
INTERACTIVE CUTTING OF THE SKULL FOR
CRANIOFACIAL SURGICAL PLANNING

Greg Pintilie*1, Tim McInerney*2,*1

*1 Department of Computer Science, University of Toronto, Canada

*2 Department of Math, Physics, Computer Science, Ryerson University, Canada
Email: gdp@cs.utoronto.ca, tmcinern@scs.ryerson.ca

ABSTRACT

We present a prototype surgical planning system that
simulates cutting and positioning operations on rigid
objects such as the human skull, with realistic haptic and
visual feedback. Our positioning interface allows users to
grab and manipulate objects while sensing the interaction
forces between the object being manipulated and other
objects in the environment. The cutting interfaces support
planar and contour cuts. We present two algorithms that
create both types of cuts through rigid objects that are
represented by closed triangular meshes. Both algorithms
create cuts with predictable accuracies independent of the
meshes they operate on, and avoid the introduction of
degenerate mesh elements. For contour cuts, the cut
region may be closed or open, and whenever possible it is
separated from the original object. To deal with
discontinuities in the surface meshes of solid objects
introduced by such operations, we have implemented an
appropriate surface-reconstruction algorithm.

KEY WORDS

Modeling, Simulation and Computing, Computer-Aided
Surgical Planning, Interactive Cutting and Positioning
with Haptic Feedback, Triangular Mesh

1. Introduction

A computer-aided surgical planning system would be
a crucial tool for craniofacial surgeons. Operations on the
skull and surrounding tissues involve many patient-
specific variables, making each operation unique and its
results hard to predict. As a result, surgeons base their
decisions mainly on surgeries they have already
performed or observed. A planning system would allow a
surgeon to perform the procedure ahead of time on a
virtual replica of the patient’s head, and to pick among
surgical alternatives based on feasibility and aesthetic
preferences. Such a system would enable, with the use of
CT, MRI and laser range scans, the creation of an
individualized model of the patient's head and face, and
the determination of specific surgical operations that

would produce this result based on relevant anatomical
constraints governing skeletal and soft tissue
transpositions.

One objective of such a system is the accurate
representation of the skull and the tissues around it. The
solution would involve the use of techniques to model
solid and soft objects visually and dynamically as they
combine and interact to create more complex and intricate
entities such as the human head, as in [13]. Another
objective is the development of a realistic virtual
environment in which operations can be realistically
performed with the aid of visual and haptic feedback. This
requires the integration of advanced visualization
techniques and haptic devices to create a user interface
that fully immerses the surgeon in a virtual environment.
Virtual saws, scalpels, drawing tools, and tissue
“grabbing” tools would all contribute to the creation of
such an interface. A very important interaction is bone
realignment required for operations such as osteotomies.
Virtual cutting tools are required to split and cut out
pieces of the skull, and each resulting bone segment must
then be defined as a unique object that can be shaped and
manipulated independently and maneuvered into place.
Collisions with other parts of the skull must be detected
and their effects simulated.

In this work we limit ourselves to the modeling of
and interaction with rigid objects such as the skull,
represented with triangular surface meshes. We use CT
scans of a patient’s head and model objects using the
Amira1 software package, which provides tools to read
the CT data and to convert it into triangular meshes using
algorithms such as image segmentation, contour-finding,
and surface reconstruction via marching cubes [14]. Our
virtual environment is constructed within the Amira
visualization system, which uses Open Inventor2 for 3D
graphic display. We have integrated the GHOST API3
into this environment, allowing simultaneous visual and
haptic rendering of objects, the latter through the
PHANTOM4 device. Within this environment we have
developed interface tools that allow users to manipulate
and cut rigid objects represented by triangular surface
meshes.

Cutting algorithms for surface and solid meshes have
been presented in [1-5]. Such algorithms generally
operate on the target mesh by sub-dividing the mesh
elements that the cut path intersects into a pre-determined
number of smaller elements. The accuracy of the cuts is
thus highly dependent on the geometry of the initial mesh,
and the loss of small details in cuts may occur in areas of
low refinement. Most of these algorithms have ways of
dealing with the creation of degenerate mesh elements,
i.e. elements with small area or thin shape. Such elements
are largely unavoidable in cutting operations and also an
important consideration, especially when the mesh is used
in finite-element simulations of soft tissues.

We will present two cutting algorithms for creating
planar and contour cuts. Both algorithms refine the mesh
if necessary by adding new vertices to it so that the cut is
approximated with a predictable error factor. Vertices are
not added close to each other to avoid the introduction of
degenerate mesh elements. The new vertices are added to
the mesh using Delaunay triangulation [6], which ensures
the resulting mesh is as optimal as possible. We will also
describe how the cutting algorithms are extended to the
cutting of meshes that represent solid objects such as the
human skull.

2. Object Manipulation

2.1 ‘Grab and Move’ Interface

Our approach to object manipulation attempts to
closely mimic object manipulation in the real world. For
example, to move a real object, a person would reach out
to touch it, grab it, and then move it to a new position.
Once grabbed, the object changes its position and
orientation to follow the user’s hand, with the initial
conditions being maintained at the contact points.

At the root of this interaction is the sensation of
contact with the object. The Phantom device is capable of
point interaction with objects in a virtual environment,
providing 6DOF input and 3DOF output [7]. This means
that using the Phantom device, the user can sense virtual
objects as they would with the tip of their finger or the tip
of a pointer. When this interaction point has penetrated an
object, the device outputs a force that attempts to restore
it to a non-penetrating state, as if a spring were to exist
between the interaction point and the nearest surface
point. In this state the interaction point is said to be in a
contact state with the object. In this type of interaction,
the objects seem to have a soft feel, with the degree of
softness depending on the stiffness of the spring.

In our interface, to start moving an object, the user
makes contact with it and clicks the button on the
Phantom pointer. This indicates that the object has been
‘grabbed’, and it is then re-positioned and re-oriented as
the pointer moves such that the initial contact state is

maintained (Figure 1). For the details of this computation,
we refer the reader to [8]. The object is ‘released’ when
the button is also released.

Figure 1. Two frames showing the positioning a simple object (triangle)

by grabbing it with the haptic device (stick and sphere).

2.2 Haptic Feedback During Manipulation

When an object is manipulated as described in the
previous section, collisions with other objects may occur.
We would like to allow the user to feel the contact forces
due to these interactions. This is useful in a craniofacial
surgical planning environment, for example, for testing
the fit of a harvested bone segment at the target site in the
skull.

To detect the penetration condition of mesh objects,
both point penetrations and edge intersections must be
checked [9]. In our implementation a simpler
approximation is needed to meet the time restrictions for
computations in a haptic environment. We thus check
only for point penetrations to detect object-object
collisions, with the points distributed over the surface of
the object being manipulated. Upon each re-positioning of
the object, we check whether any of the points have
penetrated other objects in the environment, this being an
efficient computation provided by GHOST.

When penetrations do occur, they are handled as
individual point-interactions, and spring forces are
applied to try to restore the objects to a non-penetrating
state (Figure 2). Because the point at which the force is
created does not necessarily coincide with the point where
the force is applied, torque is typically created. However
the Phantom device being used for this work does not
produce torque forces and consequently we omit their
computation.

P

Figure 2. The Phantom pointer (P) is positioning a triangular object that

intersects another object. The user feels a force that opposes the
penetration (straight arrow), and also a torque (curved arrow).

The number of points that are checked for

penetrations is limited, depending on the complexity of
the objects in the environment and the speed of the
computer, so that the computation time is within the
bounds needed by the haptic device. Hence the points are

distributed over the surface of the object in such a way as
to best represent the object.

3. Cutting of Surface Meshes

3.1 Cutting Interfaces

We have implemented two cutting interfaces: a plane
tool, and a blade tool. The plane tool allows the user to
position a plane using the pointing device, as shown in
Figure 3(a). The plane is displayed as a transparent
surface, which allows the user to position it relative to
objects in the environment using visual cues.

The blade tool is displayed as a thin blade extending
from the pointer position, as shown in Figure 3(b). When
the tip of the blade comes to intersect the surface of an
object in the environment, a viscosity-like force that
opposes the blade’s velocity is output, as would be
expected in a real cutting process. The cut contour is
formed on the object surface along the path of the blade
while it is intersecting the object.

(a)

(b)

Figure 3. Tools for cutting: (a) plane tool intersecting a mandible bone
(the region to be cut is shown in dark gray) and (b) blade tool

intersecting a planar object and having created a ‘cut contour’ on its
surface. The mandible bone is from the visible human data set.

3.2 Planar Cutting Algorithm

The planar cutting algorithm creates an approximate
cut through a triangle mesh using the plane specified by
the user. The first step is to label each vertex in the mesh
as belonging to one of three categories: above the plane,
below the plane, or within a distance ρ of the plane. In the
last case the point is considered to be on the plane, and
the distance ρ is an error tolerance value in the
approximation of the cut.

The second step is to subdivide the triangles that have
at least one point above the plane and one point below the
plane. Such triangles have two edges that intersect the
plane, and the intersection points are found. A new point
set is formed consisting of the original triangle vertices
and each intersection point that does not come within the
distance ρ of the other triangle vertices. Given the
labeling method and the triangles being considered, this
new set contains at least 4 points: the three original
vertices and at least one intersection point. A new mesh is
created from it using Delaunay triangulation (Figure 4),
which is used to replace the original triangle.

c(a) (b) (c)

Figure 4. A triangle element intersected by a cutting plane (a). If c > ρ,
both intersection points are added to the mesh (b). Otherwise the top

point is not added to the mesh (c). The cut is formed by separating the
two regions above (white) and below (gray) the plane.

The last step is to separate the mesh into two regions

using the cutting plane. Since elements may intersect the
plane, we find the intersection points for every element
and compute their area above and below the plane. If the
area above is larger than the area below, the element is
considered to be above the plane, otherwise below the
plane. An example of planar cutting on the mandible is
shown in Figure A1.

3.3 Contour Cutting Algorithm

3.3.1 Overview

The blade tool creates a cut contour that is defined by
a set of points that lie on the surface of the mesh. We
define a vertex contour to be a set of points which are
vertices in the mesh, and each line segment between
adjacent points is an edge in the mesh.

The principle of our contour cutting algorithm is to
compute a vertex contour that approximates a given cut
contour to within a predictable accuracy, changing the
mesh if needed, but not changing the surface shape and
not introducing degenerate mesh elements. The algorithm
can be broken up into four steps:

1. Refine the mesh in the region of the cut.
2. Change the cut contour so that all its segments lie on

the surface of the mesh.
3. Sample the cut contour to create the vertex contour.
4. Change the mesh so that the sample points are

incorporated into the mesh.

Once a vertex contour has been computed, an
algorithm checks whether it separates the mesh into two
disjoint regions. There are two possible ways for this to
happen: either the vertex contour is open and the first and
last points are vertices on the border of the mesh, e.g.
Figure A2(a), or the vertex contour is closed, and the first
and last points are vertices of the same triangle in the
mesh, e.g. Figure A2(c). If the algorithm finds two
disjoint regions, they are separated into different objects
to create the cut.

3.3.2 Mesh Refinement

To refine the mesh we use a simple mesh-subdivision
procedure that maintains the general structure of the
original mesh while decreasing the size of its elements.
The purpose of this step is to reduce the introduction of

sliver elements in a later step of the cutting procedure
when sample points from the cut contour are added to the
mesh.

The mesh is refined in the region of the cut by
sequentially sub-dividing triangles that contain at least
one cut contour point. A triangle is subdivided by
introducing a new vertex at the mid-point of one of its
edges, thus creating two new triangles (Figure 5). Any
other triangle sharing that same edge is also divided as a
result. There are three possible ways to divide a triangle
using this scheme; one is picked so that the introduced
edge is the one that has the smallest length.

Figure 5. Subdivision schemes for a single triangle.

When a triangle is subdivided, the cut contour points

on its surface are re-distributed to the newly created
triangles. Subdivision continues as long as there are
triangles containing cut contour points that have an area
larger than a specified constant, δ. This constant is tied to
the constant defining a desired cut accuracy, as described
in a later section.

3.3.3 Intersection Points

Adjacent cut contour points that lie on different non-
coplanar triangles form line segments that do not lie on
the surface of the object. To make the cut contour
between such points adhere to the surface, we replace
each of these segments with two new segments that lie on
the surface of the object. Both new segments have one
end point from the original segment, and one point on the
edge shared by the triangles that these end points lie on.
The latter is found using a 3D line intersection algorithm
that finds the point on the edge closest to the original line
segment.

We refer to the new points added to the cut contour
as intersection points, because they are where the cut
contour intersects mesh edge elements. These intersection
points will be incorporated into the mesh to become
points in the vertex contour, as will be described later.
Hence one precaution is taken at this stage: when an
intersection point is found as described above, if it is
within a certain distance τ of an existing vertex, the
existing vertex is added to the contour instead of the
intersection point (Figure 6). This is because points that
are very close together would create mesh elements with
very small area, i.e. degenerate triangles, which we would
like to avoid.

In the case just described we might have chosen to

instead move the vertex point towards the cut contour,

however we have chosen to change the cut contour as we
do not want the surface to lose its original shape. This
means that the cut may not exactly match the specified
cut, with the constant τ specifying a maximum distance
that the actual cut may deviate from the specified cut.
This parameter also specifies the minimum edge length of
mesh elements introduced as a result of the cut, and hence
there is a trade-off between the accuracy of the cut and
the tolerance towards degenerate elements in the resulting
mesh.

(a) (b)

Figure 6. (a) Original mesh and a cut contour. (b) Two intersection

points and a vertex are added to the cut contour to make it adhere to the
surface.

3.3.4 Sampling the Cut Contour

The next step is to sample points from the cut
contour, which will later be incorporated into the mesh to
become the vertex contour. The objectives for this
sampling are that it doesn’t deviate from the cut contour
by more than a constant distance, which is a measure of
the cut accuracy, and that it uses as few points as possible.
A constraint is that the intersection points in the cut
contour must be among the sample points (Figure 7).

(b)(a)

Figure 7. Resulting vertex contours (through filled points), using (a) and
not using (b) intersection points. It is clear that in (a) the vertex contour

more closely matches the cut contour.

The intersection points alone may not be enough to
represent the cut contour accurately, for example as in
Figure 9(a). We thus further sample the cut contour
between intersection points using the Douglas-Peuker
algorithm [10]. This algorithm finds, for a curve described
by any number of points, an approximating curve with a
smaller or equal number of points so that the largest
distance between the two curves at any point is smaller
than a given constant value υ.

This sampling algorithm is applied to each section of
the cut-contour between intersection points as follows: if
the contour deviates from the straight line formed by its
two end points by more than a distance υ, a new sample
point is added at the point on the contour with the largest
distance from this line. Then the contour is divided into
two new sections at this point, and the process is repeated
on both sections (Figure 8).

Figure 8. Three steps of the Douglas-Peuker sampling algorithm.

The sample points found at this step and the
intersection points are added to the vertex contour in the
order that they occur in the cut contour. If the start and
end points of the cut contour are found to be close
together, extra sample points are added between them if
necessary, so as to create a closed vertex contour for
closed cuts (Figure A2-c).

The constant υ used in this step is similar to the
constant τ of the previous section, in that it specifies a
maximum allowed deviation distance between the cut
contour and the vertex contour. Hence we generally set
them to have the same value.

3.3.5 Adding the Sample Points to the Mesh

In this step the sample and intersection points in the
cut contour are introduced into the mesh. To do this,
every triangle affected by the cut is replaced by a new set
of triangles that include the intersection points on its
edges and every sample point in between (Figure 9). The
new triangle set is constructed using Delaunay
triangulation [6].

As a result of this process, vertex contour segments
will in most cases have a corresponding edge in the new
mesh. For a more detailed analysis, see [8]. Two
exceptions are when the cut contour intersects itself and
when the sampling between intersection points yields a
large number of sample points. The latter is more likely to
happen when there are many sample points inside a
triangle, as in Figure 9. This can be detected and fixed by
‘flipping’ an edge between two triangles, though at the
price of using a less optimal mesh structure. This is
illustrated in Figure 9(b), where the edge intersecting the
dotted line is removed and the dotted line is added as a
new edge.

The mesh refinement process generally decreases the

occurrence of cases when an edge flip is needed since it
reduces the size of each triangle affected by the cut. This
ties the intersection and sampling constants (τ and υ), to
the mesh-refinement constant δ. In practice we set δ to a
value that reduces the number of sample points needed
inside any one triangle to a small predictable number. To
find a value for δ we note that δ refers to area whereas τ
and υ to length; a formulation that we’ve found works
well in practice is:

δ =5τ2, (and τ=υ).

(a) (b)

Figure 9. (a) Sample and intersection points for a cut contour inside a

triangle. (b) The resulting mesh after Delaunay triangulation, which does
not contain a required edge (dashed line) for the vertex contour.

3.3.6 Finding the Cut Region

We now present an algorithm that determines
whether a vertex contour creates a separable cut. The
algorithm attempts to find two disjoint regions in the
mesh that are separated by the vertex contour, the smaller
of which is considered to be the cut region.

We assume that we have already identified for each
segment in the vertex contour a corresponding edge in the
mesh. The algorithm performs two simultaneous
traversals over the triangles in the mesh, each starting
with one of the two triangles that share the corresponding
edge of the first segment in the vertex contour. A queue is
used by each traversal, which holds triangle elements that
are yet to be visited. A triangle is added to the queue if it
is a neighbour of the triangle being visited, unless the
edge shared by the triangles has a corresponding segment
in the vertex contour.

The algorithm stops when either of the two searches
has finished, and the elements traversed by that search
define the cut region. At every traversal step if it is
detected that the two traversals have visited the same
triangle, the algorithm stops and fails because then the
regions are not disjoint. In case of success the two regions
are separated to create the cut. Examples of closed and
open cuts on surface meshes are shown in Figure A2.

4. Cutting of Solid Objects

4.1 Solid Objects as Surface Meshes

Solid objects reconstructed from medical data using
Amira can be represented either by closed triangular
surface meshes or tetrahedral meshes. We use the surface
mesh representation for the human skull, which has
tremendous surface variation but relatively small
thickness in regions where a craniofacial surgeon is most
interested in repairing or harvesting bone. In such regions
the objects can be considered to be bounded by inner and
outer surfaces.

4.2 Planar Cuts through Solids

Planar cuts through solid objects create a gap at the
intersection of the plane and the object, as illustrated in

Figure 10(a). The boundary vertices may or may not lie
on the cutting plane, due to the approximating nature of
the planar cutting algorithm. Assuming they are very
close to the cutting plane, we project the vertices onto the
plane and create a new mesh using a constrained planar
triangulation algorithm [11]. This mesh structure is then
added to the mesh, mapped to the original mesh vertices,
to close the gap, as shown in Figure 10(b).

(a)

(b)

Figure 10. (a) Mandible bone before, and (b) after adding of mesh to
close the gap resulting from a planar cut.

4.3 Contour Cuts through Solids

To create a contour cut through a solid object, we
extend the cut so that cut contours are simultaneously
created on both the inner and outer surfaces. As the user
creates a contour cut on the outer surface, a ray-object
intersection is performed to create the cut contour on the
inner surface. The ray starts at the cut contour point on the
outer surface and extends into the object in the direction
of the blade. The inner cut contour point results from the
intersection of this ray and the inner surface. For
simplicity we use a single direction for this ray for the
entire cut contour, and this is picked to be the direction of
the blade when the cut is initiated.

Once an outer cut contour and an inner cut contour
have been acquired, the contour cutting algorithm is
applied independently to each surface, resulting in inner
and outer cut surfaces. These two surfaces represent a
single solid object, however they are discontinuous at the
cut boundary, as shown in Figure 11(a).

(a)

(b)
Figure 11. (a) A cut through a solid object, showing discontinuity

between inner and outer surfaces at the cut boundary. (b) A diagram of
the reconstructed mesh (in gray) used to fill such a gap.

To close the resulting gap, we use the surface

reconstruction approach described in [12]. This creates a
new mesh that becomes part of the cut object, as
diagrammed in Figure 11(b). The same mesh (but with
opposite normals) is also added to the original object to
close the gap left there as a result of the cut. The process
of creating a cut through a solid object is illustrated in
Figure A3.

5. Conclusion

In this work we have presented user interfaces and
algorithms for object manipulation and cutting for the
purpose of surgery planning on the human skull. The
interfaces are similar to their real-life counterparts as they
provide similar visual and haptic feedback. The cutting
algorithms we have developed create planar and contour
cuts through surface meshes with predictable accuracy.
The mesh is refined when necessary to create a cut within
this accuracy measure. An accuracy parameter specified
by the user trades off between the maximum deviation
between the specified and actual cuts and the tolerance to
degenerate triangles created as a result of mesh
refinement. Using the surface cutting algorithms, it is
possible to simulate the cutting and extraction of pieces
from a solid object that is represented as a surface mesh.

REFERENCES

[1] P.F. Neumann, L.L. Sadler, & J. Gieser, Virtual
Reality Vitrectomy Simulator, Medical Image Computing
and Computer-Assisted Intervention, 1998, 910-917
[2] D. Bielser & M.H. Gross, Interactive Simulation of
Surgical Cuts, Proceedings of Pacific Graphics, 2000,
IEEE Computer Society Press, 116-125
[3] H. Nienhuys & A. Frank van der Stappen, Combining
Finite Element Deformation With Cutting for Surgery
Simulations, Proceedings of Eurographics 2000, short
presentations, 43-52
[4] F. Ganovelli & C. O’Sullivan, Animating Cuts with
on-the-Fly Re-Meshing, Proceedings of Eurographics
2000, short presentations, 243-247
[5] H. Delingette, S. Cotin, & N. Ayache, A Hybrid
Elastic Model Allowing Real-Time Cutting, Deformations
and Force-Feedback for Surgery Training and Simulation,
CAS99 Proceedings, 1999, 70–81
[6] M. Bern & D. Eppstein, Mesh Generation and Optimal
Triangulation, Computing in Euclidean Geometry, edited
by Ding-Zhu Du and Frank Hwang, (Singapore: World
Scientific Publishing Co. Ltd. 1995) 47-123
[7] C. Zilles & J. Salisbury, Constraint-based God-object
Method for Haptic Display, ASME Haptic Interfaces for
Virtual Environment and Teleoperator Systems, Dynamic
Systems and Control, vol. 1, 1994, 146-150.
[8] G. Pintilie, Interactive cutting of surface meshes for
computer-aided surgical planning, M.Sc. Thesis,
Department of Computer Science, University of Toronto,
2001
[9] M. Moore & J. Wilhelms, Collision detection and
response for computer animation, Computer Graphics,
22(4), 1988, 289-298
[10] D.H. Douglas and T.K. Peuker, Algorithms for the
Reduction of the Number of Points Required to Represent
a Line or its Caricature, The Canadian Cartographer,
10(2), 1973, 112-122.

[11] J. O’Rourke, Computational geometry in C, Second
Edition, (Cambridge, UK: Cambridge University Press,
1998).
 [12] H. Fuchs, Z.M. Kedem, & S.P. Uselton, Optimal
Surface Reconstruction from Planar Contours,
Communications of the ACM, 20(10), 1977, 693-702.

[13] Y. Lee, D. Terzopoulos, & K. Waters, Realistic
modeling for facial animation, Proc. ACM SIGGRAPH'95
Conference, Los Angeles, CA, August, 1995, 55-62.
[14] W. E. Lorensen & H. E. Cline, Marching Cubes: A
High Resolution 3D Surface Construction Algorithm,
Computer Graphics, 21(4), July 1987, 163-169.

(a)

(b)

(c)

(d)

(e)

Figure A1: Use of planar cutting and manipulation tools on the human mandible from the visible human data set. The initial object is
shown in (a). The planar cutting tool is used to cut it (b) and (c). The separated objects are shown together in (d), with the middle segment
highlighted in a darker colour. In (e), the middle segment is removed and the front portion is re-positioned to close the gap.

(a)

(b)

(c)

(d)

Figure A2: Examples of separable cuts which are: (a,b) open, and (c,d) closed. The mesh is the face of Ken Salisbury, provided with the
GHOST API. Figures (a) and (c) show the cut contour on the mesh, and (b) and (d) show the separated cut fragments.

(a)

(b)

(c)

Figure A3: A solid contour cut through a skull bone. The bone structure was obtained from medical image data using Amira. Image (a)
shows the traced cut contour. Image (b) shows the separated fragment being manipulated away from the skull. Image (c) shows a close-up
of the separated fragment.

1 Amira is a registered trademark of Konrad-Zuse-Zentrum fur Infor-mationstechnik Berlin.
2 Open Inventor is a trademark of Silicon Graphics Incorporated.
3 GHOST is a registered trademark of SensAble Technologies, Inc.
4 PHANTOM is a trademark of SensAble Technologies, Inc.

