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Abstract— We describe a planning system in development
for efficiently and scalably distributing the task of complex
object assembly among multi-robot or human-robot teams.
The planner utilizes an AND/OR graph to concisely represent
feasible distributed assembly sequences for a given number
of available workers (robots or humans). By representing all
possible assembly plans in the AND/OR graph, the planner
is able to defer commitment to a single plan. This attribute
mirrors the natural human approach to collaboration and
enables the system to handle failures efficiently.

I. INTRODUCTION

The IkeaBot [5] system autonomously plans and executes
assembly procedures using a STRIPS-style [2] symbolic
planning language based on primitive actions with pre- and
post-conditions, This system generates complex, linear plans
for a single tightly-coupled robot team. With more complex
assembly problems, it becomes difficult for multiple robots to
exploit latent parallelism in the plan because the symbolic
planner needlessly overcommits to a total ordering of the
plan steps.

There are also a number of functional reasons to delay
commitment to an assembly plan. When planning with a
human partner, his or her actions are unpredictable, and
we would like the robots to adapt to human preferences
when reasonable rather than forcing the human to adapt to
the robot’s arbitrary preference. Additionally, for complex
assemblies, the planner typically operates from a position
of incomplete knowledge. As the assembly proceeds, new
observations may alter the preferred approach. Failures may
even occur, which necessitate a new assembly plan. Although
IkeaBot has the ability to handle failures [10], it lacks the
capability to resolve them by sensibly reordering plan steps.

This paper contributes a distributed planning system that
defers selection among all possible assembly sequences for
assembly problems such as in Fig. 1. Each robot plans its
own next step as part of a multi-worker plan in order to
synchronize operations and maximize the productivity of the
team.

In this paper, we contribute progress toward the following:
1) a distributed system that plans for the individual as a

member of a team
2) practical human-robot collaboration in real time, and
3) efficient failure handling.
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Fig. 1: We describe a decentralized parallelizing assembly
planner for structures such as the IKEA Ekorre rocking
moose. Its assembly can be parallelized into as many as five
parallel tasks.

II. ASSEMBLY PLANNING

Symbolic planning problems pose start and goal configu-
rations coupled with a set of actions to transform the state
of the system. Each action includes a collection of fluents
encoding pre- and post-conditions. Such conditions flag state
dependencies inherent in performing that action. STRIPS [2]
was the first planner and formal language for symbolic plan-
ning problems. PDDL [6] standardized symbolic problem
specification. Several planners based on PDDL have become
popular [3, 7]. We proposed a new object-oriented symbolic
problem description language called ABPL [5], which we
use for multi-robot assembly planning. In that work, the
parallelism of closely coordinated robot action was explicitly
encoded within the symbolic actions.

Graph-based approaches, by contrast, attempt to repre-
sent the structure of the assembly problem, typically with
some details abstracted away. For example, the graph might
represent the connectivity of parts in the blueprint [8], the
possible partial assembly states, or possible subassemblies.
A complete assembly state is a partition of all parts into a
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Fig. 2: A simple AND/OR graph and two plans. Note the graph has “dead ends” at LBR and LSR due to problem constraints.

Fig. 3: An exploded view of the complete disassembly of
the Sundvik chair. The AND/OR graph and two alternative
assembly plans for this chair are shown in Fig. 2

collection of subassemblies, wherein a single subassembly
represents a set of attached parts without regard to the
state of the rest of the assembly. The AND/OR graph [1]
has been used to represent partial orderings on individual
subassemblies. Because AND/OR graphs represent only the
part of the state required to describe a subassembly in a node,
they are exponentially more space efficient than state graphs.
This paper extends the work of de Mello and Sanderson to
parallelized multi-agent assembly.

Several efforts have developed centralized planning sys-
tems for assembly. Wilson and Latombe [11] describe a
geometric approach to assembly planning by virtually dis-
assembling the completed object. The key insight is that it’s
easier to select a valid sequence by doing a disassembly since

dead-ends are impossible and geometric constraints readily
identify parts available for removal.

Suchman [9] reveals sociological findings that humans
engaged in complex activities, such as assembly, do not
typically plan their actions in advance in detail. Instead, they
make approximate plans that position themselves correctly
to rely on intuition and skill to achieve the task. In fact,
humans derive their efficiency from the flexibility afforded
by a lack of constraints imposed by a rigid plan. We sought
to incorporate this human characteristic into our representa-
tion of automated assembly planning in order to make the
collaborative assembly planning algorithm adaptable to the
unpredictable behavior of the robot’s human partners.

III. AND/OR GRAPH REPRESENTATION

An AND/OR graph is a directed hypergraph, in which each
edge links one parent to multiple children as a child group.
We employ this directed acyclic graph (DAG) to describe
the composition of the various subassemblies involved in
an assembly planning problem. It is thus used to reduce an
assembly planning problem into various subproblems, many
of which can be solved independently and in parallel.

Each node in the graph represents a possible subassembly.
This includes the completely assembled object, as well each
base part, which we regard as a trivial subassembly. Consider
the example AND/OR graph in Fig. 2a for assembly of a
chair (Fig. 3). Each node has one or more parents (except
the node representing the completely assembled chair) and
zero or more child groups. A node LBS is a parent of node
LB if there exists another node S in the graph such that the
subassemblies represented by LB and S can be combined to
create the subassembly represented by LBS. In this case, LB
and S are termed and-siblings of each other and a child group
of LBS. Two other subassemblies LS and B also combine to
form the same subassembly LBS in another way, so they
are called or-siblings of LB and S. By definition, base parts
have zero children. This structure defines constraints on the



possible steps that can be taken to assemble an object. Only
valid assembly operations are encoded in the AND/OR graph.

A. AND/OR Graph Generation
IkeaBot [5] includes a geometric planner that uses anno-

tated CAD data to construct a blueprint of the final structure
derived only from the form of the base parts. Encoded within
the blueprint is connectivity information among the parts that
make up the object. Possible subassemblies can be deduced
from this information. The AND/OR graph is generated
by combinatorially enumerating pairs of subassemblies and
noting the larger subassemblies they produce. We exclude
from consideration any join operation that attaches three or
more parts simultaneously.

B. AND/OR Graph Planning Algorithm
Any of several classic heuristic search algorithms can be

used to find an assembly plan from the AND/OR graph. An
assembly plan is constructed from an AND/OR graph, a DAG,
by culling nodes and edges to yield a tree that satisfies
the following conditions: each non-trivial subassembly has
a single child group, which is a pair of and-siblings; the
root node is the fully assembled object; and each leaf is a
constituent part. Figures 2b and 2c depict two such trees. Any
such tree represents a valid assembly plan, giving a partial
ordering of actions to perform the complete assembly. Any
sequence that obeys the partial ordering comprises a valid
assembly. Since several such partial orderings are typically
possible, a heuristic function provides preferences.

The planning problem is specified by an initial state and
a desired goal state, where a state is a partition of the set
of parts into subassemblies. The initial state may be either
the completely disassembled item or some intermediate state,
such as after the worker has finished an assembly operation
and must replan. A traditional heuristic search algorithm
such as A* may be employed to solve such an assembly
problem, although optimality results in poor scalability for
large assemblies. Other search algorithms like AO* and FF
scale better at the cost of losing the optimality guarantee.
The choice of heuristic for any of these algorithms affects
the parallelizability of the resulting plan. Section IV provides
details on this algorithm in the context of a distributed
assembly planner.

C. Planning Scope
AND/OR graph-based assembly plans omit certain details

in order to provide a concise, complete assembly plan.
Specifically, the representation does not provide a sufficient
level of detail to plan how parts are joined together. We
chose to exclude from the graph small fastener parts –
pegs and screws – because they are handled differently
from large parts. Even if fasteners were included, though,
the AND/OR graph does not contain information about the
manipulation skills and tools needed to attach two parts
together. Furthermore, it does not specify the number of
robots or their roles to execute an assembly step.

In order to complement the AND/OR graph’s role as a high-
level planner, a lower-level planner can be used to determine

the details for the execution of each step. This planner would
not need to understand the complete sequence of steps in the
assembly of an object, but only the details pertaining to each
specific operation in the supplied sequence. This low-level
planner would need symbolic planning and motion planning
components.

IV. DISTRIBUTED PLANNING ALGORITHM

Just as humans plan approximately in order to retain flex-
ibility [9], in our algorithm the robots maximize flexibility
by reacting to one another’s actions on the granularity of a
single assembly step. Alg. 1 conveys the main control loop
for a robot planning as part of a team.

The parallelism of the plan originates in the structure
of the AND/OR graph. By culling nodes and edges, the
AND/OR graph planner yields a tree, giving a partial ordering
of assembly steps. Parallelism is maximized by a balanced
assembly tree. The tree structure in Fig. 2b causes each
assembly operation to depend on the completion of the
previous one, and it is therefore a strictly serial assembly
sequence. By contrast, the assembly tree in Fig. 2c permits
two operations to be performed in parallel.

In the following sections, we develop the details of
heuristic search over an AND/OR graph, and then discuss
synchronization issues, execution of the plan, and how the
system is able to handle failure.

A. Heuristic Search

The planner employs a heuristic search over the space of
assemblies. For moderate sized problems, the planner uses
an implementation of the optimal A* search algorithm to
develop an assembly plan. A* plans in the state space, so the
algorithm elaborates a search tree of assembly states. Each
state is augmented with a representation of the operation
performed to arrive at this state, as well as a backpointer to
the previous state in order to reproduce the final assembly
sequence.

The search tree is expanded by adding states that are
reachable from the current state by performing an assembly
step (putting two subassemblies together). The planner uses
the constraints specified by the AND/OR graph representation
to add all valid states reachable from the current state by
assembly to the search tree. States reachable by disassem-
bling a subassembly are not currently considered. However,
for assembly with humans or mixed human-robot teams, the
planner would need to allow the possibility that a human
commits an error that must be backtracked to complete the
entire assembly.

We briefly describe A* planning parameters and how the
assembly planning algorithm may scale to larger assembly
sizes and complexities.

1) Cost: A*’s expansion step requires the computation of
the cost to reach a state x′ from the goal via a state x as
c(x′)← c(x)+c(x,x′). The last term, the step cost, expresses
the difficulty in combining k pairs of subassemblies in x
into k larger subassemblies in state x′. The step cost defaults
to unity, but particular combinations of parts may involve



a supplemental step cost due to the time or complexity
involved in fastening them together. The cost of a state x,
comprising a set of subassemblies, is computed as

c(x) = max
∀a⊂x

c(a). (1)

Thus, the cost structure prefers more parallel assemblies
over more serial ones. Given a single pair of subassemblies
being combined in a single A* expansion step, any additional
pairings can be combined in parallel for free so long as their
step costs are no more expensive.

2) Heuristic: The heuristic employed by A* currently
seeks to maximize parallelism by estimating the minimum
number of steps in the critical path.

The planning algorithm uses a path heuristic that measures
the minimum number of assembly steps needed to reach the
goal state from any state. The heuristic is defined as

h(x) = blogm σ(x)− logm σ(g)c, (2)

where σ(x) gives the number of subassemblies in state x.
This value logm σ(x) represents a lower bound on the number
of assembly steps needed to achieve the goal state from
state x, assuming maximal parallelization. This heuristic is
admissible since by definition, it takes at least logm k steps
to assemble an object with k parts, assembled m parts at a
time. We consider only pairwise assembly, so let m = 2. A*
search algorithm with this heuristic guarantees the optimal
solution to the assembly problem.

3) Scalability: The runtime of our search algorithm is
the runtime of A* on a graph of nodes composed of the
various possible states. The number of possible states is
exponential in relation to the number of base parts (in the
worst case), and the A* algorithm is, in the worst case,
exponential in the shortest path from initial state, s, to
desired goal state, g. For smaller assembly problems (such
as the 12-part Ekorre assembly test), the time to actually
assemble two subassemblies greatly dwarfs the time to plan
the assembly process. For large assembly problems, it might
be more desirable to use a non-optimal, but faster algorithm
for planning, such as the Fast-Forward heuristic [4].

Optimal search algorithms like A* become prohibitively
expensive to execute for larger problems. Several alternative
search algorithms sacrifice optimality for tractability. The
AO* search algorithm [1] is specifically designed for search
directly on AND/OR graphs. Alternative heuristics, such as
FF [7], may also be used to further speed up planning.

B. Synchronization

During the course of a distributed assembly process, each
member of the team makes a series of individual choices
about what assembly sequence to follow and which members
perform which actions. Finding consensus requires synchro-
nization among the workers.

The most fundamental synchronization job is to maintain
consensus on the state of the assembly task. Before beginning
to plan, each node first synchronizes its belief of the state
of the assembly, which may employ sensors, inter-robot
communication, or simulation data. This state update is

Algorithm 1 Algorithm for collaborative task execution.
procedure distributed assembly(G – goal condition, P – parts set)

while Not in goal state do
Sync state of physical environment
Sync state of actions by other nodes
Determine effective actionable and plannable sets
Plan.
Register and validate planned action with other nodes.
if lock acquired then

Execute.
Report completion

reflected in the AND/OR graph structure. The robots replan
before executing each action. Rather than adapting in real
time to changes in state, a robot plans and executes based
on a snapshot of the system state taken before planning each
action. Additional synchronization is therefore necessary to
cope with deferred state updates.

After generating a plan, the system identifies assembly
steps that can be executed in parallel. The planner returns
each group of parallel steps as a ready list. The synchro-
nization step occurs after planning and before execution.
Each robot selects an item from the list and attempts to
lock the corresponding subassemblies in the AND/OR graphs
of all robots. The system employs a three-phase commit
process to ensure that the robot has an exclusive lock before
beginning to execute the step. A robot may fail to acquire
the lock on some graph node if the graph structure changed
or if another robot has locked the same node. In such
case, it updates the state, replans and tries again to lock.
Since the synchronization process is somewhat costly, action
selections are drawn randomly from the ready list to reduce
the incidence of race conditions.

Some state updates can be predicted as a result of other
robots’ assembly actions. Such anticipated state updates can
be incorporated into the planning process. Recognizing that
we expect success in an assembly step to be more common
than failure, the planner treats any parent node in the AND/OR
graph that is locked at the onset of planning as having been
successfully assembled. After receiving a plan, the robot
updates its state once more. The robot then chooses randomly
among only those actions in the ready list that are valid at
this point.

C. Execution

The problem of autonomously executing single steps of an
assembly plan is itself an immense topic, requiring further
developments in manipulation skills. One point germane to
his paper concerns parallelism within a single step. Many
actions require close coordination among several workers,
but this planner delegates each step to only a single worker.
Workers in need of help may recruit it from among the
available workers, thus achieving a higher effective paral-
lelism than is revealed by the assembly plan. We observe
this phenomenon with human teams below in Section V-B.

After executing an action successfully, the robot publishes
a global state update to its locked nodes, indicating that it



successfully combined several subassemblies into one.

D. Handling Failure

Failures in assembly can occur for many reasons, such
as problems in manipulation, parts being unavailable, and
failures in perception. Many of these failures are of a
transient nature, so it is generally fruitful to defer a failure
rather than giving up. Several resolutions are available to
the team, including trying the action again, trying alternative
action, and seeking help from a human.

When execution completes, the robot then unlocks the
graph nodes, whether the action was successful or not. In
case of failure, the and-siblings are then available for all
robots either to retry the same action or to perform two
separate actions in which the nodes are or-siblings. In future
work, past failures will be used to bias the plan toward
alternative actions in the case of repeated failures.

V. EVALUATION

We performed several pilot studies to determine the effec-
tiveness of performing distributed assembly planning with
an AND/OR graph. First, we performed a simulation study to
gather statistically significant results. Second, we ran a live
user study to gain insights into how human users perform
under direction from the assembly planner. We ran each
experiment on two simple target furniture kits from IKEA.
The Sundvik children’s chair has 4 large wooden parts, 6
wooden pegs, and 6 metal screws. The Ekorre rocking moose
has 12 large wooden parts, 4 wooden pegs, and 17 metal
screws.

A. Simulation Trials

We tested the distributed planner in simulation over large
numbers of trials to achieve statistical significance. We
modeled execution times as samples as IID samples from
a truncated Gaussian distribution. Failures occurred with a
20% chance. We simulated team assemblies with team sizes
from one to six. For each team size, we simulated 500
trials. For each trial, we then noted the total elapsed time
to complete the assembly as well as the utilization fraction
of the workers. Simple probability distributions indicated the
elapsed time to complete each assembly task.

The curves in Figs. 6 and 7 indicate team performance on
the IKEA Ekorre rocking moose on a range of team sizes. We
observe that with increased worker count, the elapsed time
asymptotes at approximately 40% of the time required for a
single worker, reflecting the critical path of the assembly.
Within the space of useful time sizes, worker utilization
drops nearly linearly.

B. Human Trials

We performed a preliminary human trial to validate the
simulation results. The simulation study indicated diminish-
ing returns for the Ekorre assembly beyond three workers.
We therefore studied team sizes of one and three untrained
individuals. Each member of the team was presented with
a GUI display like Fig. 4 on a separate laptop computer.

Fig. 4: GUI instructing the user to connect two subassemblies
in order to complete the assembly task.

Fig. 5: Scene from our preliminary user trial.

Each computer ran the distributed assembly planner and
synchronized plans before displaying the next assembly step
on the screen for the user. The user clicked “Finished step”
upon completion or “Failed step” if they were unable to
complete it. The only failed step occurred because one piece
of attachment hardware was missing from our Ekorre set.
In this instance the system planned an alternative assembly
sequence that did not require the step.

The results of the preliminary user trials are plotted on
Figs. 6 and 7 for comparison with the predictions from the
simulation study. Although the human study is insufficient to
claim statistically significant results, the exercise was valu-
able to observe how the coordination plays out in practice.

C. Discussion

We asked each user whether they found the computer’s
instructions useful. Several users indicated that they appreci-
ated the help and preferred it over figuring out the assembly
sequence from the parts alone without instructions. One user
stated that for the simple 12-part Ekorre kit, the instructions
were unnecessary.

In fact, the system is built to cooperate with human users
who have their own ideas of how to assemble furniture. Con-
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are plotted against the preliminary user trial. Here strict
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a task by the computer because none was available. In
actuality, the users cooperated without prompting on the
large, complex assembly tasks near the end, increasing the
effective utilization.

sequently, the robot companions are able to plan compatible
operations with mechanically-inclined users who prefer to
ignore the computer’s instructions and instead follow their
own plan.

VI. DISCUSSION AND FUTURE WORK

The potential for parallel operation and the consequent
boost in performance depends largely on the design of the
item to be assembled. However, realizing that parallelism can
be a challenge in a decentralized operating context involving
a mix of human and robots. In this paper, we presented
a system capable of recognizing and exploiting potential
parallelism based on the structure of a complex object to
be assembled.

An assembly planning system, when coupled with per-
ception that can ascertain the current state of the assembly
task, has a variety of applications. It can direct a team of
robots to perform the assembly. It can direct a robot to

cooperatively assemble items together with a human. It can
act as an interactive instruction manual by guiding a human
through the assembly process.

Several avenues of future work are apparent. We plan to
continue development of the AND/OR graph planner with
more scalable algorithms than A*. We plan to continue
development of user interfaces to allow humans to coordi-
nate actions with the robot. We are especially interested in
giving directions to users who may have limited situational
knowledge about the overall problem in order to ask for help
following a failed assembly step. Finally, we must develop
many new manipulation skills and tools to autonomously
execute the assembly steps generated by the planner for a
variety of objects.
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