
Adaptive Path Planning for Effective Information Collection

Ayan Dutta, Prithviraj Dasgupta

Abstract— We consider the problem of information collection
from an environment by a multi-robot system, where the
locations to sample information from are known with some
amount of uncertainty by the robots. Different robots are
equipped with different types of sensors and the quality of
information collected can be improved if information is sampled
from the environment with different sensors, wherever possible.
The problem facing the robots is to determine their paths
through information sampling locations, so that the overlap
between paths of robots with identical sensors is reduced,
while the robots with complementary sensors are sllowed to
have overlapping paths. To address this problem, we describe
a distributed path planning algorithm that comprises of two
steps - path merging and path decoupling so that the robots
are able to collect more information from the environment.
We have shown analytically that our proposed algorithm has
polynomial time complexity and our experimental results, in
simulation, show that by dynamically adapting paths, the robots
are able to collect higher information than by following initially
generated individual paths.

INTRODUCTION

Dynamic path planning is a well-known and crucial as-
pect of autonomous navigation of multiple mobile robots.
Recently, researchers have considered a practical aspect of
the multi-robot path planning problem where each robot has
to dynamically adapt its path based upon the information
collected while sampling certain strategic points along their
path [9]. In these techniques, each robot has the same set of
sensors and allocating multiple robots to collect information
along the same path is considered sub-optimal. Also, the
path update mechanism of a robot incorporates only the
information collected by a robot itself while navigating.
In this paper, we consider such as information collection
problem with heterogeneous robots (sensor-wise). We posit
that the performance of multi-robot information collection
with multiple sensors can be improved, if a robot’s path is
not only updated using its self-sampled information, but, the
information collected by other robots as well as the sensor
capabilities of those robots is incorporated dynamically into
robots’ path plan. However, this also introduces additional
overhead to avoid redundant information collection by robots
and to direct robots with appropriate sensors to improve the
quality of collected information, and, finally to determine
opportune locations and time intervals to periodically share
the information between robots. The problem is further
complicated in realistic scenarios, where robots’ have limited
battery and might intermittently get out of communication
range with each other.

Computer Science Department, University of Nebraska at Omaha
{adutta, pdasgupta}@unomaha.edu

To address these challenges, we propose a novel frame-
work were robots initially generate paths individually as-
suming a probabilistic information distribution in the en-
vironment. These paths are then shared between robots
and two techniques - merging paths between robots with
different sensors or decoupling paths between robots with
similar sensors, are employed, to increase the information
gain from the collective paths. Our proposed algorithm has
polynomial time complexity. We have tested the quality of
our proposed path adaptation algorithms in simulation. Our
results show that with dynamic adaptation of paths based
on robots’ sensor capabilities, multiple robots can collect
information more effectively than without adaption of paths.
The run time of our proposed path adaptation algorithms are
also computationally feasible - maximum of 20 seconds for
adapting a path, consisting 50 cells.

RELATED WORK

Multi-robot path planning has been a well researched
aspect of robotics and several techniques for waypoint
navigation and coverage with multiple robots have been
proposed. Mutli-robot informative path planning (MIPP)
involves an aspect of the general multi-robot path planning
problem where each robot has to determine waypoints be-
tween given start and end locations in the environment so
that the information gain of the resulting path is increased.
In one the earliest works on MIPP, Guestrin et al. [4] have
modeled it as a sensor placement problem and proposed a
greedy algorithm that ensures that the mutual information
gain across the sensors is maximized. Singh et al. [9] have
proposed a recursive, branch and bound algorithm to solve
the MIPP problem that finds the best, budget-limited path
through a graph of possible waypoints. Their algorithm is
verified for a maritime information collection application
and shows improvements over greedy path selection. This
work is inspired from a recursive greedy best walk search
algorithm, as described in [2]. The MIPP problem with
periodic connectivity between robots has been studied in [5].
Here robots do not need to maintain continuous connectivity,
but form a connected network at certain intervals. In contrast
to these works, our work in this paper considers robots with
different sensors and attempts to merge or separate paths to
improve the information collection based upon the similarity
of sensors of robots allocated to those paths.

Path merging algorithms for a single robot’s path have
been proposed in [6]. The robot first generates multiple
paths between given start and goal locations using any
sampling based path generation method. Then, a hybrid path
that improves an objective function based on the quality

of the waypoints is generated by selecting subsets of way-
points from the different generated paths. In [7], authors
have proposed a multi-robot path planning algorithm, where
robots adjust their initially generated paths depending on
their respective priorities, while in [1], a constrained path
planning problem by multiple robots is proposed. Most of
these algorithms are intended for waypoint navigation and
are not directly applicable to information collection. In our
proposed method, robots first generate their paths using a
greedy method, similar to [4] and then the generated paths
are dynamically adjusted to achieve higher information gain.

MODEL

Let R = {r1, r2, .., rN} denote a set of N robots and Si
denote the set of sensors on robot ri. Each sensor s ∈ Si has
an associated reliability value ρs that represents the quality of
information that is sampled by that sensor from the environ-
ment. For the purpose of navigation, each robot uses a map
of the environment; the map is decomposed into a grid-like
cells using a cellular decomposition technique [3]. A robot
enters a cell to collect information from the region within the
cell. Let C denote the set of cells in the environment. Robot
ri’s path, Πi is defined as an ordered sequence of cells it
visits, i.e., Πi = {c1, c2, ...}.

For information collection, each cell cj ∈ C is further
sub-divided into a set of information points. Upon entering
a cell, a robot dynamically selects a subset of the infor-
mation points in the cell to visit and take readings from
using its on-board sensors. Following Shannon’s information
entropy formula [8], the information gain from point pk,j ∈
Pj sampled by robot ri in cell cj is given by Ii,j =
−
∑
pk,j∈Pj

P (pk,j) logb P (pk,j) ×
∑
s∈Si

ρs, where P (pk)
denotes the probability that point pk provides high quality
information and ρs is the reliability value of sensor s ∈ Si.
We assume that the information collected from information
points in a cell follow the law of diminishing returns.
That is, the initially visited points in a cell provide new
information, but as the robot collects more information from
that cell, future points might add only repetitive or redundant
information. To model diminishing returns from information
collection, we limit the maximum allowable information
gain from a cell to a threshold, MAX INFO. Once the
information gain from a cell exceeds MAX INFO, the
robot does not gain any new information but will only expend
time and battery to visit more information points in that cell.
The total information gain from robot ri’s path Πi is given
by I(Πi) =

∑
cj∈Πi

Ii,j .
Robots incur costs in terms of battery power spent for

navigating in the environment and collecting information
using their sensors. The cost of visiting cell cj ∈ Πi by
robot ri can be written as, costi,j = costi,jsense + costi,jtravel.
The sensing cost is calculated from the sensor’s power
requirement while the travel cost is calculated as the distance
between the centroids of cells (cj−1, cj) ∈ Πi. The utility of
path Πi can then be written as U(Πi) = I(Πi)− cost(Πi),
where cost(Πi) =

∑
cj∈Πi

costi,j .

Fig. 1. (left)The environment is divided into cells using grid-based
decomposition. Each cell cj contains a set of information points that are
distributed uniformly across the cell (black dots). A robot selects a subset of
these information points to visit and sample data from (highlighted points).
(middle) Robot’s path through the selected information points in a cell;
(right)One robot’s path through the environment.

For combining the utilities of overlapping paths followed
by two different robots, we consider their sensor types. If the
sensors are identical, the combined utility is sub-additive as
the robots each expend the cost to navigate the path but get
the same information on their sensors. On the other hand,
if the sensors are complementary, the utilities are super-
additive as more information is gained by sampling the same
points using different sensors. The utility function is given
in Equation 1.

U(Πij =



U(Πi) + U(Πj) −
∑

ck∈Πi∩Πj

Ii,k

if Si ∩ Sj 6= {∅}
U(Πi) + U(Πj) +(

∑
ck∈Πi∩Πj

Ii,k ×
∑

s∈Si∪Sj

ρs)

if Si ∩ Sj = {∅}
(1)

The objective of the informative path planning problem is
to find a set of paths {Π1,Π2, ..,Π|R|}, s.t. max

∑
∀i∈R

U(Πi).

PATH ADAPTATION ALGORITHMS FOR INFORMATION
COLLECTION

Initially all the robots will generate paths for moving
through the environment to collect information. Any path
generation algorithm for information collection can be used.
In this paper, we have used path generation algorithm for
information collection, similar to as described in [4]. Ac-
cording to this path generation algorithm, we add 2 new
cells to the current path in one cycle, addition of which to
the current path yields highest amount of utility. Let C denote
the set of 2 cells which will be added to robot ri’s current
path Πi. Let clast be the last cell added to Πi. We search
for 2 such cells, {c1, c2}, which being added to Πi, yields
highest utility. c1 is one-step distant cell from clast, i.e.,
c1 ∈ neighbor(clast), c2 is 2-step away from clast. Once
we are done adding best 2 such cells to C, we add C to
Πi. We repeat this procedure until current path’s estimated
battery expenditure (EstB(Πi)) does not cross the battery
budget.

Merging of robots’ paths

We have discussed earlier that if robots have different
sensors, then they would gain higher amount of information
from visiting same cells. The objective of path merging
algorithm is to merge paths of robots, having different

(a) (b)

Fig. 2. (a)(left)Two robots generate two paths; (right)Left robot has changed
its path to merge with the right one’s path. (b)(left)Two robots generate two
paths; (right)Left robot has changed its path to decouple from the other path
(Dashed lines indicate the older paths)

sensors to increase the amount of information gain. For
path merging, robots will exchange the information about
generated paths with the robots which are in communication
range. This merging of paths will be done sequentially by
ordered robots. First every robot will broadcast information
about their generated path along with the estimated amount
of utility they will achieve by following its path. Upon
receiving this path information from in-range robots, each
robot will sort these paths, along with its own, according to
the estimated utility of these paths. Ksort denotes the set of
all paths in a sorted order. The sequence of path-merging
will be according to the order of these sorted paths and it is
denoted as Rsort, where highest utility path generating robot
will be the first member in Rsort and so on. Path merging
is done by means of replacing cells in one robot’s path with
cells in another robot’s path. One example of path merging is
shown in Figure 2(a)(left), where two robots having different
set of sensors merge their initially generated paths.

Path merging procedure is shown in Algorithm 1. Merging
of paths will be done only between robots which do not have
same set of sensors. Let’s assume ri ∈ Rsort is the robot
which is merging its path, Πi with paths of other robots,
which do not possess the same set of sensors as ri. For
every cell ck ∈ Πi, ri will check whether ck is replaceable
or not with any cell cl ∈ Πj and Si ∩ Sj ! = {∅},∀j 6= i.
Whether ck and cl are replaceable or not, can be decided by
replaceable() function. The function replaceable() returns
TRUE, when possible replacement of two candidate cells
ck and cl earns higher utility than without the replacement
(based on the utility function described earlier); otherwise
replaceable() returns FALSE (line 12 − 15). First robot
member, r1 ∈ Rsort will merge its path first and when it is
done merging, r1 will send new path information Π1, along
with the information of about which cells are merged with
other paths to all in-range robots and then r2 ∈ Rsort will do
merging. This procedure will go on until all robots are done
merging their paths with all other robots. Any robot will not
change the portion of its path, which is already been merged
with, by another robot’s path earlier.

Note that path merging does not necessarily lead to the
fact that, ci+1 ∈ neighbor(ci), where, ci, ci+1 ∈ Πmerged.
Although one robot has to cover the cells between ci and
ci+1, but it will not do sensing (or, information collection)
through the intermediate cells. We assume that low-level
path-planning algorithm such as D∗ [10] algorithm to go
from ci to ci+1 as ci+1 6∈ neighbor(ci) is already available

Algorithm 1: Path Merging of Robots
1 pathMerge()

Input: Ksort: Sorted set of all paths.
Output: K∗: A set of new merged paths.

2 K∗ ← {∅}.
3 Rsort: Sorted set of all robots, acc. to Ksort.
4 Each ri ∈ Rsort will do the following:
5 BESTU ← U(Πi)
6 for all (Πi,Πj)pair,∃Πj ∈ Ksort, i 6= j, Si ∩ Sj ! = {∅} do
7 for each ck ∈ Πi do
8 if (∃cl ∈ Πj , cl 6∈ Πi and replaceable(ck, cl) ==

TRUE) then
9 Πi ← Πi ∪ {cl} \ {ck}. //replace ck with cl.

10 K∗ ← Πi.
11 Send Ksort and K∗ to ri+1 ∈ Rsort.

replaceable(ck, cl)
Input: ck ∈ Πi and cl ∈ Πj .
Output: TRUE or FALSE.

12 Π′i ← Πi ∪ {cl} \ {ck}.
13 if

(U(Π′i) +U(Πj) + Ii,l×
∑
s∈Si∪Sj

ρs > BESTU +U(Πj))

then
14 return TRUE;
15 else
16 return FALSE;

to the robots.

Path Decoupling

If two or more robots, having same set of sensors visit
same cell to collect information, then they are not gaining
any new information. Because same sensors will collect same
type of information from same information points. So, they
will just incur higher cost without gaining new information.
Thus the total utility will be lowered. To avoid this situation,
robots having same set of sensors should not visit same
cells. To enable this, they should follow pathDecoupling()
method, shown in Algorithm 2. We will introduce 2 new
terms in this subsection. First one is similar path. Path Πi is
labeled as similar to path Πj , if corresponding robots, ri and
rj have same set of sensors S and |Πi ∩ Πj | > p% × |Πi|,
where p is a constant, which is the similarity threshold for
determining whether the path is similar or not. If very few
number of cells are same in two paths, then the robots do
not need to change that, as this is a computationally costly
operation. Second new term introduced in Algorithm 2 is OK
cell. An OK cell is a cell, adding of which to a path Πi, will
not lead it to be similar to any other path, Πk,∀k 6= i. Paths
are first sorted from highest cost to lowest cost order by every
robot. The robot with highest cost path will first get chance
to decouple its path from other paths, and then robots with
lower cost paths will execute pathDecoupling() algorithm
(lines 2 − 4). Next, for every cell cj , which is also present
in other paths, the robot will find the best utility providing
OK cell, cl(6= cj) from the neighbor cells of cj’s predecessor
in the path and will replace cj with cl. An example of path
decoupling operation is shown in Figure 2.(b), where robot

in the left changes its path to decouple from similar path
of the other robot. Once the decoupling is done, robots will
share their new path information with other in-range robots.

Algorithm 2: Decoupling of similar robot paths.
1 pathDecoupling()

Input: K: Set of all paths.
Output: Πi: Modified path of robot ri.

2 Ki ⊆ K: Sorted set of similar paths with robot ri’s path Πi.
3 Rsort: Sorted set of robots according to Ki.
4 Each robot rk ∈ Rsort will do the following:
5 for each path Πk ∈ Ki do
6 for each cell cj ∈ (k ∩Πi) do
7 cl ← Highest utility-earning OK cell in

neighbor(cj−1) \ cj . (Details in text)
8 Πi ← Πi \ cj ∪ cl.
9 Update Ki.

10 return Πi.

Path planning algorithm: This is the main algorithm
(shown in Algorithm 3), from which all other procedures are
being called. Initially after generating the information points,
robots generate their paths using pathGeneration() algorithm.
Robots do not have unlimited communication range; they can
communicate only within a fixed radius. It is computationally
and battery power-wise very costly to keep all the robots
in communication range at all time. But we assume that
initially, before start of the information collection process,
all the robots are in each others communication range, i.e.,
distance between any two robots is less than the commu-
nication range radius. After all the robots have generated
their paths, they exchange their path information with all
other robots and execute pathDecoupling() and pathMerge()
algorithms (details in previous sections). Now that the robots
have finally decided which paths they are taking, they start
following their respective paths.

We assume that the initial knowledge about the informa-
tion points is uncertain. The environment can change over
time. While actually exploring, robots can find some new
points to collect information from or the robots may perceive
that some a priori selected points are currently unavailable.
Again, robots can spend more/less battery than estimated
amount. Thus the estimated utility and battery expenditure of
path Πi may change when the robots actually visit cells. This
uncertainty is accommodated in the model by introducing
noise to the number of selected points visited by the robots
in each cell. If initially in cell cj robot ri was supposed
to visit K number of cells, which was the estimator of
the utility earned, then while actually visiting cj , this K
is adulterated to K ± δ, where δ ∈ [0,K]. This change
effects robot’s information gain, incurred cost (thus utility)
and actual amount of battery spent.

As actual and initial estimated utility and battery expen-
diture of a path might be different, so each robot needs to
refine its earlier generated path periodically to accommodate
the changes. At every time interval Tα, where T is a constant
and α = {0, 1, 2, ..}, if the difference between actual and

Algorithm 3: Multi-Robot Informative Path Planning
under Uncertainty

1 Each robot ri will follow these steps:
2 Generate path Πi, using pathGeneration() algorithm.
3 Exchange path information with in-range robots.
4 Decouple Πi from similar paths, using pathDecoupling()

algorithm.
5 Merge Πi with appropriate robots’ paths, using pathMerge()

algorithm.
6 Send new path information to the next robot in Rsort.
7 Start following Πi.
8 Calculate actual utility earned and actual amount of battery

spent.
9 if (|U(Πi)− Uact(Πi)|) >
THRES U

∨
(|EstB(Πi)−ActB(Πi)|) > THRES B at

time interval Tα then
10 Generate a new path Π′i and follow the path.
11 else
12 Follow path Πi.

13 if ri comes in comm. range of rk for the first time in time
interval Tα and Tα+1 then

14 if Si ∩ Sk! = {∅} then
15 Follow steps in line 4 and 6− END.
16 else
17 Follow steps in line 4, 5 and 7− END.

18 else
19 Follow path Πi.

20 Termination Condition: Generated path has been completely
visited OR spent budgeted amount of battery.

initial estimated utilities and battery expenditure cross re-
spective threshold values THRES U and THRES B, the
robots will generate new paths (lines 8−12). As we know that
robots have limited communication range - they necessarily
do not need to stay within other robot’s communication range
and at every time interval Tα each robot generates a new
path, therefore it would result in better utility achievement,
if the robots can merge and decouple paths, when possible
and appropriate after new path generations. That is why,
whenever any robot ri comes in communication range with
rk(k 6= i), for the first time between two successive path
generation intervals, i.e., between time intervals Tα and
Tα+1, they first exchange their paths and then either de-
couple or merge depending on the specific criteria discussed
in previous sections (lines 13−19). This algorithm runs until
the robots have completed visiting their generated paths or
they have spent their allocated battery budget (line 20).

ANALYSIS

Complexity of path merging algorithm: Let n and l
denote the total number of robots and maximum number of
cells in any robot’s path. Line 3 in Algorithm 1 would take
O(nlogn) computations for sorting. For the loop in line 6,
there can be (n−1) of such pairs in worst case and for each
of the (n− 1) pairs, inner loop in line 7 will run maximum
of l2 times. replaceable() function takes only constant time.
Thus the final time complexity for path merging algorithm
is O(nl2) (as logn is much lesser than l2), whereas time

complexity of comparable path hybridization algorithm [6]
is O(n2l2), which is clearly much worse than our proposed
path merging algorithm.
Complexity of path decoupling algorithm: Similar to
pathMerging() algorithm, sorting will take O(nlogn) com-
putations, outer loop (line 5 in Algorithm 2) will run for
maximum of (n − 1) times and the inner loop will run
for l times, which is the maximum number of cells in any
path. But computation inside the inner loop will not be of
constant time. Complexity of finding best cell and checking
for OK cell will be O(b) and O(n) respectively. Thus time
complexity of path decoupling algorithm will be O(n2bl).

Any communication, with all other robots in worst case,
will be of O(n2) complexity. Note that, in real world
scenario, as the robots explore different regions, not all the
robots will come into within every robot’s communication
range very often (except for the initial state). Thus actual
communication complexity will be much less.

EXPERIMENTAL EVALUATION

The algorithms presented in this paper are tested in
simulated environment. An environment with 100 cells, in
a grid structure has been used. Initial cell positions of robots
are drawn from U [(0, 3), (0, 3)]. We assumed that initially all
the robots are with everyone’s communication range. Robots
first generate paths and then depending on sensor set on
each robot, pathDecoupling() or pathMerging() algorithm
is executed. Each robot is only allowed to visit upto a
certain number of cells in the environment (which is the
representative of battery budget). Maximum number of cells
that each robot can collect information from is varied through
5 to 50. Maximum number of information points in each cell
in drawn from N (15, 3). Information collection is abstracted
in the experiments and travel cost inside each cell is also not
taken into account. But sensing cost is accounted for the cost
calculations. We assume that each robot is equipped with
one sensor. Reliability values of the sensors are drawn from
U [0, 1]. Sensor costs, in terms of electrical energy needed, is
also normalized to [0, 1]. Each test is run for 5 times, but the
deviation is nominal; thus not included in the figures. Note
that, the run times reported in this paper are running time
of the algorithm, not the time to visit cells and information
collection by robots.

We have tested the pathDecoupling(), with 2 robots having
same sensors. Run time of this decoupling algorithm is
very nominal. For decoupling path with consisting 50 cells,
algorithm took only 5 seconds. Our main objective was
to show that by decoupling their paths, robots with same
sensors earn more utility than if they followed the same
path and the result is shown in Figure 3(b). As can be
seen in this figure that with increasing length of the paths,
with decoupling, robots earn more utility than following
the same path and collecting redundant information. For
example, with 50 cell-consisting path, in total, robots earn an
utility of 103.53, after executing pathDecoupling() algorithm,
as opposed to an utility of 47.43 without decoupling. Run
time for this algorithm is also very nominal; for 2 robots,

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

10 20 30 40 50

Path decoupling
algorithm

Maximum number of cells

R
u

n
 t

im
e

 (
s
e

c
o

n
d

s
)

(a)

0

20

40

60

80

100

120

10 20 30 40 50

Before decoupling

After decoupling

Maximum number of cells

T
o

ta
l
u

til
it
y
 e

a
rn

e
d

(a)

Fig. 3. (a) Run time of decoupling algorithm. (b) Utility earned by 2 robots
- before and after path decoupling.

0

5

10

15

20

25

10 20 30 40 50

Path merging
algorithm

Maximum number of cells

R
un

 ti
m

e
(s

ec
on

ds
)

0

50

100

150

200

250

300

350

10 20 30 40 50

Utility before merging

Utility after merging

Maximum number of cells

To
ta

l u
til

ity
 e

ar
ne

d

(a) (b)

Fig. 4. (a) Run time of merging algorithm. (b) Utility earned by 2 robots
- before and after path merging.

this algorithm only takes 4.76 seconds for decoupling 50
cell-consisting paths. A scenario of 5 cell-consisting path
has been implemented with 2 robots, where they had same
sensor and their initial paths were also exactly same. Actual
resultant decoupled paths are shown in Figure 5(a)[right].

Next we have tested the pathMerging() algorithm, with 2
robots having different sensors. Run time for this algorithm
is slightly higher than the previous algorithms; for 2 robots,
this algorithm takes 0.41 and 20.13 seconds for decoupling
10 and 50 cell-consisting paths respectively (Figure 4(a)).
With path merging, total utility earned increases consistently
from the utility earned from paths before merging, as the
path length increases (Figure 4(b)). For example, with path
length 10, total utility before merging was 22.09 and it
increased to 65.8 after merging and with path length 50,
utility increased to 320.14 from 116.43. In this case also,
we have implemented a scenario with 2 robots, where they
have different sensors and the robots have to generate 5 cell-
consisting paths. Actual resultant merged paths are shown
in Figure 5(b)[right]. Notice that, actual path length of the
resultant merged path is more than 5, but only 5 cells marked
’S’ are visited by the robots for information collection,
while other cells are passed by the robot to reach different

s

s
s

s

s

(a) (b)

Fig. 5. (a) Decoupling of 2 robots’ paths. (b) Merging of 2 robots’ paths.

’S’ marked cells. As our results indicate, by dynamically
adapting paths, instead of following initial generated paths,
robots can earn higher information and thus utility.

CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed path adaptation algorithms
for information collection from an environment by a set of
mobile robots. These path adaptation algorithms take sensor
information into account and adjust the initially generated
paths to collect higher amount of information. Our pro-
posed algorithms are fast and they assure higher information
collection than information collected by initially generated
paths. In this paper, we have used already existing algorithm
for informative path generation. We are working towards
developing more sophisticated path generation algorithm and
we will also test our proposed path adaptation algorithms
with more number of robots and will compare the results
with existing comparable algorithms.

REFERENCES

[1] Pramod Abichandani, Hande Y Benson, and Moshe Kam. Decentral-
ized multi-vehicle path coordination under communication constraints.
In Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ Interna-
tional Conference on, pages 2306–2313. IEEE, 2011.

[2] Chandra Chekuri and Martin Pal. A recursive greedy algorithm for
walks in directed graphs. In Foundations of Computer Science, 2005.
FOCS 2005. 46th Annual IEEE Symposium on, pages 245–253. IEEE,
2005.

[3] Howie Choset, Kevin M. Lynch, Seth Hutchinson, George A. Kantor,
Wolfram Burgard, Lydia E. Kavraki, and Sebastian Thrun. Principles
of Robot Motion: Theory, Algorithms, and Implementations. MIT
Press, 2005.

[4] Carlos Guestrin, Andreas Krause, and Ajit Paul Singh. Near-optimal
sensor placements in gaussian processes. In Proceedings of the 22nd
international conference on Machine learning, pages 265–272. ACM,
2005.

[5] Geoffrey Hollinger and Sanjiv Singh. Multi-robot coordination with
periodic connectivity. In Robotics and Automation (ICRA), 2010 IEEE
International Conference on, pages 4457–4462. IEEE, 2010.

[6] Barak Raveh, Angela Enosh, and Dan Halperin. A little more, a lot
better: Improving path quality by a path-merging algorithm. Robotics,
IEEE Transactions on, 27(2):365–371, 2011.

[7] Ralf Regele and Paul Levi. Cooperative multi-robot path planning by
heuristic priority adjustment. In Intelligent Robots and Systems, 2006
IEEE/RSJ International Conference on, pages 5954–5959. IEEE, 2006.

[8] Claude E Shannon. Prediction and entropy of printed english. Bell
system technical journal, 30(1):50–64, 1951.

[9] Amarjeet Singh, Andreas Krause, Carlos Guestrin, and William J.
Kaiser. Efficient informative sensing using multiple robots. J. Artif.
Intell. Res. (JAIR), 34:707–755, 2009.

[10] Anthony Stentz. Optimal and efficient path planning for unknown and
dynamic environments. Technical report, DTIC Document, 1993.

