
Robots, Skills, and Symbols

[Extended Abstract]

George Konidaris
MIT CSAIL

32 Vassar Street
Cambridge MA 02139
gdk@csail.mit.edu

ABSTRACT
This extended abstract summarizes recent work on skill ac-
quisition, which shows that autonomous robot skill acquisi-
tion is feasible, and that a robot can thereby improve its own
problem-solving capabilities; and on the symbolic represen-
tation of plans composed of sequences of skills. It establishes
a formal link between skills and symbols, and is aimed at al-
lowing the bottom-up (or skill-first) development of robot
control hierarchies.

Categories and Subject Descriptors
I.2.9 [Computing Methodologies]: Artificial Intelligence
Robotics

General Terms
Robotics, Artificial Intelligence, Reinforcement Learning, Plan-
ning, Representation, Hierarchy, Skills

1. INTRODUCTION
Intelligent behavior in robots requires symbolic reasoning.

For example, a human asking a robot to make a cup of tea
might expect the robot to remember that they take their
tea with milk and sugar. An intelligent robot would know to
look for these items in the kitchen. A particularly intelligent
robot, upon discovering an absence of sugar in the house,
might reason that it should go and get some at the local
convenience store, and that to do so requires money, which
it should pick up on its way out of the house.

The core challenge of designing intelligent robots is that
this kind of high-level symbolic reasoning is necessary for
intelligent behavior, but action and perception must neces-
sarily ultimately take place at a much lower level. We might
describe these two levels as swampy and crispy, and they
are depicted in Figure 1.

At the swampy level, we are concerned with performing
robust and reliable control, state estimation and perception
in a high-dimensional continuous space, in the presence of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
MLIS’13, August 04 2013, Beijing, China
Copyright 2013 ACM 978-1-4503-2019-1/13/08 ...$15.00.

Crispy: NextTo(Orange, Blue)
OnTable(Blue)
GluedToTable(Red)
...

Swampy: [Laser Range Finder Data]
[Stereo Vision Data]
[Actuator Joint Angles]
...

Figure 1: A robot considers a blocks-world problem.
At the swampy (low) level it must process high-
dimensional visual and laser data, and actuate its
joints such that it can pick up and move blocks with-
out colliding with itself or the table. At the crispy
(high) level, it can make abstract plans about the
placement of blocks on top of each other, without
considering the details of movement or perception.

noise and partial observability. Methods that deal with low-
level detail and pervasive uncertainty at this level are crit-
ical for robust execution in unstructured environments. At
the crispy level, we would prefer to deal with very abstract
(preferably discrete and near-deterministic) symbolic mod-
els of the world. These models allow us to perform long-
horizon planning (such as deciding to go to the convenience
store for sugar) without having to consider the details of how
such plans are ultimately executed (e.g., building an explicit
plan listing the low-level motor commands necessary to do
so).

A critical question is therefore: what goes between these
two levels? How do we design and implement whatever sym-
bolic representations are used in the crispy level, so that they
are properly grounded in the swampy level?

The majority of robot systems that have implemented hi-
erarchical control with both levels have followed the exam-
ple of the Shakey project [12], probably the first robot to
comprehensively combine symbolic reasoning and low-level
action, in using a strategy that we might term symbol-first.
Here, the robot’s designers create a crispy symbolic descrip-
tion of the world, and then construct the swampy motor and
perceptual programs required to execute the resulting plans
and ground the resulting symbols, respectively.

One difficulty with a symbol-first approach is that it begs

the question of where the symbols come from. If we were to
learn (rather than design) such a hierarchy, it is hard to see
how a robot could invent ungrounded symbols and opera-
tors, and then acquire the perceptual and motor programs
to ground them through experience. Another difficulty is
that we have no guidance as to how to design the symbolic
description of the world such that it is suitable for our robot
system—in many cases, this leads to the robot designers it-
erating over various symbolic descriptions until they reach
one that is satisfactory.

The fundamental cause of these difficulties is that the
swampy level is “real” (in that it is grounded in interac-
tions between the robot and its environment) and the crispy
level is “imaginary”—in that it is not a property of the
world, but instead is something that only exists to help the
robot plan; such plans only ground out when executed at
the swampy level. Consequently, I propose an alternative
method for creating a robot control hierarchy that starts
with the swampy level and first creates discrete operators
(or skills) through interaction with the environment, and
then the necessary symbolic representations for reasoning
about plans composed of those skills. We can consider such
an approach skill-first.

2. SKILL ACQUISITION
Symbolic representations used for planning largely follow

the STRIPS model [3], consisting of a set of operators de-
scribing actions that the agent may take, and a set of predi-
cate symbols used to create descriptions of the preconditions
for executing each action and modeling its effects once exe-
cuted.

In the skill-first approach to hierarchical robot control,
the first step in creating a symbolic abstraction is creating
discrete motor control skills that can be retained, refined,
and then deployed by the robot when convenient. The nec-
essary technical framework for approaching this problem is
provided by recent work on hierarchical reinforcement learn-
ing [1], where an agent solving a problem posed as a Markov
decision process (or MDP) can isolate subproblems to cre-
ate, learn and use appropriate macro-actions. These macro-
actions can be useful both in helping to solve the original
problem, and as a means of transfer for solving subsequent
problems more efficiently [5, 10].

My thesis work [4] focused on scaling up so-called skill dis-
covery methods—methods for discovering new macro-actions
from experience—to high-dimensional, continuous domains.
It introduced skill chaining [7]. a method for discovering
new skills from interaction with an environment, whereby
the skills are constructed in a tree, such that executing a se-
quence of them leads the agent from any state in the problem
to a solution state. A complimentary method, abstraction
selection [6], selects a skill-specific abstraction for each newly
created skill, from a library of available abstractions. When
combined into a fast skill discovery algorithm called CST
[9, 11], these two methods enable autonomous robot skill
acquisition [10].

Figure 2 shows the uBot-5 humanoid robot [2] in a training
and test task. The robot used reinforcement learning to
solve the training task, and then extracted useful skills from
the resulting solution. Since these skills were constructed
using their own abstractions, they were themselves abstract,
and could be applied in tasks other than the task in which
they were learned. When the robot was given access to these

(a)

(b)

Figure 2: The uBot-5 learned to solve a training task
(a), and in the process acquired skills which meant
it could solve a second test task (b) more quickly
than using only its pre-existing controllers.

skills while learning to solve a test task, they reduced the
time taken to learn to solve it by nearly half [10].

This work shows that it is indeed feasible for a robot to
discover modular components of behavior through interac-
tion with an environment—without any human interven-
tion, and without the use of symbolic descriptions of that
environment—and thereby improve its own ability to solve
problems.

3. SYMBOL ACQUISITION
Given a set of (acquired or designed) skills, our recent

work [8] considers the following question: what symbols are
required to be able to reason about plans composed of se-
quences of those skills?

First, we must operationalize the notion of a symbol. An
abstract symbol (like LightsOn) refers to a set of real-world
states (those in which the light is on); in our terminology, a
crispy symbol refers to a set of swampy states. Listing those
states gives us an extensional representation of the symbol;
unfortunately, this is impractical because in almost all cases
our symbols will refer to an infinite set of swampy states.
Instead, we wish to use a compact representation of those
states (i.e., an intensional representation of the set). One
way to do so is using a classifier: a function that returns true
for the states in the set, and false for the states not in the set.
If that classifier supports certain operations, then we may
form a concrete boolean algebra for performing symbolic
operations over classifiers (i.e., symbols).

Our question then becomes: which sets of states must we
represent in order to determine whether or not any plan
(composed of sequences of skills) is feasible? It turns out
that we must be able to represent the set of states in which

each skill can be executed (its precondition set), and be able
to compute each skill’s image: given a set of states the robot
could execute a skill from, we must compute the set of states
executing that skill could leave it in. This operation is in-
computable in general, but is easy to compute given some
common types of skills (e.g., subgoal skills, and abstract
subgoal skills). These conditions provably provide the nec-
essary and sufficient symbolic representations for planning
using a robot’s skills [8].

This result shows two things. First, the appropriate sym-
bolic representation for a robot depends directly on both
the environment and the robot’s skills. There can be no
“correct” symbolic description of the environment that does
not take the robot’s skills into account; it is easy to produce
an example where the robot and environment stay fixed but
the robot’s skills change, and the appropriate symbolic rep-
resentation also changes. Second, the symbolic description
the robot uses to plan in an environment does not require
creative designer effort—it is in fact entirely specified by the
combination of skills and environment. Moreover, it has a
concrete and precise definition which (once we pick a classi-
fier class) can serve as the target function for a suitable ma-
chine learning technique [8]. This allows an agent to learn
a symbolic representation of the world that is suitable for
planning using its skills.

4. SUMMARY AND CONCLUSIONS
The work cited here has demonstrated, first, that au-

tonomous skill acquisition is feasible on robots; and, sec-
ond, that symbolic representation can be driven by the skill-
acquisition process. A robot can therefore acquire new pro-
cedural knowledge (in the form of skills) through direct in-
teraction with its environment, and then derive the neces-
sary abstract symbolic representations to plan using those
skills. This formal relationship allows us to design robots
(or have them develop autonomously) from the bottom-up—
skill-first—by constructing controllers grounded in interac-
tion with the real world, and then synthesizing the symbolic
representations suitable for planning using them.

5. ACKNOWLEDGMENTS
I would like to thank my coauthors on the various papers

cited here—Scott Kuindersma, Andy Barto, Rod Grupen,
Leslie Kaelbling, and Tomas Lozano-Perez—for their insight
and their patience.

6. REFERENCES
[1] A. Barto and S. Mahadevan. Recent advances in

hierarchical reinforcement learning. Discrete Event
Dynamic Systems, 13:41–77, 2003.

[2] P. Deegan, B. Thibodeau, and R. Grupen. Designing a
self-stabilizing robot for dynamic mobile
manipulation. In Proceedings of the Robotics: Science
and Systems Workshop on Manipulation for Human
Environments, August 2006.

[3] R. Fikes and N. Nilsson. STRIPS: a new approach to
the application of theorem proving to problem solving.
Artificial Intelligence, 2:189–208, 1971.

[4] G. Konidaris. Autonomous Robot Skill Acquisition.
PhD thesis, University of Massachusetts Amherst,
May 2011.

[5] G. Konidaris and A. Barto. Building portable options:
Skill transfer in reinforcement learning. In Proceedings
of the Twentieth International Joint Conference on
Artificial Intelligence, 2007.

[6] G. Konidaris and A. Barto. Efficient skill learning
using abstraction selection. In Proceedings of the
Twenty First International Joint Conference on
Artificial Intelligence, July 2009.

[7] G. Konidaris and A. Barto. Skill discovery in
continuous reinforcement learning domains using skill
chaining. In Advances in Neural Information
Processing Systems 22, pages 1015–1023, 2009.

[8] G. Konidaris, L. Kaelbling, and T. Lozano-Perez.
Symbol acquisition for task-level planning. In The
AAAI 2013 Workshop on Learning Rich
Representations from Low-Level Sensors, July 2013.

[9] G. Konidaris, S. Kuindersma, A. Barto, and
R. Grupen. Constructing skill trees for reinforcement
learning agents from demonstration trajectories. In
J. Lafferty, C. Williams, J. Shawe-Taylor, R. Zemel,
and A. Culotta, editors, Advances in Neural
Information Processing Systems 23, pages 1162–1170,
2010.

[10] G. Konidaris, S. Kuindersma, R. Grupen, and
A. Barto. Autonomous skill acquisition on a mobile
manipulator. In Proceedings of the Twenty-Fifth
Conference on Artificial Intelligence, pages 1468–1473,
2011.

[11] G. Konidaris, S. Kuindersma, R. Grupen, and
A. Barto. Robot learning from demonstration by
constructing skill trees. International Journal of
Robotics Research, 31(3):360–375, March 2012.

[12] N. Nilsson. Shakey the robot. Technical report, SRI
International, Apr. 1984.

