
Generation of Glyphs for Conveying Complex

Information, with Application to Protein
Representations

Greg D. Pintilie1, Brigitte Tuekam1, and Christopher W.V. Hogue1,2

1 Blueprint, Samuel Lunenfeld Research Institute, Toronto, Canada
{gpintilie, btuekam, chogue}@blueprint.org

2 Department of Biochemistry, University of Toronto, Toronto, Canada

Abstract. We present a method to generate glyphs which convey com-
plex information in graphical form. A glyph has a linear geometry which
is specified using geometric operations, each represented by characters
nested in a string. This format allows several glyph strings to be con-
catenated, resulting in more complex geometries. We explore automatic
generation of a large number of glyphs using a genetic algorithm. To
measure the visual distinctness between two glyph geometries, we use
the iterative closest point algorithm. We apply these methods to create
two different types of representations for biological proteins, transforming
the rich data describing their various characteristics into graphical form.
The representations are automatically built from a finite set of glyphs,
which have been created manually or using the genetic algorithm.

1 Introduction

Humans use symbols for communication of complex information in many con-
texts. One example is written language, where every letter or combination of
letters typically represents a sound used in spoken language. Using these build-
ing blocks, words, sentences, and papers can be generated which convey a wealth
of information. Another example is the use of symbols in circuit diagrams. Here
a symbol represents an electrical component with well-defined physical proper-
ties, which can be connected to other components to create a circuit diagram,
from which the functioning of a complex electronic device can be deduced. Cir-
cuit diagram symbols could be deemed less general than language symbols; for
example they could not be used to convey the same information that a word or
a sentence does. On the other hand, a circuit diagram can be described using
only words and sentences, without the loss of information, albeit at the cost of
loosing its conciseness. Our aim in this paper is to present methods that allow
the same expressive power of graphical symbols to be used in other applications,
to replace or at least complement written language as the only form of dissemi-
nation of information.

A lot of applications already use graphical symbols, a testament to their use-
fulness in conveying information. In our application we would like to go a bit

A. Butz et al. (Eds.): SG 2005, LNCS 3638, pp. 90–102, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Generation of Glyphs for Conveying Complex Information 91

further and allow graphical symbols to be seamlessly combined, in the same way
that words are combined to create sentences, so that more complex information
can be conveyed. There are great advantages to taking this extra step. For ex-
ample, individual symbols for electronic components would be rather useless if
they couldn’t be connected together to form complete electronic circuits. In the
methods we have developed, we have focused on enabling this approach, whereby
various graphical symbols, or glyphs, representing concise information on their
own, can be combined to express the properties or behaviour of more complex
entities.

In developing these methods, we have focused on the communication of in-
formation about large organic molecules such as proteins, which are the building
blocks of the cells in biological organisms. A wealth of information is available for
proteins, for example their structural form, where in (or close to) a cell they are
typically found, what their function and behaviour is, what other molecules they
commonly bind to, and what subcomponents they are built from. Development
of applications where such information is presented has been increasing, and we
imagine that it would be very useful to have methods that allow the information
to be conveyed in a symbolic yet concise way through graphical representations.
We hope that developing such methods for one such specific application can lead
to similar methods being exploited in both biology and non-biology settings.

2 Overview and Related Work

The use of glyphs for conveying quantitative information is common. For ex-
ample, Wittenbrink et al. use varied glyphs that illustrate the uncertainty in
magnitude and direction within vector fields [25]. Rose and Wang similarly use
a method that creates dense iconic plots so that the user may discern patterns
in multivariate data [20]. Automatic generation of circular glyphs that commu-
nicate information about individual textures is explored by Battiato et al. [4].

Creating glyphs to communicate more abstract information that cannot be
quantified seems to be a process that requires more human involvement. Rib-
arsky et al. have developed an interface that allows users to create glyphs that
can be linked to specific ’domain knowledge’ [19]. In our approach, the glyph ge-
ometry can also be specified by the user, though the specification is done using
a context free grammar similar to the one used in L-systems. L-systems were
introduced by Lindenmayer to describe biological organisms [12], and later used
by Prusinkiewicz in the generation of plant geometries [17]. They can also be
used to describe fractals, and the variety of geometries that can be generated
using such systems is immense.

A glyph is simply created and stored as a string, in which characters specify
the various geometrical operations that create the glyph’s geometry. It is thus
easy to create new geometries simply by changing or concatenating such strings.
We exploit this form within a genetic algorithm that can create a large set of
diverse glyphs with minimal effort on the part of the user. Genetic algorithms
have been previously used for the generation of geometrical forms by Sims [22],

92 G.D. Pintilie, B. Tuekam, and C.W.V. Hogue

as well as for other design problems [9,18]. In our work, the many resulting ge-
ometries are automatically filtered into a library of distinct glyphs that have the
desired visual characteristics.

To automatically compare glyph geometries, we have looked at common ge-
ometry comparison methods. There are variety of such methods, and a good
survey is provided by Alt and Guibas [1]. Most of the typical distance mea-
sures such as the Hausdorff distance, don’t typically give a good measure of how
visually distinct two geometries are. A better approach is to use the iterative
closest point (ICP) algorithm [6]. This algorithm tries to find the best alignment
between two geometries such that the sum of the squared distances between a
number of corresponding sample points is minimized. We use a normalized form
of this sum as a measure of the visual distinctness between two glyphs.

Having a quantitative measure that ranks the visual distinctness between
glyphs also allows us to organize them in clusters according to their visual ap-
pearance. There are various clustering algorithms [7,11]; for example, one com-
mon approach for clustering points is to assign a point to the cluster whose
mean it is closest to. Because it would be hard to compute the mean of a num-
ber of geometries, we cannot use this approach. Instead we use the approach of
Voorhees [23], where clusters are formed based on average distances between the
individuals in each cluster.

We apply these methods to create graphical representations for proteins that
communicate their various properties. The most direct way to graphically por-
tray a protein is to draw its molecular structure, as many programs do [5,14,24].
These detailed representations are useful in many ways, however they are too
cumbersome to use when we just want to show the general characteristics of
the protein. A simpler glyph representation would be easier to understand and
comprehend all at once. Moreover the glyph representation could also be used to
portray other knowledge about the object that is not obvious from its physical
description.

Symbolic representations of proteins are already currently used in some ap-
plications [3,13,21]. These applications diagram the building blocks that proteins
consist of, however they use very few geometrical shapes and colors. We explore
ways to include more information into similar graphical representations. We
have created two different types glyphs for representing proteins, which we have
named ontoglyphs and proteoglyphs. Ontoglyphs make use of annotations for pro-
teins in the form of terms from the Gene Ontology dictionary [8]. Proteoglyphs
on the other hand communicate information about the structural components
of the protein. Ontoglyphs and proteoglyphs are built by combining a number
of smaller sub-glyphs, which are either hand-designed by users or generated by
a genetic algorithm.

3 Glyph Geometry

In this work we focus on glyphs that are composed of a single continuous line
that can take any 2-dimensional geometry, and can be either closed or open.

Generation of Glyphs for Conveying Complex Information 93

L LT LTD3 LTD3 Q LTD3 Q C

Fig. 1. A glyph is generated using geometrical operations. L creates the first line seg-

ment. Each new segment (dotted line) is affected another operation which follows: T

triangle, D3 divide into 3, skip, Q quadrilateral, C circle.

Internally, each segment in a glyph is represented using a Bezier curve [10], thus
the glyph can contain both straight and curved segments. The glyph geometry
is specified as a string, in which characters are used to represent geometrical
operations. Figure 1 diagrams how a glyph is constructed in this way.

In the bracketed string notations of Lindenmayer [12], a glyph string has the
following form:

a := Lpl (b) (1)

b := c(bn) | d (2)

c := Tpt |Cpc |Qpq |Dpd |B |Z (3)

d := |Rpr | Sps (4)

The glyph string must start with the line operation L (1), to which another
operation is applied from (2). An operation taken from (3), e.g. triangle T, circle
C, quadrilateral Q, divide D, back-segment B, or zig-zag Z, replaces the line
segment with n new segments, to which (2) is recursively applied in succession.
Alternatively, an operation from (4) may be applied to a segment, such as
which leaves it as it is and skips to the next segment, R which creates reflecting
geometry (which cannot be further modified), or S which shortens the segment
from the beginning or end. The parameters pl, pt, pc, ... specify values used by
the geometrical operations, though they may be omitted in which case default
values are used. All the operations and their parameters are listed and described
in the Appendix. Note that the brackets in equations (1-4) are not needed since
the grammar is unambiguous, and are usually left out of the actual glyph strings
for simplicity.

4 Glyph Design Using a Genetic Algorithm

Genetic algorithms mimic the evolutionary process observed in nature, which
creates a diverse population of individuals that tend to become more complex
over time. A genetic algorithm involves mutation and combination of genotypes,
where the genotypes contain the code necessary to create living organisms or
phenotypes. Due to natural selection, only phenotypes that are fit survive. With
this pruning process, nature has found a way to create many diverse individuals
without exhausting every possible genotype, instead only propagating the geno-
types that are likely to create fit phenotypes.

94 G.D. Pintilie, B. Tuekam, and C.W.V. Hogue

+ =

LB(C)(1) LBT()(2) LBTC

Fig. 2. A complete geometrical operation taken from one parent glyph (1) is introduced

into another (2) to create a new ’offspring’ glyph

Fig. 3. Glyphs in the starting population are in the top row. The bottom row shows

some of the resulting glyphs after ∼300 steps with the genetic algorithm.

Using the same evolutionary approach, we can create many glyph geometries
that are varied and satisfy some desirable fitness criteria. For this we imagine
that glyph strings are genotypes and that glyph geometries are the resulting phe-
notypes. Starting with a set of varied, user-specified genotypes, new genotypes
are created by combining random pairs of existing genotypes. The combination
process is illustrated in Fig. 2.

The glyph resulting from a combination operation is added to the population
if it meets some fitness criteria. We define the fitness of a glyph based on its visual
appearance: a glyph is considered fit if all its segments are non-intersecting, and
if non-connected segments are at least some minimum distance d from each
other. These criteria are meant to ensure that the resulting glyphs have the
form of a single continuous line that doesn’t intersect itself. The constant d is
chosen depending on the size of the glyphs being created; for example if the
glyphs are to fit into a square measuring 100x100 units, choosing d = 5 results
in glyphs having geometries that don’t appear to intersect, even when scaled
down substantially. Figure 3 shows an example starting population and some of
the resulting geometries.

5 Comparison of Glyph Geometries

The genetic algorithm can generate a very large population of glyphs, and even
if every genotype is different, it is possible that some phenotypes will be similar
and possibly even identical (e.g. two stacked triangles form a quadrilateral). To
prune similar glyphs from the population, a measure that computes the visual
distinctness of two glyphs is needed. Such a measure would be equal to zero if the
glyphs are visually identical, or otherwise take a value that increases proportion-
ally with the dissimilarity between the two glyphs. To compute this similarity
measure, we use the iterative closest point (ICP) algorithm [6].

Generation of Glyphs for Conveying Complex Information 95

The ICP algorithm computes the alignment between two geometries which
is optimal (in a least-squares sense). An initial alignment is performed such that
the centers of the the two geometries coincide. A set of points is created by point-
sampling one of the geometries, and the closest point on the other geometry to
each sample point is found and added to a second set of points. The distance
between closest points represents a local misalignment, or dissimilarity, between
the two geometries. A normalized distance measure between the two glyphs can
thus be computed using the root mean square deviation (RMSD) formula:

d(gi, gj) = σij =

√
√
√
√

1
n

n∑

k=1

(pik − pjk)2, (5)

where gi and gj are the two glyphs being compared, pik and pjk are correspond-
ing closest points (one on each glyph), and n is the number of corresponding
points.

After the initial alignment, a transformation is found which when applied
to one of the glyphs decreases (on average) the distance between corresponding
points. After computing the new set of corresponding closest points for the same
initial sample points, the process is repeated as long as the RMSD decreases
significantly with each iteration. The original ICP algorithm also considers rota-
tional transformations that decrease the RMSD, however for our purposes this
is not necessary. This is because we consider two identical glyphs with different
orientations to be visually distinct, since glyphs are always displayed with the
same orientation.

Figure 4 shows several glyph comparisons along with the computed RMSD.
The number of sample points in each comparison can vary, since more complex
geometries require more sample points, however because the RMSD value is
normalized this value is factored out of the overall score. Thus pairs of glyphs
can be ranked based on how similar they are, regardless of their complexity.

Fig. 4. Comparison of pairs of glyphs using the RMSD as a measure of visual distinct-

ness. The RMSD is the number to the right of each pair of glyphs. In both columns,

the similarity between pairs of glyphs decreases from top to bottom while the RMSD

value increases.

96 G.D. Pintilie, B. Tuekam, and C.W.V. Hogue

6 Clustering of Glyph Geometries

The distance measure between glyphs can be used to automatically organize
a large number of glyphs into clusters. Doing this allows us to observe which
glyphs in a large set are similar to each other. It is also useful when the number
of glyphs needed is smaller than the size of the set, since by selecting only one
glyph from each cluster, glyphs that are more distinct from each other can be
used.

Our method creates a desired number of clusters from a large number of
glyphs, so that glyphs in one cluster are on average more similar to each other
than to glyphs in other clusters. The algorithm, based on the work of Voorhees
[23], first creates a cluster for every glyph, and then successively merges clusters
until the desired number of clusters is reached. The clusters to be merged are
picked so as to minimize the average-link cost function:

cAL =
1

|C1||C2|
∑

giεC1

∑

gjεC2

d(gi, gj), (6)

where d(gi, gj) is the distance measure between two glyphs gi and gj, defined
in Eqn. (5), with each glyph being from two different clusters C1 and C2. |C1|
and |C2| refer to the sizes of the two clusters. As Eqn. (6) indicates, to compute
the average-link cost of merging two clusters, we sum the distances between
every possible pair of glyphs, one from each cluster, and divide this value by the
total number pairs of glyphs considered. Figure 5 shows clusters created using
this approach. Other cost functions could also be used, such as the minimum or
maximum distance between any two glyphs from different clusters, which would
give slightly different results [7].

Fig. 5. Clusters of glyphs taken from a population generated using the genetic algo-

rithm. Each cluster is shown on a separate column. Note that it is possible that some

clusters contain only one glyph, if no other glyphs in the population are sufficiently

similar in geometry.

7 Applications

7.1 Ontoglyphs

An ontoglyph is used to communicate ontological information about the protein
it represents. Information about each protein is available as a list of annotations,

Generation of Glyphs for Conveying Complex Information 97

where each annotation is a term from the Gene Ontology dictionary [8]. Gene
Ontology terms relate to one another through parent-child relationships that
form a directed acyclic graph (DAG), which can also be seen as a hierarchy
where a child can have more than one parent. As the hierarchy is traversed
outward from the root, the terms become more and more specific; conversely
traversing toward the root we would encounter more and more general terms.

To graphically represent such annotations, we use a small number of cat-
egories, where each category is assigned one or more GO terms and a unique
user-designed glyph. The glyph is designed so that it is very distinct, and so
that it portrays the information associated with the category it represents in
an intuitive way. Alternatively, it should have a form that users already asso-
ciate with this information. To create an ontoglyph, the GO graph is searched
with each annotating term for its closest ancestor which belongs to a category.
(The ancestor term encompasses the same information as the annotation, albeit
in a more general way.) This results in a list of categories that best represent
the protein’s annotations, within the expressive power of the set of categories
previously defined.

The ontoglyph is built by inserting the glyphs of the computed cateogories
into the segments of a rectangle. The categories for an ontoglyph are divided
into three classes: localization, binding (or specificity), and function. The glyphs
belonging to localization categories are embedded into the left segment of the
rectangle, while the binding and function glyphs are embedded into the top
segment. Thus the ontoglyph is created with a string that has the form:

LBQDnS1..SnDmT1..TmR, (7)

where S1..Sn are strings for the glyphs to be embedded into the side segment
and T1..Tm are strings for the glyphs to be embedded into the top segment.
Note that the glyphs embedded into the left segment are reflected onto the right
segment by the ’R’ operation, and the ’B’ operation creates the bottom segment
of the rectangle. Figure 6 shows an example ontoglyph.

For a complete list of categories and glyphs that can be included into an
ontoglyph, and the biological information that each one communicates, we refer
the reader to the web site: http://seqhound.blueprint.org/cgi-bin/ontoglyphs.pl.
Table 1 lists the glyphs and categories used in the ontoglyph in Fig. 6. Because
the glyphs are always the same for each category, once the user has learned

Fig. 6. Ontoglyph for the protein with Gene Identifier (GI):29466. The sub-glyphs

along the side and top segments communicate ontological information about the

protein.

98 G.D. Pintilie, B. Tuekam, and C.W.V. Hogue

Table 1. Some of the categories and glyphs for representing information in ontoglyphs

Binding Function Location

Calmodulin
binding

Development Actin cytoskeleton

Cytoskeletal
protein binding

Cell motility and
structural activity

Cytoplasm

ATP binding

this basic alphabet, the characteristics of any protein can be discerned from its
corresponding ontoglyph. The total number of categories is kept relatively small
(at about 84), and so while an ontoglyph may not represent the information
contained in the annotations for a protein exactly, it still provides a general
view which can be very useful.

7.2 Proteoglyphs

Proteoglyphs are used to show any subcomponents that a protein may contain.
The largest subunits within a protein are known as conserved domains, and each
domain has its own structural and binding properties. In a proteoglyph, each
domain is shown with a separate glyph which communicates these structural
and binding properties. A domain can belong to one of several structural classes
based on [16]. Each class is associated with a base glyph, which illustrates the
properties of the class, and which is used to construct the domain glyph. These
classes are listed in Fig. 7. Binding properties for a domain are available in the
form of GO terms, and as for ontoglyphs, a number of binding categories can be
used to represent this information.

There are some ten thousand conserved domains in our database, and we
have generated a unique geometry to represent each one. We have used the

Fig. 7. Base glyphs for representing conserved domains. The left and right segments

in the bottom half of each base glyph are different depending on the class. From left

to right, the classes are: alpha, beta, alpha+beta, alpha/beta, membrane, small, and

structure unknown. The shape of the segments mimics the physical structure: alpha

structures are helix-like, and thus circular segments are used; beta structures are sheet-

like, and thus straight line segments are used. Classes encompassing both structures

use both curving and straight segments. The zig-zags in the base glyph for membrane

domains mimics how membranes are usually depicted in diagrams, and the base glyph

for small domains has smaller bottom segments.

Generation of Glyphs for Conveying Complex Information 99

genetic algorithm to generate them and the geometry comparison and clustering
techniques to ensure they are all visually distinct. The unique geometry can
effectively show whether two domain glyphs shown side by side refer to different
domains, even if they have the same binding and structural characteristics. Also,
we think that users may be able to identify a domain they are familiar with just
from its unique geometry, much as we readily recognize familiar faces amongst
many unfamiliar ones.

To create a domain glyph, the binding glyphs are inserted along the top
segment of the base glyph corresponding to its class, similarly to how they are
inserted into an ontoglyph, and the unique geometry for the domain is added
to the bottom segment. Once the domain glyphs for a protein have been de-
termined, the complete proteoglyph can then be constructed. A proteoglyph is
composed of a single line segment which mimics the form of a protein, which is
simply a chain of smaller molecules known as amino acids. Glyphs representing
conserved domains are inserted along this line at their respective positions, with
each glyph having a width matching the length of the domain that it represents.
A proteoglyph string has the following form:

LLrD(n ∗ 2 + 1)Ls(Ll1Li1..LlnLin) (G1 ..Gn), (8)

where r is the number of residues the protein contains, n is the number of
domains, s is the residue at which the first domain starts, l1..ln are the lengths
of domains 1..n, i1..in are the number of residues between a domain and the
next domain or the end of the sequence, and G1..Gn are the glyphs for domains
1..n respectively. An example proteoglyph is shown in Figure 8.

Fig. 8. Proteoglyph showing 4 conserved domains in a protein (GI:1081), their positions

in the protein and relative sizes. Each domain glyph shows what structural class the

domain belongs to and its binding properties when known. It can be seen that all the

domains are different since their unique geometries differ.

8 Conclusion

We have presented methods for creating graphical symbols, or glyphs, which
communicate various characteristics of complex entities such as proteins. Glyphs
are created and stored as strings, so combining them together into more com-
plex glyphs is a straightforward process. We have introduced two new graphical
representations for proteins, ontoglyphs and proteoglyphs, which make use of

100 G.D. Pintilie, B. Tuekam, and C.W.V. Hogue

an alphabet of sub-glyphs as well as a large set of unique glyphs to graphically
communicate some of the rich information associated with such entities. Both
representations are already used in the web interfaces of BIND [2], which is a
database of protein interactions, and Seqhound [15], which stores other types of
biological information. Ontoglyphs are also used in a graphical application sup-
ported by BIND, the Bind Interaction Viewer (BIV), which diagrams protein
interaction networks.

We believe that once users have learned the basic geometrical properties of
ontoglyphs and proteoglyphs, and the sub-glyphs that are used to create them,
they can quickly get an idea of a protein’s functional, localization, behavioral,
and structural characteristics from these representations. Because sub-glyphs
intuitively depict the characteristics they communicate, and also having used
symbols which biologists are already familiar with, we also believe that this
system would not take a long time to become familiar with. A more concrete
measure of its effectiveness is yet to be determined. While this is pursued, we
hope that the methods we have presented can be further applied and developed
to create more effective graphical communication tools.

Acknowledgements

This work was supported by grants to C.W.V.H. from Genome Canada through
the Ontario Genomics Institute, from the Canadian Institute of Health Research
and the Ontario R&D Challenge fund.

References

1. Alt, H. Guibas, L. J.: Discrete Geometric Shapes: Matching, Interpolation, and
Approximation. In: Sack, J. R., Urrutia, J. (eds.): Handbook of Computational
Geometry. Elsevier Science Publishers, Amsterdam, Holland, B.V. North (1999)
121–153

2. Alfarano, C., Andrade, C.E., Anthony, K., Bahroos, N., Bajec, M., ...: The
Biomolecular Interaction Network Database and related tools 2005 update. Nu-
cleic Acids Res. 33(Database Issue) (2005) D418–D424

3. Bateman, A., Birney1, E., Cerruti, L., Durbin, R., Etwiller1, L., Eddy, S.R.,
Griffiths-Jones, S., Howe, K.L., Marshall, M., Sonnhammer, E.L.L.: The Pfam
Protein Families Database. Nucleic Acids Research 30(1), (2002) 276–280

4. Battiato S., Gallo G., Nicotra,S.: Glyph Representation of Directional Texture
Properties. Journal of WSCG 10(1-3) (2002) 48–54

5. Bergman, L. D., Richardson, J. S., Richardson, D. C., Brooks. J.F.P: VIEW - an ex-
ploratory molecular visualization system with user-definable interaction sequences.
Proceedings of SIGGRAPH 71 (1993) 117–126

6. Besl, P. J., MacKay, N. D.: A Method for Registration of 3-D Shapes. IEEE Trans-
actions on Pattern Analysis and Machine Inteligence 14 (1992) 239–256

7. Fasulo, D.: An Analysis of Recent Work on Clustering Algorithms. Department of
Computer Science & Engineering, University of Washington (1999)

8. The Gene Ontology Consortium: Gene Ontology: tool for the unification of biology.
Nature Genetics 25 (2000) 25–29

Generation of Glyphs for Conveying Complex Information 101

9. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learn-
ing. Addison-Wesley, Reading Massachusetts (1989)

10. Hoffmann, C.M.: Geometric and solid modeling: an introduction. Morgan Kauf-
mann Publishers Inc., San Francisco, California (1989)

11. Jain, A.K., Dubes, R.C.: Algorithms for clustering data. Prentice-Hall (1988)
12. Lindenmayer, A.: Mathematical models for cellular interaction in development,

Parts I and II. Journal of Theoretical Biology 18 (1968) 280–315
13. Marchler-Bauer, A., Panchenko, A.R., Shoemaker, B.A., Thiessen, P.A., Geer,

L.Y., Bryant, S.H.: CDD: a database of conserved domain alignments with links to
domain three-dimensional structure. Nucleic Acids Research 30(1) (2002) 281–283

14. Martz, E.: 3D Molecular Visualization with Protein Explorer. In: Krawetz, S.A.,
Womble, D.D. (eds.): Introduction to Bioinformatics, Humana Press, Totowa NJ
(2003) 565–586

15. Michalickova K., Bader G.D., Dumontier M., Lieu H., Betel D., Isserlin R., Hogue
C.W.: Seqhound: biological sequence and structure database as a platform for
bioinformatics research. BMC Bioinformatics, 3(1), (2002) 32–45

16. Murzin, A.G., Brenner, S.E., Hubbard, T., Chothia, C.: SCOP: a structural clas-
sification of proteins database for the investigation of sequences and structures. J.
Mol. Biol. 247 (1995) 536–540

17. Prusinkiewicz, P., Hanan, J.: Visualization of botanical structures and processes
using parametric L-systems. In: Scientific Visualization and Graphics Simulation.
J. Wiley & Sons, Chichester (1990) 183–201

18. Renner G., Ekrt A.: Genetic algorithms in computer aided design. Computer-Aided
Design 35(8) (2003) 709–726

19. Ribarsky, W., Ayers, E., Eble, J., Mukherjea, S.: Glyphmaker: Creating customized
visualizations of complex data. IEEE Computer 27(7) (1994) 57–64

20. Rose, S.J., Wong, P.C.: DriftWeed: a visual metaphor for interactive analysis of
multivariate data. Visual Data Exploration and Analysis VII (Proceedings of SPIE)
3960 (2000) 114–121

21. Schultz, J., Copley, R.R., Doerks, T., Ponting, C.P., Bork, P.: SMART: A Web-
based tool for the study of genetically mobile domains. Nucleic Acids Res 28 (2000)
231–234

22. Sims, K.: Evolving Virtual Creatures. Computer Graphics (1994) 15–22
23. Voorhees, E. M.: Implementing Agglomerative Hierarchic Clustering Algorithms for

use in Document Retrieval. Information Processing & Management 22 (6) (1986)
465–476

24. Wang Y., Geer L.Y., Chappey C., Kans J.A., Bryant S.H.: Cn3D: sequence and
structure views for Entrez. Trends Biochem Sci. 25(6) (2000) 300–302

25. Wittenbrink, C.M., Pang, A.T., Lodha, S.K.: Glyphs for Visualizing Uncertainty in
Vector Fields. Proceedings of IEEE Transactions on Visualization and Computer
Graphics 2(3) (1996) 266–279

102 G.D. Pintilie, B. Tuekam, and C.W.V. Hogue

Appendix: Geometry Operations and Examples

Operation Effect Parameters
segments

created

L line L: length (L100) 1A: angle (A0)

T triangle
h1|H: height (h0.5)

2o|O: position of peak along
base line (o0.5)

C circle
h|H: height (h0.5)

2 or 4o|O: perp. offset of center
from base line (o0)

Q quadrilateral

h|H: height (h0.5)

3w|W: top width (w1)
o|O: offset of top segment along

base line (o0)

Dn divide
n: number of segments (1)

n[l|L]n: length of each
segment ([l1/n]n)

S shorten

b|B: length to shorten from

1beginning (b0)
e|E: length to shorten from

end (e0)

B add segment 2going backward

Z
zigzag 3(same as BB)

R reflect b|B: length to shorten reflected x 2

geometry from beginning
none 0

L LT LTh1o1 LC LCh-.5o-.5 LQ LQh.75w.5o.25

LD2T C LD3l.2l.6Qh1 LBC D2T Q LZTT Th-.5o1 Q D3 LBQh.25w.5
Th-.25 Ch.5o.5 Ch-.5o-.5 Se5 Rb5 o-.25 To-.25 R

1 Small caps indicates the value is multiplied by the length of the segment.
2 Number of segments reflected, which are all subsequently skipped.

	Introduction
	Overview and Related Work
	Glyph Geometry
	Glyph Design Using a Genetic Algorithm
	Comparison of Glyph Geometries
	Clustering of Glyph Geometries
	Applications
	Ontoglyphs
	Proteoglyphs

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

