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Abstract

We consider the problem of how to plan efficiently in
low-level, continuous state spaces with temporally ab-
stract actions (or skills), by constructing abstract repre-
sentations of the problem suitable for task-level plan-
ning. The central question this effort poses is which ab-
stract representations are required to express and evalu-
ate plans composed of sequences of skills. We show that
classifiers can be used as a symbolic representation sys-
tem, and that the ability to represent the preconditions
and effects of an agent’s skills is both necessary and suf-
ficient for task-level planning. The resulting representa-
tions allow a reinforcement learning agent to acquire a
symbolic representation appropriate for planning from
experience.

Introduction
A core challenge of AI is designing intelligent agents that
can perform high-level learning and planning, while ulti-
mately affecting control using low-level sensors and actua-
tors. Hierarchical reinforcement learning approaches (Barto
and Mahadevan 2003) attempt to address this problem by
providing a framework for learning and planning using high-
level skills. One motivation behind such approaches is that
an agent that has learned a set of high-level skills should
be able to plan using them to quickly solve new problems,
without further learning. However, planning directly in such
high-dimensional, continuous state spaces remains difficult,
even when using high-level skills.

By contrast, task-level planning techniques (Ghallab,
Nau, and Traverso 2004) perform planning using pre-
specified symbolic state descriptors and operators that de-
scribe the effects of actions on those descriptors. Although
these methods are usually used for planning in discrete state
spaces, they have sometimes been combined with low-level
motion planners or closed-loop controllers to construct robot
systems that combined high-level task planning with low-
level skills (Nilsson 1984; Malcolm and Smithers 1990;
Cambon, Alami, and Gravot 2009; Choi and Amir 2009;
Dornhege et al. 2009; Wolfe, Marthi, and Russell 2010;
Kaelbling and Lozano-Pérez 2011). Here, a symbolic state at

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the task level refers to (and abstracts over) an infinite collec-
tion of low-level states. However, in all of these cases, sig-
nificant effort was required to design symbolic descriptions
of the task, and carefully specify the interface between the
low-level state space and the high-level abstract task space.

Our aim is to understand how to construct task-level plans
given a hierarchical reinforcement learning problem posed
in a low-level, continuous state space. For simplicity, our
goal is to meet the minimal set of requirements for a confor-
mant task-planning system—finding a sequence of actions
guaranteed to reach a goal state, irrespective of the low-level
stochasticity of the task, and without reference to cost.

Since we aim to avoid planning in the low-level state
space, the central question this effort poses is how to create
the high-level abstract representations required to evaluate
plans composed of sequences of skills. We show that pred-
icate symbols can be considered classifiers, and that sym-
bols describing low-level representations of the precondi-
tions and effects of an agent’s skills are both sufficient and
necessary for task-level planning; we discuss two classes of
skills for which the appropriate symbols can be concisely
described. Since the appropriate predicates represent well-
defined, testable conditions in the low-level state space, they
are directly amenable to learning, allowing an agent to con-
struct its own symbolic representation directly from experi-
ence. We build a representation of the continuous playroom
domain (Konidaris and Barto 2009a) and use it to perform
planning, and then briefly demonstrate how such a represen-
tation can be learned from experience.

Background and Setting
Semi-Markov Decision Processes
We assume that the low-level sensor and actuator space of
the agent can be described as a fully observable, continuous-
state semi-Markov decision process (SMDP), described by
a tuple M = (S,O,R, P, γ), where S ⊆ Rn is the n-
dimensional state space; O(s) returns a finite set of tem-
porally extended options (Sutton, Precup, and Singh 1999)
available in state s ∈ S; R(s′, τ |s, o) is the reward received
when executing action o ∈ O(s) at state s ∈ S, and arriv-
ing in state s′ ∈ S after τ time steps; P (s′, τ |s, o) is a PDF
describing the probability of arriving in state s′ ∈ S, τ time
steps after executing action o ∈ O(s) in state s ∈ S; and



γ ∈ (0, 1] is a discount factor.
An option o consists of three components: an option pol-

icy, πo, which is executed when the option is invoked; an
initiation set, Io = {s|o ∈ O(s)}, which describes the states
in which the option may be executed; and a termination con-
dition, βo(s) → [0, 1], which describes the probability that
an option will terminate upon reaching state s. The combi-
nation of reward model, R(s′, τ |s, o), and transition model,
P (s′, τ |s, o), for an option o is known as an option model.

An agent that possesses option models for all of its op-
tions is capable of planning, using, for example, a sample-
based SMDP planner (Sutton, Precup, and Singh 1999;
Kocsis and Szepesvári 2006). However, although options
can speed up planning by shortening the effective search
depth (Sorg and Singh 2010; Powley, Whitehouse, and
Cowling 2012), SMDP-style planning in large, continuous
state spaces is still extremely difficult. Value function meth-
ods are faced with the curse of dimensionality, and sample-
based methods cannot guarantee that a plan is feasible in
the presence of low-level stochasticity, especially when ab-
stracting over start states.

Task-Level Planning
While SMDPs enable temporal abstraction, task-level ap-
proaches operate using symbolic descriptions of state; con-
sequently, they are often able to find plans that are much
longer-range than could be effectively discovered by plan-
ning directly in state space. The best known task-level
planning language is probably STRIPS (Fikes and Nilsson
1971), where a planning domain is described using a set of
predicates and operator descriptions. A state in STRIPS is a
conjunction of positive literal predicates. Each operator de-
scription describes the preconditions (a conjunction of pos-
itive predicates) that must hold in a state to take an action,
and that action’s effects (a list of predicates to be added to
or deleted from the state). Operators may also have param-
eters, which can be used as arguments for their precondi-
tion and effect predicates. When applied to a robot domain,
each predicate refers to an infinite set of low-level robot
states; abstracting in this way (and restricting the form of the
state and operator descriptors) enables efficient high-level
abstract planning. However, in all such work so far, the set
of predicates has been supplied by a human designer, who
must also carefully specify the interface between the low-
level state space and the high-level abstract task space.

Symbols and Plans
Given an SMDP, our goal is to build an abstract representa-
tion of the task for use in symbolic planning. In this section
we define a predicate symbol as a test that is true in some
states. We then define a plan as a sequence of option exe-
cutions from a set of start states, and the plan space as the
set of all possible plans. This allows us to reason about the
symbols required to evaluate the feasibility of any plan in
the plan space. We begin with a working definition of the
notion of a symbol:

Definition 1. A propositional symbol σZ is the name asso-
ciated with a test τZ , and the corresponding set of states

Z = {s ∈ S | τZ(s) = 1}.
Each symbol σZ is defined as both a test (or classifier) τZ

defined over the state space, and an associated set Z ⊆ S for
which the test returns true. The set of states is an extensional
representation of the symbol: it lists the states that the sym-
bol refers to. The classifier is an intensional representation:
a function that determines membership in the set of states.

The power of task-based planning is due to the ability
to manipulate and reason with intensional representations.
Thus, the class of classifiers we choose to serve as symbols
must support the ability to efficiently compute the union and
intersection of two classifiers, the complement of a classifier,
and to determine whether a classifier refers to the empty set
(which gives us the ability to determine whether one classi-
fier is a subset of another). This gives us a symbol algebra
(technically a concrete boolean algebra) defined over clas-
sifiers, which allows us to compute classifiers representing
the results of boolean operations (or, and, not, and impli-
cation) applied to our symbols. Examples of classifier types
that support these operations include decision trees and clas-
sifiers with linear decision boundaries. For abstract subgoal
options, we will additionally require the ability to perform a
projection (we define both abstract subgoal options and the
projection operator in a later section).

We next define the plan space of a domain.
Definition 2. A plan p = {o1, ..., opn} from a state set
Z ⊆ S is a sequence of actions oi ∈ O, 1 ≤ i ≤ pn,
that is to be executed from some state in Z. A plan is feasi-
ble when the probability of the agent being able to execute
it is 1, i.e., @S̄ = {s1, ..., sj} such that s1 ∈ Z, oi ∈ O(si)
and P (si+1|si, oi) > 0,∀i < j, and oj /∈ O(sj) for any
j < pn.
Definition 3. The plan space for an SMDP is the set of all
tuples (Z, p), where Z ⊆ S is a set of states (equivalently, a
start symbol) in the SMDP, and p is a plan.

For convenience, we treat the agent’s goal set g (or each
goal g, if the agent has multiple alternatives)—which is itself
a propositional symbol—as an option that does nothing but
can only be executed when the agent has reached g. Given
goal g, option og has initiation set Ig = g, termination con-
dition βg(s) = 1,∀s, and a null policy.
Definition 4. A plan tuple is satisficing for goal g if it is
feasible, and its final action is goal option og .

The role of a symbolic representation is therefore to be
able to determine whether any given plan tuple (Z, p) is sat-
isficing for goal g, which we can achieve by testing whether
it is feasible (since then determining whether it is satisficing
follows trivially). In the following section, we define a set of
propositional symbols and show that the ability to represent
them is sufficient to do so in any SMDP.

Symbols for Propositional Planning
In order to test the feasibility of a plan, we begin with a set
of possible start states, and repeatedly compute the set of
states that can be reached by each option, checking in turn
that that set is a subset of the initiation set of its successor
option. We will therefore construct abstract representations



that correspond to the initiation set of each option, as well
as allow us to represent the image of an option from a set
of states (the set of states reachable by executing an option
from any state in the starting set). We begin by defining a
class of symbols that represent the initiation set of an option:

Definition 5. The precondition of option o is the symbol re-
ferring to its initiation set: Pre(o) = σIo .

We now define a symbolic operator that computes the con-
sequences of taking an action in a set of states:

Definition 6. Given an option o and a set of states X ⊆
S, we define the image of o from X (denoted Im(X, o)) as:
Im(X, o) = {s′|∃s ∈ X,P (s′|s, o) > 0}.

The image operator Im(X, o) computes the set of states
that might result from executing option o from some state in
X . The ability to express the image operator symbolically
(in addition to represent each option precondition) is suffi-
cient to evaluate the feasibility of any plan:

Theorem 1. Given an SMDP, the ability to represent the
preconditions of each option and to symbolically compute
the image operator is sufficient for determining whether any
plan tuple (Z, p) is feasible.

Proof. Consider an arbitrary plan tuple (Z, p), with plan
length n. To determine whether it is feasible, we can set
z0 = Z and repeatedly compute zj+1 = Im(zj , pj), for
j ∈ {1, ..., n}. The plan tuple is feasible if and only if
zi ⊆ Pre(pi+1),∀i ∈ {0, ..., n− 1}.

Since the feasibility test in the above proof is bicondi-
tional, any other feasibility test must express exactly those
condition for each pair of successive options in a plan. In
some SMDPs, we may be able to execute a different test that
happens to evaluate to the same value everywhere (e.g., if
every option conveniently flips a set of bits indicating which
options can be run next), but we can employ an adversarial
argument to construct an SMDP in which any other test is
incorrect. Representing the image operator and precondition
sets are therefore also necessary for abstract planning.

We call the symbols required to name an option’s initia-
tion set, and express its image operator that option’s char-
acterizing symbols. These symbols are analogous to an op-
erator pre-condition and effect in STRIPS. The most impor-
tant difference is that the characterizing symbols have inten-
sional definitions in the low-level state space—they are each
represented as atomic symbols, rather than as a conjunction
of predefined abstract symbols. This distinction is important
because the characterizing symbols are precisely defined in
terms of the domain and the available options only—they do
not depend on anything else; in particular, they do not de-
pend on any other symbols. Nevertheless, they allow us to
compute the results of symbolic operations by operating on
the intensional definitions directly.

The ability to perform symbolic planning thus hinges on
the ability to symbolically represent the image operator. Al-
though it might seem that we can simply use it as defined—
via a low-level model of the option—this is an extensional
definition that outputs a distribution for a single start state; it
does not allow us to compute the set of possible next states

for an uncountably infinite number of start states in finite
time. Therefore, we must attempt to define the intensional
symbols necessary to compute it symbolically. However, do-
ing this for an arbitrary option can be arbitrarily hard. Con-
sider an option that maps each state in its initiation set to a
single (but arbitrary and unique) state in S. For this option,
Im({s}, o) = {s′}, for some arbitrary pair of s, s′ ∈ S. In
this case we can do no better than than expressing Im(Z, o)
as a union of an infinite number of singleton symbols. For-
tunately, however, we can concisely represent the image op-
erator for at least two classes of options in common use.

Subgoal Options

One common type of option—especially prevalent in re-
search on skill discovery methods—is the subgoal option
(Precup 2000). Such an option reaches a set of states (re-
ferred to as its subgoal) before terminating, and the state
it terminates in can be considered independent of the state
from which it is executed. This results in a particularly sim-
ple way to express the image operator.

Definition 7. The effect set of subgoal option o is the sym-
bol representing the set of all states that an agent can pos-
sibly find itself in after executing o: Eff(o) = {s′|∃s ∈
S, τ, P (s′, τ |s, o) > 0}.

For a subgoal option, Im(Z, o) = Eff(o),∀Z ⊆ S.
A common generalization of a subgoal option is the par-

titioned subgoal option. Here, the option’s initiation set can
be partitioned into two or more subsets, such that the option
behaves as a subgoal option from each subset. For example,
consider an option that we might describe as walk through
the door you are facing; if there are a small number of such
doors, then the agent can be considered to execute a separate
subgoal option when standing in front of each. In such cases,
we must explicitly represent each partition of the initiation
set separately; the image operator can then be computed us-
ing the union of all applicable effect sets.

Unfortunately, using subgoal options severely restricts the
potential goals an agent may plan for: all feasible goals must
be a superset of one of the effect sets. However, they lead to
a particularly simple planning mechanism. Since a subset
test between the precondition of one option and the effects
set of another is the only type of expression that need ever
be evaluated, we can test all such subsets in time O(n2) for
O(n) characterizing sets, and build a directed plan graph G
with a vertex for each characterizing set, and an edge present
between vertices i and j if and only if Eff(oi) ⊆ Pre(oj).
A plan tuple (p, Z), where p = {o1, ..., opn} is feasible if
and only if Z ⊆ Io1 , there exists a path in G from o1 to
opn , and the goal is a superset of the effects set of opn . This
condition suggests that options should be constructed so that
their termination conditions lie inside the initiation sets for
potential successor options, and is the underlying principle
behind pre-image backchaining (Lozano-Perez, Mason, and
Taylor 1984; Burridge, Rizzi, and Koditschek 1999; Tedrake
2009) and skill chaining (Konidaris and Barto 2009b).



Abstract Subgoal Options
A more general type of option is the abstract subgoal op-
tion, which results in some of the features of the state vector
taking on a particular set of values, and others remaining un-
changed. (As above, we may generalize abstract subgoal op-
tions to partitioned abstract subgoal options.) The subgoal
is said to be abstract because it is satisfied for any value of
the unchanged variables. For example, an option to grasp an
object might terminate when that object has been grasped;
the room the robot is in, the position of its other hand, and
its location in the building are all irrelevant and unaffected.

An abstract subgoal option is analogous to a STRIPS
operator, which specifies the symbolic values that change
and assumes the rest remain unchanged. However, STRIPS
makes the assumption that a state is specified by a conjunc-
tion of predicates, that those predicates are known in ad-
vance, that the same predicates both describe the state and
operator preconditions and effects, and that the only effects
permissible are deleting or adding a conjunct. These con-
ditions are difficult to enforce in our case because we may
have states that are more complicated (e.g., include some but
not all of, or more than, a particular state set), or are not con-
junctions, and it is difficult to guarantee that we can express
option preconditions and effects using the same predicates.

Without loss of generality, we can write a state vector s ∈
S given o as s = [a, b], where a is the part of the state vector
that changes when executing o (o’s mask), and b is the part
that does not. This allows us to define the following operator:
Definition 8. Given an option o and a set of states Z ⊆
S, we define the projection of Z with respect to o (denoted
Project(Z, o)) as: Project(Z, o) = {[a, b]|∃a′, [a′, b] ∈ Z}.

Projection expands the set of states named by Z by pro-
jecting away the restrictions on the value of the changeable
portion of the state descriptor. The projection operator can-
not be obtained using set operations, and must instead be
obtained by directly altering the classifier that represents the
test associated with the symbol, because its definition in-
volves operations on the low-level state representation.

Since the Eff(o) set specifies all possible effects of the
option execution, we can compute the image operator as
Im(Z, o) = Project(Z, o) ∩ Eff(o). This is process depicted
in Figure 1, for an abstract subgoal option that achieves a
subgoal in one dimension and leaves the other unchanged.

Parametrized Symbols
So far we have defined only propositional symbols. How-
ever, in order to obtain compact symbolic descriptions,
and in order to generalize, it may be advantageous to use
lifted symbols, where the test represented by the symbol is
parametrized by some aspect of the problem.

There are two sources of parameters. The first allows us
to obtain compact descriptions by combining the classifiers
used to represent the characterizing sets of a partitioned (po-
tentially abstract) subgoal option into a smaller number of
characterizing symbols by conditioning the effects set on
some feature of the state space. For example, as before we
might have an option for passing through the door in front of
the agent, modeled as a partitioned subgoal option by having
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Abstract
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Project(Z,o)

Im
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Figure 1: Im(Z, o) for abstract subgoal option o can be ex-
pressed as the intersection of the projection operator and o’s
effects set. Here, o has a subgoal in the x dimension, and
leaves the y dimension unchanged. Note that, in general, the
projection operator may output multiple disjoint sets.

a separate precondition and effect for each individual door.
We can generalize this option by parametrizing it with the
location of each door.

The second source of parametrizing variables is when the
options themselves are parametrized. For example, a robot
might have a controller for grasping, parametrized by a de-
ictic variable GraspTarget. In such cases, the characterizing
set must be parametrized by the option parameters.

In both cases the parametrizing variables could be in-
dexes, which select among several precondition and effect
sets. However, if there are regularities in the characterizing
sets, we may be able to represent them compactly, rather
than as an explicit list. In this way, an agent that builds
its symbols through learning can generalize experience ob-
tained using one instantiation of the variables to all others.

Symbolic Planning in the Continuous
Playroom Domain

In the continuous playroom domain (Konidaris and Barto
2009a), an agent with three effectors (an eye, a hand, and a
marker) is placed in a room with five objects (a light switch,
a bell, a ball, and red and green buttons) and a monkey; the
room also has a light (initially off) and music (also initially
off). The agent is given options that allow it to move a spec-
ified effector over a specified object (always executable, re-
sulting in the effector coming to rest uniformly at random
within a fixed radius of the object), plus an “interact” option
for each object (for a total of 20 options). The effectors and
objects are arranged randomly at the start of every episode;
one arrangement is depicted in Figure 2.

Interacting with the buttons or the bell requires the light
to be on, and the agent’s hand and eye to be placed over
the relevant object. The ball and the light switch are brightly
colored and can be seen in the dark, so they do not require
the light to be on. Interacting with the green button turns
the music on; the red button turns it off. Interacting with the
light switch turns the lights on or off. Finally, if the agent’s
marker is on the bell and it interacts with the ball, the ball is
thrown at the bell and makes a noise. If this happens when
the lights are off and the music is on, the monkey cries out,
and the episode ends. The agent’s state consists of 33 contin-
uous state variables describing the x and y distance between



Figure 2: The continuous playroom domain.

each of the agent’s effectors and each object, the light level
(which is at 0 when the light is off, and is 1 at the center of
the room when the light is on, dropping off with the square
of the distance from that location), the music volume (se-
lected at random from the range [0.3, 1.0] when the green
button is pressed), and whether the monkey has cried out.

Symbolic Planning
We first demonstrate planning in the continuous playroom
using a symbolic representation that models the options as
partitioned abstract subgoal options. This representation was
designed by hand, guided by the theory presented above. We
implemented a very simple planner in Java using breadth-
first search. Timing results are given in Table 1.

Goal Depth Nodes Time (s)
Lights On 3 199 1.35
Lights & Music On 6 362 2.12
Monkey Cries 13 667 3.15

Table 1: Timing results for a few example plans, obtained
using a MacBook Pro with a 2.5Ghz Intel Core i5 processor
and 8GB of RAM.

Each plan starts from the set of all states where the mon-
key is not crying out, and the lights and music are off, and is
guaranteed to be able to reach the specified goal with proba-
bility 1 from any state in the start set, for any random config-
uration of the domain. We know of no existing sample-based
SMDP planner that can provide similar guarantees.

Acquiring Symbols from Experience
To demonstrate symbol acquisition from experience, we
gathered 5, 000 positive and negative examples1 of each op-
tion’s initiation set and effects set by repeatedly creating a
new instance of the playroom domain and sequentially exe-
cuting options at random. For the effects set, we used option
termination states as positive examples, and states encoun-
tered during option execution but before termination as neg-
ative examples. We used the WEKA toolkit (Hall et al. 2009)
C4.5 decision tree (Quinlan 1993) for symbol learning. A

1This number was chosen at random, and does not reflect the
difficulty of learning the relevant sets.

representative learned initiation set, for interacting with the
green button, is given in Figure 3.
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Figure 3: The decision tree representing the learned initia-
tion set symbol for interacting with the green button. It ap-
proximately expresses the set of states we might label the
hand and eye are over the green button, and the light is on.

An example effect set for moving an effector over an ob-
ject is shown in Figure 4. The effects sets for the interaction
options were slightly less straightforward, because in most
cases executing the option did not change the state. For ex-
ample, interacting with the green button only changed the
state when the music was not already on. However, learning
this partition is trivial. Given that the music at time t was
off, the resulting learned decision tree simply describes the
set where the music is turned on at time t + 1. A similar
pair of effects sets is learned for interacting with the light
switch, depending on whether or not the light was on before
executing the option.

redbutton-marker.x ≤ −0.050127

falseredbutton-marker.x ≤ 0.049962

redbutton-marker.y ≤ 0.049962

redbutton-marker.y ≤ −0.050042

falsetrue

false true

false

false true

false

false true

false true

Figure 4: The decision tree representing the learned effects
set of moving the marker to the red button. It approximately
expresses the set of states we might label the marker is over
the red button.

Related Work
Several researchers have learned symbolic models of the
preconditions and effects of pre-existing controllers for later
use in planning (Drescher 1991; Schmill, Oates, and Cohen



2000; Pasula, Zettlemoyer, and Kaelbling 2007; Amir and
Chang 2008; Kruger et al. 2011; Lang, Toussaint, and Ker-
sting 2012; Mourão et al. 2012); similar approaches have
been applied under the heading of relational reinforcement
learning (Džeroski, De Raedt, and Driessens 2001). How-
ever, in all of these cases, the high-level symbolic predicates
(or attributes) used to learn the model were pre-specified;
our work shows how to specify them.

We know of very few systems where a high-level, abstract
state space is formed using low-level descriptions of skills.
Huber (2000) uses an approach based on a discrete event
dynamic system, where the state of the system is described
by the (discrete) state of a set of controllers. For example,
if a robot has three controllers that can be in one of four
states (cannot execute, can execute, executing, completed),
then we can form a discrete state space made up of three
attributes, each of which can take on four possible values.
Hart (2009) used this formulation to learn hierarchical ma-
nipulation schema.

Modayil and Kuipers (2008) show that a robot can learn
to distinguish objects in its environment via unsupervised
learning, and then use a learned model of the motion of the
object given an action to perform task-level planning. How-
ever, the learned models are still in the original state space.
Later work by Mugan and Kuipers (2012) use qualitative
distinctions to adaptively discretize a continuous state space
in order to acquire a discrete model suitable for planning;
here, discretization is based on the ability to predict the out-
come of executing an action.

Other approaches to MDP abstraction have focused on
discretizing large continuous MDPs into abstract discrete
MDPs (Munos and Moore 1999) or minimizing the size of a
discrete MDP model (Dean and Givan 1997).

Discussion and Conclusions
Although we have not addressed the question of how skills
should be designed to enable effective planning, our work
does suggest some guidelines. First, the initiation set of
an option should be as large as possible, to increase the
likelihood of a feasible plan; conversely, an option’s im-
age should should be compact, for the same reason. This
argument provides support for the broadly accepted idea
that skills should be “funnel-shaped” (Lozano-Perez, Ma-
son, and Taylor 1984; Burridge, Rizzi, and Koditschek 1999;
Tedrake 2009), in that they reliably move the agent from
a large number of start states to a small number of end
states. Similarly, option policies should largely subsume the
stochasticity of the underlying task, in order to reduce the
size of each option’s image.

The most interesting implication of the ideas presented
here is that motor skills play a central role in determining
the representational requirements of an intelligent agent. In
order to plan symbolically, an agent’s representation must
therefore directly model properties of its skills; a suitable
symbolic description of a domain depends on the skills avail-
able to the agent. For example, Figure 5 shows two cases
where the same robot must navigate the same room, but re-
quires different symbolic representations because it uses dif-
ferent navigation subgoal options. In Figure 5(a), the robot

uses options that drive it to the centroid of each wall. As a
consequence, the symbols required to represent the effect of
executing its options might be described as AtLeftWall,
AtRightWall, AtEntrance, etc. In Figure 5(b), the robot
uses options that perform wall-following to reach a corner
or a door. As a consequence, the symbols required to repre-
sent the effect of executing its options could be described as
LowerLeftCorner, LowerRightCorner, etc.

(a) (b)

Figure 5: A robot navigating a room using a) subgoal options
for moving to distinct walls, or b) wall-following subgoal
options. The effect set for each option is shown in gray.

This approach contrasts with the standard way of merg-
ing task-level planning and low-level control (first employed
in Shakey, the earliest such robot system (Nilsson 1984)),
where human designers specify a symbolic description of
the world and then write the perceptual and motor control
programs necessary to ground and execute plans formed
using that description. Such approaches can be considered
symbol-first. By contrast, our approach can be considered
skill-first, where we use an existing set of skills as a basis
for building a representation appropriate for planning.

Although our formalism is motivated by the problem of
hierarchical robot control, much remains to be done before
it could be employed on a robot—at the minimum, it should
be extended to include cost and afford probabilistic plan-
ning. Actively learning preconditions and effects may also
prove necessary; Nguyen and Kemp (2011) describe promis-
ing early work in this direction. Another critical question is
that of transfer. Our framework has so far been defined on
top of a single base SMDP. However, an agent should be
able to use skills gained in one problem setting to more ef-
fectively solve another. While there has been some work on
defining portable skills (Konidaris and Barto 2007), portable
symbols will have to be either parametrized by details of
the environment, or use an intermediate function to translate
agent-centric characterizing sets to problem-specific ones.

Our attempt to merge a low-level SMDP with a high-level
classical planning formulation imposes some quite restric-
tive conditions on the agent’s actions. A simpler approach
is to use low-level models of those actions to plan in the
original state space; this has the advantage of retaining all
of the original SMDP guarantees, and imposing no skill re-
strictions. However, it does not afford the powerful state ab-
straction mechanisms that we believe will ultimately prove
necessary for hierarchical planning in sophisticated robots.
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