain-specific geometric rea-
soners and motion planners as part of precondition checks
of primitive actions. Similarly, Dornhege et al [8] propose a
similar framework to specify ’semantic attachments’ as part
of PDDL domain descriptions and extend the FF planner to
generate plans for such problems. Burbridge et al [9] suggest
a novel machine learning approach to interface between the
discrete and continuous state spaces, and use this to integrate
motion planners with classical planners. Our approach differs
from these by the use of hierarchical planning techniques
which allow increased expressivity and scalability, and by
the particular ways in which flow of heuristic estimates from
the task planner to the motion planner and vice-versa allow
for more robust search and explicit plan cost optimization.

Hierarchical Planning. Wolfe et al [12] combine HTN
planners with motion planners by discretizing the choice
of geometric states via finite sampling during refinement of
a symbolic action. Another line of work [10], [11] builds
a special-purpose regression-based hierarchical planner that
they combine with motion planners. Our approach differs
from these techniques by the use of HGN planners, which
allow for use of heuristics during hierarchical decomposition,
and as explained in the previous paragraph, by the novel
way in which heuristic estimates from each level of planning
guide the other.

VII. PLANNING FOR ASSEMBLY CELLS

One of our aims is to ground our proposed architecture
(described in Fig. 1) in a manufacturing domain. Figure
2 shows a snapshot of such a system. The shop floor is
divided into four regions: (1) Part storage, (2) Tool storage,
(3) Subassemblies building, and (4) Final assembly.

Parts Storage Area Tools Storage Area

Subassembly
Construction Zone

Subassembly
Construction Zone

Assembly Table

MR0

MR1

SR

human0

human1

obj0

obj1

obj2 tool0

Fig. 2. Sample assembly planning problem:MR0 and MR1 are mobile
robots, human0 and human1 are humans, and SR is a static robot. The
goal is to assemble obj0, obj1 and obj2 together using tool0. One of
the solutions induced by the task planning model is also shown.

The proposed system takes a CAD model of the product
that needs to be assembled as input and performs the
following:

• Assembly Precedence Constraints Generation: auto-
matically generate assembly precedence constraints and
detect useful subassemblies using techniques in [2] and
compile this into an HGN planning problem.

• Plan Generation: Use the integrated HGN and mo-
tion planning algorithm to generate an executable plan
structure Π – actions to be performed by humans can be
provided at the symbolic level, while those performed
by robots need to be refined into motion plans. Factors
that determine whether a particular task needs to be
executed by a human or robot can be modeled in the
action and method preconditions; the planner, based on
the particulars of a given task, can use these conditions
to generate compatible assignments. Higher-level proto-
cols that need to be followed (such as reserving a tool
before use) can be modeled as HGN methods.

• Execution-time Reasoning: Execute Π, while contin-
uously monitoring the geometric state of the system
using sensors, both vision-based and otherwise, that
monitor locations of workers, tools and parts, as well
as other information such as battery levels of robots,
stress in robot arms while carrying heavy loads, etc. The
system will repair Π using HGN and motion plan repair
algorithms, when deviations from both the expected
symbolic and geometric states are observed.

We model the action models of the domain in Planning
Domain Description Language (PDDL), a standard language
to encode task-level planning domain descriptions.

The base actions in this domain are as follows:

1) Worker-Move (workerId start-loc
goal-loc)

2) Worker-Pickup-Object (workerId objId
obj-loc)

3) Worker-Putdown-Object (workerId
objId goal-loc)

4) Worker-Move-Near-Object (workerId
current-loc objId)

5) Worker-Move-Near-Location (workerId
current-loc goal-loc)

6) Mark-Worker-Free (workerId)
7) Mark-Worker-Busy (workerId)
8) Asmbl-Objs (workerId obj1Id obj2Id)

These action models, in addition to modeling causal pre-
conditions and effects, also model procedural and geometric
preconditions over the continuous variables; for instance, the
Worker-Pickup-Object action checks if the object is
graspable by the worker, its weight is within the carrying
capacity of the worker, etc. Thus, the planner can flexibly
assign humans or robots to execute actions based on their
compatibility with the preconditions. If a robot is assigned,
only then is the action is further refined using motion
planners. If a human is assigned, the system then passes
the symbolic action directly for execution; however, since
the system has no control over the exact geometric state that
results from the action execution, the planner chooses one
nondeterministically and relies on the plan-repair system to
repair the plan if needed.

VIII. CONCLUSION AND FUTURE WORK

The primary aim of this work is to build a general-
purpose planning-and-execution system that enable long-
term autonomous behavior by human-robot teams. One of
the components needed to achieve this is a planning system
that tightly integrates task and motion planning. The main
contribution of this paper lies in leveraging the advantages
of HGN planning, which allows combining hierarchical
decomposition with heuristic search, to achieve this tight
integration. The combined planning algorithm allows for
using search information from the task planner to guide the
search for a high-quality motion plan by the motion planner,
as well as using search results from the motion planner
to revisit decisions made by the task planner. Currently,
we are working on implementing the planning algorithm
and empirically evaluating the efficacy of this approach on
assembly planning problems. As future work:
• Plan Repair. We are currently working on developing

an HGN execution semantics and an execution-time
plan-repair algorithm; we are interested in integrating
this with plan-repair techniques at the motion planning
level, thus enabling a combined plan-repair system.

• Anytime Plan Improvement. Since we have heuristic
search capabilities at both planning levels, an interesting
extension would be in quickly generating a plan upfront,
and then improving these plans in an anytime fashion;
this would allow for exploiting the full power of anytime
heuristic motion planners [16].

Acknowledgements. This work was supported in
part by ARO grant W911NF1210471 and ONR grants
N000141210430 and N000141310597. The information in
this paper does not necessarily reflect the position or policy
of the funders.

REFERENCES

[1] C. Morato, K. N. Kaipa, B. Zhao, and S. K. Gupta, “Toward safe
human robot collaboration by using multiple kinects based real-
time human tracking,” ASME Journal of Computing and Information
Science in Engineering, vol. 14, no. 1, p. 011006, 2014.

[2] C. Morato, K. N. Kaipa, and S. K. Gupta, “Improving assembly
precedence constraint generation by utilizing motion planning and part
interaction clusters,” Computer-Aided Design, vol. 45, no. 11, pp. 1349
– 1364, 2013.

[3] K. N. Kaipa, C. Morato, J. Liu, and S. K. Gupta., “Human-robot col-
laboration for bin-picking tasks to support low-volume assemblies,” in
Human-Robot Collaboration for Industrial Manufacturing Workshop,
held at Robotics: Science and Systems Conference (RSS 2014), 2014.

[4] C. Morato, K. N. Kaipa, J. Liu, and S. K. Gupta., “A framework for
hybrid cells that support safe and efficient human-robot collaboration
in assembly operations,” in ASME Computers and Information Engi-
neering Conference, 2014.

[5] K. N. Kaipa, C. Morato, B. Zhao, and S. K. Gupta., “Instruction
generation for assembly operations performed by humans,” in ASME
Computers and Information Engineering Conference, 2012.

[6] S. Cambon, R. Alami, and F. Gravot, “A hybrid approach to intricate
motion, manipulation and task planning,” I. J. Robotic Res., vol. 28,
no. 1, pp. 104–126, 2009.

[7] E. Erdem, K. Haspalamutgil, C. Palaz, V. Patoglu, and T. Uras,
“Combining high-level causal reasoning with low-level geometric
reasoning and motion planning for robotic manipulation,” in Robotics
and Automation (ICRA), 2011 IEEE International Conference on, May
2011, pp. 4575–4581.

[8] C. Dornhege, P. Eyerich, T. Keller, S. Trüg, M. Brenner, and B. Nebel,
“Semantic attachments for domain-independent planning systems,” in
ICAPS, 2009.

[9] C. Burbridge and R. Dearden, “An approach to efficient planning for
robotic manipulation tasks,” in ICAPS, 2013.

[10] L. P. Kaelbling and T. Lozano-Pérez, “Hierarchical task and motion
planning in the now,” in ICRA, 2011, pp. 1470–1477.

[11] D. Hadfield-Menell, L. P. Kaelbling, and T. Lozano-Perez, “Opti-
mization in the now: Dynamic peephole optimization for hierarchical
planning,” in ICRA, 2013.

[12] J. Wolfe, B. Marthi, and S. J. Russell, “Combined task and motion
planning for mobile manipulation,” in ICAPS, 2010, pp. 254–258.

[13] V. Shivashankar, U. Kuter, D. S. Nau, and R. Alford, “A hierarchical
goal-based formalism and algorithm for single-agent planning,” in
AAMAS, 2012, pp. 981–988.

[14] V. Shivashankar, R. Alford, U. Kuter, and D. S. Nau, “The godel plan-
ning system: A more perfect union of domain-independent planning
and hierarchical planning,” in IJCAI, 2013.

[15] D. S. Nau, “Current trends in automated planning,” AI Magazine,
vol. 28, no. 4, pp. 43–58, 2007.

[16] M. Likhachev, D. Ferguson, G. J. Gordon, A. Stentz, and S. Thrun,
“Anytime search in dynamic graphs,” Artif. Intell., 2008.

[17] M. Likhachev and A. Stentz, “R* search,” in AAAI, 2008, pp. 344–350.
[18] M. Likhachev and S. Koenig, “A generalized framework for lifelong

planning A* search,” in ICAPS, 2005, pp. 99–108.
[19] M. Likhachev, D. Ferguson , G. Gordon, A. T. Stentz, and S. Thrun,

“Anytime dynamic A*: An anytime, replanning algorithm,” 2005.
[20] N. F. Ayan, U. Kuter, F. Yaman, and R. Goldman, “Hotride: Hierarchi-

cal ordered task replanning in dynamic environments,” in Proceedings
of the ICAPS Workshop on Planning and Plan Execution for Real-
World Systems – Principles and Practices for Planning in Execution.,
2007.

[21] J. Bidot, B. Schattenberg, and S. Biundo, “Plan repair in hybrid
planning,” in KI 2008: Advances in Artificial Intelligence, 2008.

