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ABSTRACT 
 

We present a prototype surgical planning system that 
simulates cutting and positioning operations on rigid 
objects such as the human skull, with realistic haptic and 
visual feedback. Our positioning interface allows users to 
grab and manipulate objects while sensing the interaction 
forces between the object being manipulated and other 
objects in the environment. The cutting interfaces support 
planar and contour cuts. We present two algorithms that 
create both types of cuts through rigid objects that are 
represented by closed triangular meshes. Both algorithms 
create cuts with predictable accuracies independent of the 
meshes they operate on, and avoid the introduction of 
degenerate mesh elements. For contour cuts, the cut 
region may be closed or open, and whenever possible it is 
separated from the original object. To deal with 
discontinuities in the surface meshes of solid objects 
introduced by such operations, we have implemented an 
appropriate surface-reconstruction algorithm. 
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1. Introduction 
 

A computer-aided surgical planning system would be 
a crucial tool for craniofacial surgeons. Operations on the 
skull and surrounding tissues involve many patient-
specific variables, making each operation unique and its 
results hard to predict. As a result, surgeons base their 
decisions mainly on surgeries they have already 
performed or observed. A planning system would allow a 
surgeon to perform the procedure ahead of time on a 
virtual replica of the patient’s head, and to pick among 
surgical alternatives based on feasibility and aesthetic 
preferences. Such a system would enable, with the use of 
CT, MRI and laser range scans, the creation of an 
individualized model of the patient's head and face, and 
the determination of specific surgical operations that 

would produce this result based on relevant anatomical 
constraints governing skeletal and soft tissue 
transpositions. 
 

One objective of such a system is the accurate 
representation of the skull and the tissues around it. The 
solution would involve the use of techniques to model 
solid and soft objects visually and dynamically as they 
combine and interact to create more complex and intricate 
entities such as the human head, as in [13]. Another 
objective is the development of a realistic virtual 
environment in which operations can be realistically 
performed with the aid of visual and haptic feedback. This 
requires the integration of advanced visualization 
techniques and haptic devices to create a user interface 
that fully immerses the surgeon in a virtual environment. 
Virtual saws, scalpels, drawing tools, and tissue 
“grabbing” tools would all contribute to the creation of 
such an interface. A very important interaction is bone 
realignment required for operations such as osteotomies. 
Virtual cutting tools are required to split and cut out 
pieces of the skull, and each resulting bone segment must 
then be defined as a unique object that can be shaped and 
manipulated independently and maneuvered into place. 
Collisions with other parts of the skull must be detected 
and their effects simulated. 
 

In this work we limit ourselves to the modeling of 
and interaction with rigid objects such as the skull, 
represented with triangular surface meshes. We use CT 
scans of a patient’s head and model objects using the 
Amira1 software package, which provides tools to read 
the CT data and to convert it into triangular meshes using 
algorithms such as image segmentation, contour-finding, 
and surface reconstruction via marching cubes [14]. Our 
virtual environment is constructed within the Amira 
visualization system, which uses Open Inventor2 for 3D 
graphic display. We have integrated the GHOST API3 
into this environment, allowing simultaneous visual and 
haptic rendering of objects, the latter through the 
PHANTOM4 device. Within this environment we have 
developed interface tools that allow users to manipulate 
and cut rigid objects represented by triangular surface 
meshes. 
 



Cutting algorithms for surface and solid meshes have 
been presented in [1-5]. Such algorithms generally 
operate on the target mesh by sub-dividing the mesh 
elements that the cut path intersects into a pre-determined 
number of smaller elements. The accuracy of the cuts is 
thus highly dependent on the geometry of the initial mesh, 
and the loss of small details in cuts may occur in areas of 
low refinement. Most of these algorithms have ways of 
dealing with the creation of degenerate mesh elements, 
i.e. elements with small area or thin shape. Such elements 
are largely unavoidable in cutting operations and also an 
important consideration, especially when the mesh is used 
in finite-element simulations of soft tissues. 
 

We will present two cutting algorithms for creating 
planar and contour cuts. Both algorithms refine the mesh 
if necessary by adding new vertices to it so that the cut is 
approximated with a predictable error factor. Vertices are 
not added close to each other to avoid the introduction of 
degenerate mesh elements. The new vertices are added to 
the mesh using Delaunay triangulation [6], which ensures 
the resulting mesh is as optimal as possible. We will also 
describe how the cutting algorithms are extended to the 
cutting of meshes that represent solid objects such as the 
human skull. 
 
 
2. Object Manipulation 
 
2.1 ‘Grab and Move’ Interface 
 

Our approach to object manipulation attempts to 
closely mimic object manipulation in the real world. For 
example, to move a real object, a person would reach out 
to touch it, grab it, and then move it to a new position. 
Once grabbed, the object changes its position and 
orientation to follow the user’s hand, with the initial 
conditions being maintained at the contact points. 
 

At the root of this interaction is the sensation of 
contact with the object. The Phantom device is capable of 
point interaction with objects in a virtual environment, 
providing 6DOF input and 3DOF output [7]. This means 
that using the Phantom device, the user can sense virtual 
objects as they would with the tip of their finger or the tip 
of a pointer. When this interaction point has penetrated an 
object, the device outputs a force that attempts to restore 
it to a non-penetrating state, as if a spring were to exist 
between the interaction point and the nearest surface 
point. In this state the interaction point is said to be in a 
contact state with the object. In this type of interaction, 
the objects seem to have a soft feel, with the degree of 
softness depending on the stiffness of the spring. 
 

In our interface, to start moving an object, the user 
makes contact with it and clicks the button on the 
Phantom pointer. This indicates that the object has been 
‘grabbed’, and it is then re-positioned and re-oriented as 
the pointer moves such that the initial contact state is 

maintained (Figure 1). For the details of this computation, 
we refer the reader to [8]. The object is ‘released’ when 
the button is also released. 
 

  
Figure 1. Two frames showing the positioning a simple object (triangle) 

by grabbing it with the haptic device (stick and sphere). 
 
2.2 Haptic Feedback During Manipulation 
 

When an object is manipulated as described in the 
previous section, collisions with other objects may occur. 
We would like to allow the user to feel the contact forces 
due to these interactions. This is useful in a craniofacial 
surgical planning environment, for example, for testing 
the fit of a harvested bone segment at the target site in the 
skull. 
 

To detect the penetration condition of mesh objects, 
both point penetrations and edge intersections must be 
checked [9]. In our implementation a simpler 
approximation is needed to meet the time restrictions for 
computations in a haptic environment. We thus check 
only for point penetrations to detect object-object 
collisions, with the points distributed over the surface of 
the object being manipulated. Upon each re-positioning of 
the object, we check whether any of the points have 
penetrated other objects in the environment, this being an 
efficient computation provided by GHOST.  
 

When penetrations do occur, they are handled as 
individual point-interactions, and spring forces are 
applied to try to restore the objects to a non-penetrating 
state (Figure 2). Because the point at which the force is 
created does not necessarily coincide with the point where 
the force is applied, torque is typically created. However 
the Phantom device being used for this work does not 
produce torque forces and consequently we omit their 
computation. 
 

P

 
Figure 2. The Phantom pointer (P) is positioning a triangular object that 

intersects another object. The user feels a force that opposes the 
penetration (straight arrow), and also a torque (curved arrow). 
 
The number of points that are checked for 

penetrations is limited, depending on the complexity of 
the objects in the environment and the speed of the 
computer, so that the computation time is within the 
bounds needed by the haptic device. Hence the points are 



distributed over the surface of the object in such a way as 
to best represent the object. 
 
 
3. Cutting of Surface Meshes 
 
3.1 Cutting Interfaces 
 

We have implemented two cutting interfaces: a plane 
tool, and a blade tool. The plane tool allows the user to 
position a plane using the pointing device, as shown in 
Figure 3(a). The plane is displayed as a transparent 
surface, which allows the user to position it relative to 
objects in the environment using visual cues. 
 

The blade tool is displayed as a thin blade extending 
from the pointer position, as shown in Figure 3(b). When 
the tip of the blade comes to intersect the surface of an 
object in the environment, a viscosity-like force that 
opposes the blade’s velocity is output, as would be 
expected in a real cutting process. The cut contour is 
formed on the object surface along the path of the blade 
while it is intersecting the object. 
 

 
(a) 

 
(b) 

Figure 3. Tools for cutting: (a) plane tool intersecting a mandible bone 
(the region to be cut is shown in dark gray) and (b) blade tool 

intersecting a planar object and having created a ‘cut contour’ on its 
surface. The mandible bone is from the visible human data set. 

 
3.2 Planar Cutting Algorithm 
 

The planar cutting algorithm creates an approximate 
cut through a triangle mesh using the plane specified by 
the user. The first step is to label each vertex in the mesh 
as belonging to one of three categories: above the plane, 
below the plane, or within a distance ρ of the plane. In the 
last case the point is considered to be on the plane, and 
the distance ρ is an error tolerance value in the 
approximation of the cut. 
 

The second step is to subdivide the triangles that have 
at least one point above the plane and one point below the 
plane. Such triangles have two edges that intersect the 
plane, and the intersection points are found. A new point 
set is formed consisting of the original triangle vertices 
and each intersection point that does not come within the 
distance ρ of the other triangle vertices. Given the 
labeling method and the triangles being considered, this 
new set contains at least 4 points: the three original 
vertices and at least one intersection point. A new mesh is 
created from it using Delaunay triangulation (Figure 4), 
which is used to replace the original triangle. 

c(a) (b) (c)

 
Figure 4. A triangle element intersected by a cutting plane (a). If c > ρ, 
both intersection points are added to the mesh (b). Otherwise the top 

point is not added to the mesh (c). The cut is formed by separating the 
two regions above (white) and below (gray) the plane. 

 
The last step is to separate the mesh into two regions 

using the cutting plane. Since elements may intersect the 
plane, we find the intersection points for every element 
and compute their area above and below the plane. If the 
area above is larger than the area below, the element is 
considered to be above the plane, otherwise below the 
plane. An example of planar cutting on the mandible is 
shown in Figure A1. 
 
3.3 Contour Cutting Algorithm 
 
3.3.1 Overview 
 

The blade tool creates a cut contour that is defined by 
a set of points that lie on the surface of the mesh. We 
define a vertex contour to be a set of points which are 
vertices in the mesh, and each line segment between 
adjacent points is an edge in the mesh. 
 

The principle of our contour cutting algorithm is to 
compute a vertex contour that approximates a given cut 
contour to within a predictable accuracy, changing the 
mesh if needed, but not changing the surface shape and 
not introducing degenerate mesh elements. The algorithm 
can be broken up into four steps: 
 
1. Refine the mesh in the region of the cut. 
2. Change the cut contour so that all its segments lie on 

the surface of the mesh. 
3. Sample the cut contour to create the vertex contour. 
4. Change the mesh so that the sample points are 

incorporated into the mesh. 
 

Once a vertex contour has been computed, an 
algorithm checks whether it separates the mesh into two 
disjoint regions. There are two possible ways for this to 
happen: either the vertex contour is open and the first and 
last points are vertices on the border of the mesh, e.g. 
Figure A2(a), or the vertex contour is closed, and the first 
and last points are vertices of the same triangle in the 
mesh, e.g. Figure A2(c). If the algorithm finds two 
disjoint regions, they are separated into different objects 
to create the cut. 
 
3.3.2 Mesh Refinement 
 

To refine the mesh we use a simple mesh-subdivision 
procedure that maintains the general structure of the 
original mesh while decreasing the size of its elements. 
The purpose of this step is to reduce the introduction of 



sliver elements in a later step of the cutting procedure 
when sample points from the cut contour are added to the 
mesh. 
 

The mesh is refined in the region of the cut by 
sequentially sub-dividing triangles that contain at least 
one cut contour point. A triangle is subdivided by 
introducing a new vertex at the mid-point of one of its 
edges, thus creating two new triangles (Figure 5). Any 
other triangle sharing that same edge is also divided as a 
result. There are three possible ways to divide a triangle 
using this scheme; one is picked so that the introduced 
edge is the one that has the smallest length. 
 

 
Figure 5. Subdivision schemes for a single triangle. 

 
When a triangle is subdivided, the cut contour points 

on its surface are re-distributed to the newly created 
triangles. Subdivision continues as long as there are 
triangles containing cut contour points that have an area 
larger than a specified constant, δ. This constant is tied to 
the constant defining a desired cut accuracy, as described 
in a later section. 
 
3.3.3 Intersection Points 
 

Adjacent cut contour points that lie on different non-
coplanar triangles form line segments that do not lie on 
the surface of the object. To make the cut contour 
between such points adhere to the surface, we replace 
each of these segments with two new segments that lie on 
the surface of the object. Both new segments have one 
end point from the original segment, and one point on the 
edge shared by the triangles that these end points lie on. 
The latter is found using a 3D line intersection algorithm 
that finds the point on the edge closest to the original line 
segment. 
 

We refer to the new points added to the cut contour 
as intersection points, because they are where the cut 
contour intersects mesh edge elements. These intersection 
points will be incorporated into the mesh to become 
points in the vertex contour, as will be described later. 
Hence one precaution is taken at this stage: when an 
intersection point is found as described above, if it is 
within a certain distance τ of an existing vertex, the 
existing vertex is added to the contour instead of the 
intersection point (Figure 6). This is because points that 
are very close together would create mesh elements with 
very small area, i.e. degenerate triangles, which we would 
like to avoid. 

 
In the case just described we might have chosen to 

instead move the vertex point towards the cut contour, 

however we have chosen to change the cut contour as we 
do not want the surface to lose its original shape. This 
means that the cut may not exactly match the specified 
cut, with the constant τ specifying a maximum distance 
that the actual cut may deviate from the specified cut. 
This parameter also specifies the minimum edge length of 
mesh elements introduced as a result of the cut, and hence 
there is a trade-off between the accuracy of the cut and 
the tolerance towards degenerate elements in the resulting 
mesh. 
 

(a) (b)

 
Figure 6. (a) Original mesh and a cut contour. (b) Two intersection 

points and a vertex are added to the cut contour to make it adhere to the 
surface. 

 
3.3.4 Sampling the Cut Contour 
 

The next step is to sample points from the cut 
contour, which will later be incorporated into the mesh to 
become the vertex contour. The objectives for this 
sampling are that it doesn’t deviate from the cut contour 
by more than a constant distance, which is a measure of 
the cut accuracy, and that it uses as few points as possible. 
A constraint is that the intersection points in the cut 
contour must be among the sample points (Figure 7). 
 

(b)(a)

 
Figure 7. Resulting vertex contours (through filled points), using (a) and 
not using (b) intersection points. It is clear that in (a) the vertex contour 

more closely matches the cut contour. 
 

The intersection points alone may not be enough to 
represent the cut contour accurately, for example as in 
Figure 9(a). We thus further sample the cut contour 
between intersection points using the Douglas-Peuker 
algorithm [10]. This algorithm finds, for a curve described 
by any number of points, an approximating curve with a 
smaller or equal number of points so that the largest 
distance between the two curves at any point is smaller 
than a given constant value υ. 
 

This sampling algorithm is applied to each section of 
the cut-contour between intersection points as follows: if 
the contour deviates from the straight line formed by its 
two end points by more than a distance υ, a new sample 
point is added at the point on the contour with the largest 
distance from this line. Then the contour is divided into 
two new sections at this point, and the process is repeated 
on both sections (Figure 8).  
 



Figure 8. Three steps of the Douglas-Peuker sampling algorithm. 
 

The sample points found at this step and the 
intersection points are added to the vertex contour in the 
order that they occur in the cut contour. If the start and 
end points of the cut contour are found to be close 
together, extra sample points are added between them if 
necessary, so as to create a closed vertex contour for 
closed cuts (Figure A2-c). 
 

The constant υ used in this step is similar to the 
constant τ of the previous section, in that it specifies a 
maximum allowed deviation distance between the cut 
contour and the vertex contour. Hence we generally set 
them to have the same value. 
 
3.3.5 Adding the Sample Points to the Mesh 
 

In this step the sample and intersection points in the 
cut contour are introduced into the mesh. To do this, 
every triangle affected by the cut is replaced by a new set 
of triangles that include the intersection points on its 
edges and every sample point in between (Figure 9). The 
new triangle set is constructed using Delaunay 
triangulation [6].  
 

As a result of this process, vertex contour segments 
will in most cases have a corresponding edge in the new 
mesh. For a more detailed analysis, see [8]. Two 
exceptions are when the cut contour intersects itself and 
when the sampling between intersection points yields a 
large number of sample points. The latter is more likely to 
happen when there are many sample points inside a 
triangle, as in Figure 9. This can be detected and fixed by 
‘flipping’ an edge between two triangles, though at the 
price of using a less optimal mesh structure. This is 
illustrated in Figure 9(b), where the edge intersecting the 
dotted line is removed and the dotted line is added as a 
new edge.  

 
The mesh refinement process generally decreases the 

occurrence of cases when an edge flip is needed since it 
reduces the size of each triangle affected by the cut. This 
ties the intersection and sampling constants (τ and υ), to 
the mesh-refinement constant δ. In practice we set δ to a 
value that reduces the number of sample points needed 
inside any one triangle to a small predictable number. To 
find a value for δ we note that δ refers to area whereas τ 
and υ to length; a formulation that we’ve found works 
well in practice is: 

 
δ =5τ2, (and τ=υ). 

 

(a) (b)

 
Figure 9. (a) Sample and intersection points for a cut contour inside a 

triangle. (b) The resulting mesh after Delaunay triangulation, which does 
not contain a required edge (dashed line) for the vertex contour. 

 
3.3.6 Finding the Cut Region 
 

We now present an algorithm that determines 
whether a vertex contour creates a separable cut. The 
algorithm attempts to find two disjoint regions in the 
mesh that are separated by the vertex contour, the smaller 
of which is considered to be the cut region.  
 

We assume that we have already identified for each 
segment in the vertex contour a corresponding edge in the 
mesh. The algorithm performs two simultaneous 
traversals over the triangles in the mesh, each starting 
with one of the two triangles that share the corresponding 
edge of the first segment in the vertex contour. A queue is 
used by each traversal, which holds triangle elements that 
are yet to be visited. A triangle is added to the queue if it 
is a neighbour of the triangle being visited, unless the 
edge shared by the triangles has a corresponding segment 
in the vertex contour. 
 

The algorithm stops when either of the two searches 
has finished, and the elements traversed by that search 
define the cut region. At every traversal step if it is 
detected that the two traversals have visited the same 
triangle, the algorithm stops and fails because then the 
regions are not disjoint. In case of success the two regions 
are separated to create the cut. Examples of closed and 
open cuts on surface meshes are shown in Figure A2. 
 
 
4. Cutting of Solid Objects 
 
4.1 Solid Objects as Surface Meshes 
 

Solid objects reconstructed from medical data using 
Amira can be represented either by closed triangular 
surface meshes or tetrahedral meshes. We use the surface 
mesh representation for the human skull, which has 
tremendous surface variation but relatively small 
thickness in regions where a craniofacial surgeon is most 
interested in repairing or harvesting bone. In such regions 
the objects can be considered to be bounded by inner and 
outer surfaces. 
 
4.2 Planar Cuts through Solids 
 

Planar cuts through solid objects create a gap at the 
intersection of the plane and the object, as illustrated in 



Figure 10(a). The boundary vertices may or may not lie 
on the cutting plane, due to the approximating nature of 
the planar cutting algorithm. Assuming they are very 
close to the cutting plane, we project the vertices onto the 
plane and create a new mesh using a constrained planar 
triangulation algorithm [11]. This mesh structure is then 
added to the mesh, mapped to the original mesh vertices, 
to close the gap, as shown in Figure 10(b). 
 

 
(a) 

 
(b) 

Figure 10. (a) Mandible bone before, and (b) after adding of mesh to 
close the gap resulting from a planar cut. 

 
4.3 Contour Cuts through Solids 
 

To create a contour cut through a solid object, we 
extend the cut so that cut contours are simultaneously 
created on both the inner and outer surfaces. As the user 
creates a contour cut on the outer surface, a ray-object 
intersection is performed to create the cut contour on the 
inner surface. The ray starts at the cut contour point on the 
outer surface and extends into the object in the direction 
of the blade. The inner cut contour point results from the 
intersection of this ray and the inner surface. For 
simplicity we use a single direction for this ray for the 
entire cut contour, and this is picked to be the direction of 
the blade when the cut is initiated. 
 

Once an outer cut contour and an inner cut contour 
have been acquired, the contour cutting algorithm is 
applied independently to each surface, resulting in inner 
and outer cut surfaces. These two surfaces represent a 
single solid object, however they are discontinuous at the 
cut boundary, as shown in Figure 11(a). 

 

 
(a)  

(b) 
Figure 11. (a) A cut through a solid object, showing discontinuity 

between inner and outer surfaces at the cut boundary. (b) A diagram of 
the reconstructed mesh (in gray) used to fill such a gap. 

 
To close the resulting gap, we use the surface 

reconstruction approach described in [12]. This creates a 
new mesh that becomes part of the cut object, as 
diagrammed in Figure 11(b). The same mesh (but with 
opposite normals) is also added to the original object to 
close the gap left there as a result of the cut. The process 
of creating a cut through a solid object is illustrated in 
Figure A3. 

5. Conclusion 
 

In this work we have presented user interfaces and 
algorithms for object manipulation and cutting for the 
purpose of surgery planning on the human skull. The 
interfaces are similar to their real-life counterparts as they 
provide similar visual and haptic feedback. The cutting 
algorithms we have developed create planar and contour 
cuts through surface meshes with predictable accuracy. 
The mesh is refined when necessary to create a cut within 
this accuracy measure. An accuracy parameter specified 
by the user trades off between the maximum deviation 
between the specified and actual cuts and the tolerance to 
degenerate triangles created as a result of mesh 
refinement. Using the surface cutting algorithms, it is 
possible to simulate the cutting and extraction of pieces 
from a solid object that is represented as a surface mesh. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure A1: Use of planar cutting and manipulation tools on the human mandible from the visible human data set. The initial object is 
shown in (a). The planar cutting tool is used to cut it (b) and (c). The separated objects are shown together in (d), with the middle segment 
highlighted in a darker colour. In (e), the middle segment is removed and the front portion is re-positioned to close the gap. 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure A2: Examples of separable cuts which are: (a,b) open, and (c,d) closed. The mesh is the face of Ken Salisbury, provided with the 
GHOST API. Figures (a) and (c) show the cut contour on the mesh, and (b) and (d) show the separated cut fragments. 
 

 
(a) 

 
(b) 

 
(c) 

Figure A3: A solid contour cut through a skull bone. The bone structure was obtained from medical image data using Amira. Image (a) 
shows the traced cut contour. Image (b) shows the separated fragment being manipulated away from the skull. Image (c) shows a close-up 
of the separated fragment. 
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