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Cryo-electron microscopy produces 3D density maps of molecular machines, which consist of various
molecular components such as proteins and RNA. Segmentation of individual components in such maps
is a challenging task, and is mostly accomplished interactively. We present an approach based on the
immersive watershed method and grouping of the resulting regions using progressively smoothed maps.
The method requires only three parameters: the segmentation threshold, a smoothing step size, and the
number of smoothing steps. We first apply the method to maps generated from molecular structures and
use a quantitative metric to measure the segmentation accuracy. The method does not attain perfect
accuracy, however it produces single or small groups of regions that roughly match individual proteins
or subunits. We also present two methods for fitting of structures into density maps, based on aligning
the structures with single regions or small groups of regions. The first method aligns centers and principal
axes, whereas the second aligns centers and then rotates the structure to find the best fit. We describe
both interactive and automated ways of using these two methods. Finally, we show segmentation and
fitting results for several experimentally-obtained density maps.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Density maps obtained by cryo-electron microscopy give much
insight into the structure and function of molecular machines
(Ludtke et al., 2008; Ranson et al., 2006; Valle et al., 2003; Lander
et al., 2008; Zhou et al., 2001). An important task in the analysis of
such maps is segmentation, which aims to identify regions belong-
ing to individual proteins or subunits. Segmentation is a hard prob-
lem, and it is still mostly accomplished interactively. It has been a
widely studied subject, for example in computer vision (Shapiro
and Stockman, 2002) and medical image analysis (Pham et al.,
2000). Approaches to segmentation include edge detection (Dollar
et al., 2006), active contours (Kass et al., 1988), level sets (Malladi
et al., 1995), graph partitioning (Shi and Malik, 2000; Felzenszwalb
and Huttenlocher, 2004), random walks (Grady, 2006), mean-shift
(Fukunaga and Hostetler, 1975; Comaniciu and Meer, 2002) and
watershed (Beucher and Lantuéjoul, 1979). Scale-space filtering
has been used along with some of these methods; it involves
smoothing, and reduces the number of segmented contours or re-
ll rights reserved.
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gions while retaining salient features (Witkin, 1984; Perona and
Malik, 1990; Lifshitz et al., 1990; Lindeberg, 1996; Ren, 2008;
Braga-Neto and Goutsias, 2005; Leung et al., 2000).

For the segmentation of cryo-EM density maps into individual
proteins or subunits, several of these methods have been used,
for example the level-set and watershed methods. The level-set
method (Baker et al., 2006) heavily depends on prior placement
of seed points in each region to be segmented. Automatic classifi-
cation of seed points is yet an unsolved problem, and hence this
method still depends extensively on user guidance. The watershed
method is very effective in lower-resolution density maps, and re-
quires very little user guidance (Volkmann, 2002; Liu et al., 2006).
However it typically produces too many regions, an effect often re-
ferred to as oversegmentation. Methods for dealing with overseg-
mentation include grouping of regions based on topological
persistence (Paris and Durand, 2007) or varying the step size in
the immersive approach (Volkmann, 2002). They generally do
not produce accurate segmentations because the metrics they
use are based on local information, which is unreliable in the pres-
ence of noise.

Since accurate automated segmentation methods remain
elusive, segmentation of cryo-EM density maps is still mostly
ryo-EM density map segmentation by watershed and scale-space filtering,
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performed manually. Software tools for interactive segmentation
of cryo-EM density maps allow users to trace out regions
interactively (Goddard et al., 2007; Heymann and Belnap, 2007;
Pruggnaller et al., 2008). This is a labor-intensive task that can take
many hours to accomplish, and requires a lot of prior knowledge
and skill.

In recent work, we used a multi-scale segmentation approach,
which applies the immersive watershed algorithm to progressively
smoothed maps (Pintilie et al., 2009). It produces regions that
roughly match proteins or subunits, and requires very little user
interaction. In this paper we present a similar method, which also
uses the immersive watershed method, but then groups the re-
gions using progressively smoothed maps. The process of progres-
sively smoothing an input signal is known as scale-space filtering
(Witkin, 1984).

Grouping of regions by scale-space filtering does not require
watershed calculations on smoothed maps, as the method in Pint-
ilie et al. (2009) did, and is consequently faster. The segmentation
accuracy is also slightly better. As in our prior work, we apply the
method to density maps generated from structures obtained from
the Protein Data Bank (PDB), and quantitatively measure its accu-
racy. We compare the accuracies obtained with both methods to
each other and also to the highest accuracies attainable by group-
ing watershed regions. Recognizing that this method is incapable
of finding perfect segmentations, we also augment this computa-
tional approach with interactive grouping and ungrouping of re-
gions, allowing the researcher to manually modify the results
obtained with cryo-EM maps based on any additional information
they may have.

We also present two methods for fitting molecular structures
into density maps, based on alignment of the structures with seg-
mented regions. Previously reported fitting methods include man-
ual placement (Goddard et al., 2007; Jones et al., 1991; Wriggers
and Birmanns, 2001), exhaustive search, e.g. EMFIT (Rossmann
et al., 2001), DOCKEM (Roseman, 2000), SITUS (Wriggers et al.,
1999), URO (Navaza et al., 2002), Foldhunter (Jiang et al., 2001),
FRM (Kovacs et al., 2003), and ADP_EM (Garzon et al., 2007), and
matching of feature points (Birmanns and Wriggers, 2007), or
surfaces, e.g. 3SOM (Chacón and Wriggers, 2002; Ceulemans and
Russell, 2004). These methods can produce good fits, however they
also have limitations. For example, manual placement is tedious
and prone to error. Exhaustive search can take several minutes
on even small maps, and the running time scales poorly with
map size. Methods based on matching features can be faster, how-
ever they can be less reliable since features can be affected by
noise.

The fitting methods we present are based on the alignment of
structures with segmented regions, either by alignment of centers
and principal axes, or by alignment of centers followed by rota-
tional search. The resulting alignments are locally refined so as to
optimize the cross-correlation score. The method that aligns prin-
cipal axes is extremely fast, however it does not always find the
Fig. 1. From left to right, the images illustrate the first three and the last step during th
underlying density function, which is discretized at evenly spaced grid points. Each point
point in order of decreasing density value: the point is added to a new region when none
region if it is adjacent to a point already in that region. In the end, two regions result in th
with squares. Each region thus corresponds to a local density maximum (circled in the r
between the regions are points with the lowest density between local maxima.

Please cite this article in press as: Pintilie, G.D., et al. Quantitative analysis of c
and fitting of structures by alignment to regions. J. Struct. Biol. (2010), doi:10.
right fit; rotational search is more reliable, however it too might
fail if the shapes of the structure being fit and the region it is
aligned with are considerably different. Despite this, these fitting
methods are especially useful in an interactive setting. For exam-
ple, the user can select a structure and a region to align it with,
and the fit is achieved in only a few seconds.

Both the segmentation and fitting methods have been imple-
mented in a software tool, Segger (http://people.csail.mit.edu/
gdp/segger, 2009), which is publicly available as a plug-in for
the molecular visualization software Chimera (Pettersen et al.,
2004).
2. Methods

2.1. Segmentation

2.1.1. Watershed segmentation
We use the immersive watershed algorithm to segment a den-

sity map (Vincent and Soille, 1991). The algorithm is illustrated in
Fig. 1 in with a 1-dimensional map. For a 3D density map, the pro-
cess is the same: all density values in the density map are first
sorted, and then considered in descending order. For each density
value, if the corresponding voxel is not adjacent (26-connected) to
any voxels in an existing region, it is assigned to a new region. If it
is adjacent to one or more voxels from a single region, it is assigned
to that region. If it is adjacent to voxels from two or more regions,
the adjacent regions are sorted by the number adjacent voxels in
each region in decreasing order, and the voxel being considered
is assigned to the first region in the list. Each resulting region con-
tains a number of adjacent voxels, and the boundaries between re-
gions are the points with the lowest densities between local
maxima.
2.1.2. Grouping of regions by scale-space filtering
The process of successively smoothing a signal is known as

scale-space filtering (Witkin, 1984). Here we apply it to a density
map, in order to group regions obtained using the watershed meth-
od. The process is illustrated in Fig. 2. The density map to be seg-
mented is labeled D0. The density map Di, where i = 1–3, is
obtained by smoothing Di-1. The regions in R0 are given by the wa-
tershed method applied to the map D0, and M0 is the set of points
corresponding to the local maxima. Once the smoothed map D1 is
obtained, each of the points in M0 are moved by steepest ascent
from their original positions to the local maxima in D1. When
two or more points converge to the same local maximum, they
are replaced by a single point at that position, and the correspond-
ing regions are grouped. When two or more regions are grouped,
they are drawn using a single enclosing surface, so that they appear
as a single region. The updated positions in M0 become M1, and the
grouped regions become R1. The same process is repeated for the
positions in M1, yielding M2 and R2, and so on.
e immersive watershed algorithm for a 1D map. The smooth curve represents the
is drawn at a height proportional to its density value. The algorithm considers each
of its adjacent points are already in an existing region, or it is added to an existing

is example, containing either the points labeled with triangles or the points labeled
ight-most image), which is the first point added to it. The points on the boundaries

ryo-EM density map segmentation by watershed and scale-space filtering,
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Fig. 2. The watershed segmentation of a density map, D0, is a set of regions, R0, with regions corresponding to points positioned at every local density maxima, M0. Density
maps are shown using iso-surfaces, regions are drawn using smooth surfaces that enclose contained voxels, and points of local density maxima are drawn using spheres.
Grouping by scale-space filtering moves the points in M0 by steepest ascent to local density maxima in D1, yielding new points M1. When two or more points in M1 coincide,
the corresponding regions are grouped, as shown in the images on the right, producing R1. R3 results after two more smoothing and grouping steps, in which each region
corresponds to a single protein. The illustrated density map was generated from PDB:1xck at 10 Å resolution.
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2.1.3. Segmentation procedure and parameters
Three parameters are used for the segmentation and grouping

procedures: a segmenting threshold, a smoothing step size, and
the number of smoothing steps. The threshold affects the resulting
regions much like it affects the iso-surface visualization of the den-
sity map. At higher thresholds, the denser inner regions are seg-
mented. In particular, in high resolutions maps, at high threshold
values, the backbone and secondary structures are typically seen.
At lower thresholds, a more complete envelope of each protein
or subunit is segmented.

The smoothing step size specifies the standard deviation of the
Gaussian kernel used to smooth the density map, and thus deter-
mines how much smoothing is performed at each step. For exam-
ple, a step size of �3 Å produces a small decrease in the number of
local density maxima and small changes in their locations. Smaller
step sizes are preferred, since they produce more gradual changes,
however larger steps may sometimes be desired to deal with noisy
maps, since more smoothing suppresses more noise.

Grouping by scale-space filtering is performed for a number of
specified smoothing steps. Optionally, the user can have the pro-
cess stop if the number of regions drops below a given number
(e.g. fro GroEL, the user might enter 14, since it contains 14 pro-
teins). The ideal result is such that regions correspond to individual
proteins or subunits. If too many steps are taken, the results may
be such that single regions span more than one protein or subunit.
In this case, the user can backtrack to a previous set of regions,
where small groups of regions correspond to single proteins or
subunits. From there, regions corresponding to the same protein
or subunit can be interactively grouped, or grouped based on struc-
tures aligned to groups of regions, as will be further detailed below.
2.2. Fitting of structures into density maps

Fitting of a structure into a density map involves positioning
and orienting the structure so that it best overlaps a corresponding
component in the density map. In this paper we only consider ri-
gid-body fitting, which assumes that the structure being fit, which
might have been obtained for example by X-ray crystallography,
Please cite this article in press as: Pintilie, G.D., et al. Quantitative analysis of c
and fitting of structures by alignment to regions. J. Struct. Biol. (2010), doi:10.
has approximately the same conformation in the cryo-EM density
map. Moreover, the methods we present assume that the structure
being fit has roughly the same shape as the regions it is aligned
with. The fitting methods will likely to fail if these assumptions
do not hold, and also in the presence of reconstruction artifacts,
such as a missing wedge in tomography.
2.2.1. Density cross-correlation metric
During the fitting process, a metric that reflects the quality of

the fit is optimized, with the assumption that the correct fits are
given by position and orientation parameters that globally maxi-
mize this score. Several metrics are possible, with the most com-
mon being the density cross-correlation score (Wriggers and
Chacón, 2001). This score is computed between a simulated map
of the structure being fitted, translated and rotated by the trans-
form T, and the reference density map, using the formula:

ccðTÞ ¼
~u �~v
j~ujj~vj ¼

Pn
i¼1uiv iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1u2
i

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1v2

i

q ; ð1Þ

In the above equation, ~u and ~v are vectors containing n scalar val-
ues. The vector ~u contains density values above a threshold, which
can be set by the user, at grid points in the density map generated
from the structure being fit, after application of the transform T. The
vector ~v contains density values from the reference density map in
which the structure is being fit, calculated by trilinear interpolation
at the positions from which the density values in ~u are taken.
2.2.2. Local refinement
Local refinement adjusts the position of the structure so as to

increase the cross-correlation score. We use the fit in map function
provided by Chimera (Goddard et al., 2007), which translates and
rotates the structure in the direction of the density gradient. Other
local refinement methods have been reported, for example, Monte-
Carlo random search (Lorenzen and Zhang, 2007). We use the gra-
dient-based method in Chimera because we found it to be robust
and fast.
ryo-EM density map segmentation by watershed and scale-space filtering,
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2.2.3. Alignment of structures with regions
The local refinement process locally maximizes the cross-corre-

lation, and thus if the initial placement of the structure is not close
to a global maximum, an incorrect fit is produced. To produce
placements of the structure in the density map, we align it to a sin-
gle region or a small group of regions produced by segmentation
and grouping by scale-space filtering. Two methods are described
here for creating such alignments: the first aligns centers and prin-
cipal axes, and the second aligns centers and then exhaustively ro-
tates the structure to find the best fit.

2.2.3.1. Principal-axes transform. The principal axes of a structure
are computed directly from its atomic positions. The first moment
of these points is their center of mass, and the three eigenvectors
and eigenvalues of the second moment tensor give the principal
axes and their relative lengths. The principal axes of the region(s)
that the structure is being aligned to are also computed in the same
way, but using the positions of all the voxels in the region(s). The
transform aligns the centers of mass and principal axes in order
of decreasing relative lengths. The principal axes are coarse shape
descriptors and are affected very little by noise or small differences
in the structure and region being aligned.

The alignment of two shapes using the principal-axes transform
is illustrated for 2D shapes in Fig. 3. The signs of the vectors defin-
ing the principal axes are ambiguous, which leads to two possible
alignments in 2D and four possible alignments in 3D. In each of the
four alignments for 3D shapes, either none or two of the three prin-
cipal axes are reversed. Reversing one or three axes results in a
reflection, which is not a valid alignment. Each of the four align-
ments is first locally refined, producing four possible fits of the
structure in the map. The fit with the highest cross-correlation
score is kept.

2.2.3.2. Rotational search. The principal-axes transform can be ex-
pected to yield correct fits for structures that are asymmetric (i.e.
not spherical, or rod-shaped). When the principal-axis alignment
method does not produce a good fit, as indicated by visual inspec-
tion and a low cross-correlation score, an alternate alignment
method can be used. This method first aligns the centers of mass
of the structure and region(s), and then coarsely samples rotational
space. Each rotated alignment is first locally refined, and the result-
ing fit with the highest cross-correlation score is kept. This method
is more thorough and thus also more reliable, although slower,
since more alignments are considered. It is similar to exhaustive
search except that only rotational degrees of freedom are
discretized.

2.2.4. Interactive fitting of structures to regions
One way to determine which region or group of regions that a

structure should be aligned with is for the user to interactively se-
lect them. The alignment is then performed using the principal-
axes transform first, since it is faster than rotational search. If the
resulting fit does not look right, or if the cross-correlation score
is low, rotational search can be used to see if a better fit is found.
When the structure is to be aligned with a group of regions, and
Fig. 3. Illustration of the principal-axes transform for 2D shapes. The transform
aligns centers of mass and principal axes. The signs of the principal axes are
ambiguous; thus two alignments are possible in this 2D example.

Please cite this article in press as: Pintilie, G.D., et al. Quantitative analysis of c
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the user is not sure which group gives the best fit, a single region
can be selected, and groups of adjacent regions can be generated
automatically starting with that region. The structure is then
aligned to all groups of regions and the resulting fit with the high-
est cross-correlation score is kept. Again the principal-axes trans-
form is used first, followed by rotational search if necessary. The
automatic generation of groups is described below.

2.2.5. Automated alignment of structures to regions
The structure can also be aligned to groups of regions that are

automatically generated from all segmented regions. Again, the
principal-axes alignment method is used first, followed by rota-
tional search if the resulting fits do not appear to be correct or pro-
duce low cross-correlation scores. After aligning a structure to all
groups, the resulting fits are sorted in order of decreasing cross-
correlation score, and the first n fits are kept, where n is the num-
ber of times the structure is expected to appear in the density map.
The number n can be determined by inspecting the cross-correla-
tion scores, since cross-correlation scores of incorrect fits tend to
be much lower than cross-correlation scores of correct fits. For
the fits kept, the regions overlapping the fitted structure are
grouped, to create single regions corresponding to the fitted struc-
ture. This process is illustrated in Fig. 4.

2.2.6. Generation of groups of adjacent regions
The goal in this process is to consider all possible groups of

adjacent regions, so that when the structure is aligned with one
or more of these groups, the correct fit is found. An exhaustive enu-
meration of all possible combinations of regions could generate a
very large number of groups. However, we require that the groups
contain adjacent regions, and since each region is adjacent to only
a small number of other regions, the number of possible groups is
drastically reduced. Two regions are considered adjacent if at least
one voxel in one region is adjacent to a voxel in the other region. In
a group of adjacent regions, every region is adjacent to at least one
other region. For generality, it is also possible for a group to consist
of a single region.

To automatically generate groups of adjacent regions, a recur-
sive algorithm based on a queue is used. Each element of the queue
is a group of adjacent regions remaining to be processed. The
queue is initialized either with a single group containing the region
selected by the user, or the same number of groups as segmented
regions, with each group containing a different segmented region.
In the former case, all groups generated include the selected re-
gion, and in the latter, the groups generated include every seg-
mented region. At each step, a group is removed from the front
of the queue and processed. The algorithm stops when the queue
becomes empty.
Fig. 4. A structure is aligned with automatically generated groups of segmented
regions, producing many potential fits. The fit with the highest cross-correlation
score is taken.

ryo-EM density map segmentation by watershed and scale-space filtering,
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Fig. 5. Illustration of the shape-match score, which is used to quantitatively
measure the difference between two regions. The score is 0 when the regions are
disjoint, and 1 only when they cover exactly the same area.
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In parallel, a list of resulting groups is maintained. This list of
groups is initially empty. A group is added to this list only if is dif-
ferent than any of the groups already in the list. When a group is
removed from the queue, it is ignored if it is the same as a group
currently in the list. Otherwise it is added to the list. Furthermore,
if the volume of the group is smaller than the volume of the struc-
ture to be fit, further regions are considered for addition to the
group. First, all regions that are adjacent to at least one region in
the group are listed. All possible combinations of these adjacent re-
gions are added to the group to create new groups, and all these
new groups are added to the queue.

2.2.7. Filtering of groups based on volume and bounding-radius ratios
When considering a structure for alignment to groups of re-

gions, the groups are first filtered to remove groups that are not
similar to the structure, and thus which would not create a correct
fit. Considering fewer groups for each structure reduces the num-
ber of alignments, and thus makes the automated process faster.
The groups are filtered using two metrics: the ratio of volumes
and ratio of bounding radii.

The bounding radius of a structure is the largest distance from its
center to any of the atoms it contains. The bounding radius of a
group of regions is the largest distance to any of the voxels in any
of the regions, from the center of all the voxels in every region in
the group. The volume of a group of regions is the number of com-
bined voxels from all the regions in the group, multiplied by the vol-
ume of each voxel. The volume of a structure is computed from a
density map generated from its atomic coordinates: it is the number
of voxels with density values above a threshold, multiplied by the
volume of each voxel. The threshold can be adjusted by the user,
with the goal of making the iso-surface look similar to segmented
regions. This would also make the volume of the structure and the
volume of the group of regions it correctly aligns with similar, which
would mean that this group would not be eliminated by filtering.

To compute the volume ratio, the difference between the vol-
ume of the structure and the volume of the combined regions in
a group is first calculated. The absolute value of this difference is
then divided by the volume of the structure to get the ratio. If this
ratio is greater than a cut-off value, (we use 0.75), the group is ig-
nored. The above process is the same for the bounding radius, with
a cut-off of 0.3. These values were determined by starting with
small values, and increasing them until all the correct fits were
found for the structures considered here. They can be set to differ-
ent values by the user if necessary. Decreasing them speeds up the
process but increases the risk that the correct fit may not be found,
while increasing them will make the process take more time but
increases the chances that the correct fits will be found.

2.3. Segger

The multi-scale segmentation and fitting procedures are per-
formed using the Segger software (http://people.csail.mit.edu/
gdp/segger, 2009), available as a plug-in for Chimera (Pettersen
et al., 2004). The plug-in is written mostly in Python, making
extensive use of routines already implemented in Chimera. The
immersive watershed algorithm was compiled in C++ for speed.
The smoothing is performed using the Gaussian filter method in
Chimera, which performs the operation in Fourier space for
efficiency.

2.4. Generating a density map from a structure

A density map is generated from a structure using the molmap
command in Chimera. A grid is created around the structure, and
the values of Gaussian functions centered at each atom position
are added at each grid point. The standard deviation of every
Please cite this article in press as: Pintilie, G.D., et al. Quantitative analysis of c
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Gaussian function is set to 0.187r, with r being the desired resolu-
tion. This formulation makes the Fourier transform of each Gauss-
ian half its maximum at wavenumber 1/r, similar in principle to
the FSC0.5 criterion used to determine the resolution of an experi-
mentally-obtained density map (van Heel and Schatz, 2005).

2.5. Segmentation accuracy

The segmentation accuracy is quantitatively measured by
applying the segmentation method to density maps generated
from X-ray structures. The maps are masked using atomic
positions in each individual protein or subunit. We call these
protein-masked regions if the masking structure is of a protein, or
subunit-masked regions if the structure is of a subunit (e.g. ribo-
some subunit). The regions obtained with the watershed method
and grouping by scale-space filtering are compared to protein-
masked or subunit-masked regions to determine the segmentation
accuracy.

To generate a protein-masked region or a subunit-masked re-
gion, all voxels in the density map that are closer than 2.0 Å to
any atom in the protein or subunit keep their density values, and
all others are given density values of 0. The value of 2.0 Å is chosen
because it is close to what the radius of an atom is when drawing a
molecular surface for a structure. The voxels in the density map
with density value lower than the threshold used to segment the
map are also given density values of 0. The remaining voxels with
non-zero density value represent the protein-masked or subunit-
masked region.

2.5.1. Shape-match score
Segmented regions are compared to protein-masked or sub-

unit-masked regions using a shape-match score. Similar to the seg-
mentation accuracy metric used in Garduno et al. (2008), this score
is defined as follows:

sm ¼ volumeðR \ GÞ
volumeðR [ GÞ ð2Þ

In the above equation, volumeðR \ GÞ is the volume of the intersec-
tion of regions R and G, and volumeðR [ GÞ is the volume of the un-
ion of the two regions. The shape-match score will be 0 if the two
regions do not match at all (the intersection will have 0 volume),
and it will be 1 if they match exactly (the volumes of the intersec-
tion and the union will be the same). Fig. 5 illustrates this metric for
2D shapes. Both regions being compared are defined by voxels on
the same grid, so the intersection and union operations are per-
formed directly on these sets of voxels.

2.5.2. Maximum accuracy for watershed segmentation
We also measure what is the most accurate grouping attainable

for watershed regions in R0, obtained from the non-smoothed map
ryo-EM density map segmentation by watershed and scale-space filtering,
1016/j.jsb.2010.03.007
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Table 1
Results of segmentation and grouping of regions by scale-space filtering, in maps generated from structures from the protein data bank (PDB). All maps were generated at a
resolution of 10 Å, the smoothing step size used for all of them was 3.0 Å.

Structure PDB ID Map size Number of proteins or subunits Number of regions obtained Number of steps Time (s)

GroEL 1xck 108 � 106 � 108 14 14 20 21
Thermosome 1q3s 109 � 109 � 112 16 16 17 20
Ribosome subunits 2avy, 2aw4 139 � 155 � 161 2 2 68 114
HK97 procapsid 2gp1 94 � 102 � 73 7 7 4 4
HK97 mature 1ohg 56 � 108 � 133 7 7 9 6
GroEL + GroES 1aon 102 � 102 � 130 21 35 9 16
Ribosome proteins 2avy, 2aw4 139 � 155 � 161 49 293 1 26
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D0 (Fig. 2). The regions in R0 are grouped based on which protein-
masked or subunit-masked region they overlap the most. The
resulting regions are compared to the protein-masked or sub-
unit-masked regions using the shape-match score. This score will
tell us how well the scale-space grouping method performs, and
how much better it could potentially do.

2.6. Accuracy of fitting method

To measure the accuracy of the fitting methods, we use them to
fit structures of individual proteins or subunits into density maps
generated from the entire structure. For example, in the structure
of GroEL (PDB:1xck), there are 14 proteins, represented by 14
chains labeled A, B, . . . , P. All chains have the same primary amino
acid sequence and approximately the same conformation. The seg-
mentation of the entire map produces 14 regions, or one region for
each protein. We fit the structure of chain A to each of the regions,
which results in 14 fitted structures. We then measure the RMSD
between the positions of the atoms in each of the 14 fitted struc-
tures and the positions of the atoms in the closest chain from the
entire structure. The RMSD is computed as follows:

RMSD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1k~ri �~r0

i k
2

n

s
ð3Þ

In the above equation,~ri are the positions of atom i, for i = 1–n, in
one of the fitted structures (where n is the total number of atoms
Fig. 6. Segmented regions in five simulated density maps are shown on the top row; fr
asymmetric unit (ASU), and HK97 mature capsid ASU. On the middle row, a single segm
structure of the corresponding protein or subunit shown as a ribbon. The bottom row sh
subunit-masked region they overlap the most, and hence giving the maximum accuracy

Please cite this article in press as: Pintilie, G.D., et al. Quantitative analysis of c
and fitting of structures by alignment to regions. J. Struct. Biol. (2010), doi:10.
in the fitted structure), and ~r0
i are the positions of the atoms in

the chain from the entire structure that is closest to the fitted struc-
ture. When an RMSD score low, the fit is accurate.
3. Results and discussion

All results described below were obtained on a 2.8 GHz Intel
Core 2 Duo processor, with 4 GB DDR3 memory, using UCSF Chi-
mera version 1.4 running on Mac OS 10.5.8, and Segger version 1.4.

3.1. Segmentation of density maps generated from PDB structures

Density maps of five structures were generated at 10 Å resolu-
tion, using the Chimera molmap command, sigmaFactor 0.187, grid
spacing 2.0 Å. The segmenting threshold was 0.2, and a smoothing
step size of 3.0 Å was used. The map dimensions, number of re-
gions segmented, number of steps taken and running times are
listed in Table 1. For the first five cases, the final number of regions
matched the number of proteins or subunits. The resulting regions
for these maps are shown in Fig. 6. The regions are shown in Fig. 6.
For the remaining two, the number of regions obtained did not
match the number of proteins. These are shown in Fig. 10.

3.1.1. Segmentation accuracy
Segmentation accuracies for each protein or subunit were mea-

sured by computing the shape-match scores between segmented
om left to right, they are GroEL, thermosome, Ribosome subunits, HK97 procapsid
ented region from each map is shown using a transparent surface, along with the
ows regions resulting from grouping regions R0 based on which protein-masked or
that could be attained by grouping watershed regions.

ryo-EM density map segmentation by watershed and scale-space filtering,
1016/j.jsb.2010.03.007
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Fig. 7. (A) Segmentation accuracies for the five simulated density maps shown in Fig. 6. (B) Segmentation accuracies for simulated density maps of GroEL + GroES and
Ribosome. Accuracies obtained with the grouping by scale-space filtering method are plotted with squares, accuracies obtained with the smoothing and sharpening method
(Pintilie et al., 2009) are shown with dots, and maximum accuracies attainable by grouping watershed regions are plotted with asterisks. The same parameters were used for
the two smoothing-based methods; the grouping method presented in this paper achieves slightly better segmentation accuracies.
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regions and protein/subunit-masked regions. The scores are plot-
ted in Fig. 7A. Good segmentation accuracies were obtained for
GroEL (0.86–0.89), thermosome (0.81–0.88), and the ribosome
large and small subunits (0.97, 0.98), but lower accuracies (0.50–
0.89) for HK97. For the components segmented with high accuracy,
the segmented regions closely match the protein/subunit-masked
regions and the corresponding structures of each component or
subunit, as seen in Fig. 6.

Fig. 7 also plots the accuracies obtained with the previous
method described in Pintilie et al. (2009), which involved applica-
tion of the watershed algorithm on every smoothed map and then
sharpening the regions in the most smoothed map. The present ap-
proach obtains slightly better accuracies.

The maximum accuracies attainable using watershed regions,
as described in Section 2.5.2, are also plotted in Fig. 7. All the max-
imum watershed accuracies for each component are high, indicat-
ing that the watershed method could be used to produce very
accurate segmentations. These accuracies however are not 1, be-
cause the protein-masked regions approximate the molecular vol-
ume of each protein, whereas the regions resulting from grouping
watershed regions are limited by the watershed method and the
resolution of the density map.
3.1.2. Cause of low accuracies
The accuracies obtained by the scale-space method are lower

than the maximum watershed accuracies. They are very close for
the GroeL, thermosome, and ribosome complexes, however they
are lower for the HK97 asymmetric units. Fig. 6 shows that narrow
segments in the proteins of HK97 were not captured correctly in
the regions produced by the multi-scale method, and hence the
segmentation accuracies for these components were low (0.5–
0.6). This happens because the regions corresponding to these pro-
truding segments are grouped with regions corresponding to the
nearby proteins they interact with. They appear as separate regions
in less-smoothed maps, however during the grouping process, the
local density maxima move towards the maxima corresponding to
the nearby protein. We tried improving the grouping process by
taking into account local metrics such as density values between
regions, however we did not find that this consistently improved
the accuracy, perhaps because the local metrics are easily influ-
enced by noise and discretization error.

The segmentation accuracies plotted in Fig. 7(A) also show that
one of the proteins in HK97 has substantially higher segmentation
accuracy than the other six. The units with lower accuracies are
part of a 6-fold ring-like symmetric arrangement where each pro-
tein interacts with two others. The protein with the higher accu-
racy is part of a 5-fold symmetric arrangement that is formed
with proteins from four other asymmetric units. The segmentation
Please cite this article in press as: Pintilie, G.D., et al. Quantitative analysis of c
and fitting of structures by alignment to regions. J. Struct. Biol. (2010), doi:10.
of this protein was more accurate because the two neighbors it has
in adjacent asymmetric units are not present in the asymmetric
unit.
3.1.3. Interactive ungrouping and regrouping of regions
Since the accuracies obtained with the scale-space method can-

not be expected to be perfect, Segger allows the user to manual un-
group the resulting regions. When ungrouping a region, it is split
up into the groups of regions that were grouped at the previous
smoothing step. Thus, if several smoothing steps were used (rather
than just one, for example), the results will typically be a small
number of regions. Each ungrouped region could be further un-
grouped as necessary, to get even smaller regions. The regions from
the initially segmented map, D0 in Fig. 1, cannot be further un-
grouped. The ungrouped regions can be regrouped or added to
other regions, as the user sees best fit. When this process is guided
by other information, for example, a fitted structure, better seg-
mentations can be obtained, overcoming limitations of the scale-
space method.
3.1.4. Dependence of computation time on map size and resolution
The running time for the watershed algorithm is dominated by

the sorting of the density values, and thus is O(nlogn), where n is
the total number of voxels to be segmented. The running time thus
scales favorably with map size. The smoothing operation is per-
formed by a Chimera function, which performs the operation in
Fourier space, and thus its running time also scales well with n.
However n itself scales poorly with map dimension d, by O(d3).
Lastly, the total running time is also affected by the number of re-
gions produced by the watershed method, since the same number
of points as regions are then updated by steepest ascent (this num-
ber decreases as regions merge). Maps at higher resolution tend to
produce more regions, and thus grouping by scale-space filtering
will take longer on them compared to maps at lower resolution.
3.1.5. Memory requirements and map size limits
The watershed segmentation method, as presently imple-

mented, requires at most 6 times the size of the density map in
available memory, in order to (1) store the map, (2) create a list
of voxels sorted by density value (the list includes density values
and voxels indexed with three integers), and (3) store a label for
each voxel indicating what region it belongs to. The list in (2) does
not typically include all voxels in a map, so that the memory
requirements are typically smaller than the 6� bound. Since this
program currently runs externally, and the map is also open in Chi-
mera simultaneously, realistically 7� the memory is actually
needed. Once the segmentation is finished, the list of sorted voxels
ryo-EM density map segmentation by watershed and scale-space filtering,
1016/j.jsb.2010.03.007
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is no longer needed, and this memory is used instead to store the
smoothed map.

Size limits are dictated by the amount of physical memory that
is available and can be accessed on the system. With 4 GB of mem-
ory, the maximum map size along one dimension is (232/7)1/3, so it
should be possible to process a map of at most �8503. With 8 GB,
and 16 GB of physical memory, maps of roughly 10003, and 13003,
respectively, can be processed. However in practice, not all physi-
cal memory is available to the program due to library code, stack
space, architecture, and operating system limits, and thus the maps
sizes that can be actually processed may be smaller.

Visualization of the density map and the segmentation results
(which are shown as smooth surfaces for each region) must also
be taken into account. For example, within Chimera, performance
decreases considerably if more than 2000 surfaces are shown. If
more than this number of regions are segmented, only the largest
2000 of them are shown. As scale-space grouping reduces the
number of regions, eventually a segmentation of the entire map
can be visualized.
3.2. Segmentation accuracy vs. resolution

An important question in the analysis of cryo-EM density maps
is how accurately components can be identified at different resolu-
tions. We try to answer this question using density maps generated
from a molecular structure at a range of resolutions (6–30 Å, in
steps of 2 Å) for GRoEL, thermosome, Ribosome, HK97 procapsid
and HK97 mature capsid. The map at every resolution was seg-
mented and the resulting regions were grouped, specifying only
an initial threshold for each map, the number of proteins or sub-
units to be segmented, and a smoothing step size of 2.0 Å. In all
cases, a large number of smoothing steps were specified (99),
and the scale-space filtering process automatically stopped when
this number was reached. The number of steps actually taken var-
ied and depended on map and the resolution—at lower resolutions,
fewer smoothing steps were required, since the map was smoother
to start with. In all cases, the number of regions produced was the
same as the number of proteins or subunits.
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Fig. 8. Segmentation accuracies for five density maps simulated at various resolutions
maximum watershed segmentation accuracy (dashed lines) amongst all components
accuracies drop as the resolution increases, and that at low resolutions, the accuracies ob

Fig. 9. Protein-masked region and segmented regions corresponding to a single protein
from the left. The remaining segmented regions are from maps with resolutions of (left

Please cite this article in press as: Pintilie, G.D., et al. Quantitative analysis of c
and fitting of structures by alignment to regions. J. Struct. Biol. (2010), doi:10.
In Fig. 8, the highest segmentation accuracy (solid lines) ob-
tained with the scale-space method and highest maximum wa-
tershed segmentation accuracy (dashed lines) in each density
map is plotted vs. resolution. The plots show that accuracies are
high for high-resolution density maps, and decrease with resolu-
tion, but stay above 0.6 even at the lowest resolution of 30 Å. At
lower resolutions, the grouping of regions using the scale-space
approach produces the same accuracy as the maximum accuracy
possible with the watershed method, since the two lines coincide.
This is because at lower resolutions, there are fewer watershed re-
gions to group, and hence it becomes somewhat easier to group the
correct regions.

To illustrate the effect of resolution on segmented regions, a
single protein from GroEL is shown in Fig. 9. The regions shown
are the protein-masked region and the regions produced by the
scale-space method applied to simulated maps at different resolu-
tions. At high resolution, the segmentation closely resembles the
ground-truth region. At lower resolutions, the segmented regions
have increasingly smooth surfaces compared to the protein-
masked region. However, even at low resolutions, the segmented
region still closely, if roughly, captures the shape of the protein.
3.3. Accuracy of fitting methods

To measure the accuracy of the fitting methods, structures of
individual proteins or subunits were aligned with single seg-
mented regions in the first five simulated density maps in Table 1.
The automated procedure was used, and since each region corre-
sponds to a single protein or subunit, the groups generated con-
sisted of only one region each. Hence the procedure was
extremely fast, taking less than a minute for each of the density
maps. The RMSD between the atoms in each fitted structure and
the corresponding atoms in the structure from which the density
maps was simulated were all less than 1 Å, indicating that the fits
were correct. The principal-axes alignment method produced the
correct fits for all structures. The fitting method was also tested
with simulated maps at lower resolutions. Correct fits were ob-
tained for density maps simulated at up to 30 Å resolution.
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(6–30 Å, every 2 Å). The highest segmentation accuracy (solid lines) and highest
in each density map is plotted vs. resolution. The plots show that segmentation
tained by multi-scale grouping are the same as the maximum watershed accuracies.

in simulated maps of GroEL at different resolutions. The protein-masked is the first
to right) 6, 10, 20, and 30Å.

ryo-EM density map segmentation by watershed and scale-space filtering,
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Fig. 10. (A) Segmented regions from the simulated density map of GroEL + GroES (PDB:1aon) are shown. In the barrel-section (GroEL), groups of 2–3 regions correspond to
single proteins, whereas in the lid section (GroES), single regions correspond to each protein. Three of the resulting regions (transparent surfaces) and corresponding proteins,
chains A, H, and O (ribbons) are shown. (B) Segmented regions from the density map of the E-coli ribosome (PDB:2aw4,2avy) are shown, using random colors for regions
corresponding each of the 45 correctly fitted proteins, and grey for all remaining regions. Eight of these fitted proteins (ribbons) and corresponding regions (transparent
surfaces) are also shown. The top row shows 2avy chains B, C, D, J, and bottom row shows 2aw4 chains F, G, P, R).
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3.4. GroEL + GroES

A density map of the structure (PDB:1aon) was generated at
10 Å resolution. The segmenting threshold was 0.2, and a smooth-
ing step size of 3.0 Å was used. After nine smoothing and grouping
steps, 35 regions were obtained. Taking more stepsSingle regions
correspond to proteins in the lid (GroES) section, and groups of
two regions correspond to proteins in the barrel (GroEL) section,
as shown in Fig. 10A.

The three different protein structures (chains A, H, and O)
were fitted by alignment with the segmented regions. Using the
interactive approach, each protein structure was aligned with
interactively selected regions, taking only a few seconds per
structure. Using the automated approach, 215 groups were con-
sidered for chain A, and alignment took �8 min; 65 groups were
considered for chain H, with alignment taking �2 min, and 28
groups were considered for chain O, with alignment taking
�1 min. The principal-axes transform produced correct fits for
proteins in the barrel section (chains A and H), but not in the
lid section, where rotational search was required to find the cor-
rect fits. The RMSD scores computed for each fitted structure
were all less than 1.0 Å, indicating that the correct fits were
found. Segmentation accuracies for the resulting regions are plot-
ted in Fig. 7B; good accuracies are obtained for regions in the bar-
rel section (0.83–0.90), but lower accuracies for regions in the lid
section (0.58–0.72).
Fig. 11. Segmented experimental density maps, from left to right: GroEL, GroEL + GroES,
rice dwarf virus. The top row shows regions after segmentation, grouping by scale-spa
overlap more than one region. The bottom row shows single regions as transparent surf
right, PDB:1xck chain A, PDB:1aon chains A, H, and O, PDB:2avy and PDB:2aw4 all chain
PDB:1uf2 chains A and C.

Please cite this article in press as: Pintilie, G.D., et al. Quantitative analysis of c
and fitting of structures by alignment to regions. J. Struct. Biol. (2010), doi:10.
3.4.1. Ribosome
For the simulated map of the E-coli ribosome, as shown in Fig. 6,

the scale-space grouping procedure was able to produce single re-
gions for the large and small subunits after many steps. In less-
smoothed maps (1 steps of size 3.0 Å), a total of 602 regions result.
Each of the 49 protein structures were aligned to automatically
generated groups of regions, and 43 of them were fitted correctly.
The principal axes method found the correct fit for most of the pro-
teins, however rotational search was required for some. Due to the
numerous regions, the number of groups generated were very
large, but only the 1000 most similar groups (by volume ratio)
were considered. Alignment took �10 min per protein when using
the principal axes method, and �30 min with rotational search.

All RMSD scores computed for the fitted structures were lower
than 1 Å, indicating the correct fits were found. Eight of the result-
ing regions and corresponding protein structures are shown in
Fig. 10B. Segmentation accuracies for the 43 proteins fitted cor-
rectly are plotted in Fig. 7B, and range between 0.38 and 0.88.
Some of the accuracies are quite low, since the boundaries between
proteins and RNA can be quite dense, and thus hard to segment.
3.5. Results for experimental density maps

A total of 5 experimental density maps from the electron
microscopy data bank (EMDB) http://www.emdatabank.org, were
segmented, and structures of individual components obtained
ribosome large/small subunits, ribosome RNA/proteins, bacteriophage lambda, and
ce filtering, and finally grouping based on fitted structures when fitted structures
aces and corresponding fitted structures as ribbons. The structures are, from left to
s, PDB:2avy chains M, I, J (top) and PDB:2aw4 chains G, P (bottom), PDB:3bqw, and

ryo-EM density map segmentation by watershed and scale-space filtering,
1016/j.jsb.2010.03.007
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Fig. 12. Shape-match scores between segmented regions for five cryo-EM density maps and protein/subunit-masked regions. The cryo-EM map of the ribosome was
segmented twice, first into large and small subunits, and then into proteins and RNA. Each bar in the plot represents the shape-match score between a segmented region and a
protein-masked or subunit-masked region (the latter are computed using fitted structures).
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from the PDB were fitted by alignment with segmented regions.
The results are shown in Fig. 11, and shape-match scores between
the regions and protein-masked and subunit-masked regions are
plotted in Fig. 12.

For the fitting procedure, maps for the structures of each pro-
tein or subunit were generated at the same resolution as the re-
ported resolution of the cryo-EM map and at the same grid
spacing. The cross-correlation scores are not reported here since
they vary depending on the thresholds used in the density maps.
Details are summarized in Table 2.

3.5.1. GroEL
The density map for GroEL at 4.2 Å resolution (Ludtke et al.,

2008) (EMDB:5001) was segmented at a thresholdof 1.0. After
three steps of size 8.0 Å, 14 regions were obtained, with each re-
gion corresponding with a single protein. Chain A from PDB:1xck
was aligned with automatically generated groups of regions using
the principal-axes transform. Only 28 groups were generated, and
the fitting procedure was thus very fast, taking only �20 s. The
shape-match scores between each of the 14 segmented regions
and corresponding protein-masked regions (generated from each
fitted protein structure) were quite high, ranging between 0.81
and 0.86. The scores for each region are not the same even though
the map has 14-fold symmetry, because the segmentation method
does not impose symmetry on the resulting regions, nor does it use
any type of symmetry information. The scores are slightly lower
than for the analogous simulated density map, signifying lower
segmentation accuracy (perhaps due to noise), and/or slight differ-
ence between crystal and cryo-EM structures.

3.5.2. GroEL+GroES
The density map for GroEL + GroES at 7.7 Å resolution (Ludtke

et al., 2008) (EMDB:1180) was segmented at a threshold of 0.8. A
total of 3 smoothing and grouping steps of size 5 Å were used,
resulting in 37 regions. The three different protein structures
(chains A, H, O) in PDB:1aon were fitted into the map by alignment
to regions, with both interactive and automated approaches. The
structures from chains A and H were fitted correctly by alignment
to groups of two regions each, using the principal-axes transform.
Table 2
Results of segmentation and grouping of regions by scale-space filtering in experimental

Density map
(EMDB id)

Resolution
(Å)

Map size Number o
or subunit

GroEL (5001) 4.2 200 � 200 � 200 14
GroEL + GroES (1180) 7.7 192 � 192 � 192 21
Ribosome (1056) 9.0 130 � 130 � 130 2 Subunits
Ribosome (1056) 9.0 130 � 130 � 130 49 Protein
Lambda (1507) 14.5 192 � 192 � 96 7 per ASU
Rice dwarf virus (1060) 6.8 279 � 279 � 140 15 per ASU
Rice dwarf virus ASU 6.8 152 � 196 � 212 15

Please cite this article in press as: Pintilie, G.D., et al. Quantitative analysis of c
and fitting of structures by alignment to regions. J. Struct. Biol. (2010), doi:10.
The regions corresponding to each protein were grouped to yield
regions corresponding to single proteins. Chain O was fitted cor-
rectly by alignment with single regions, using rotational search.
The interactive fitting was very fast, taking only several seconds
for chains A and H using the principal-axes transform, and about
20 s for chain O using rotational search. Using the automated ap-
proach, 568, 255, and 49 groups were generated, respectively, tak-
ing �15, �10, and �14 min.

The shape-match scores, comparing the regions to protein-
masked regions, were between 0.49 and 0.54 for chain A, 0.65
and 0.67 for chain O, and 0.52 and 0.64 for chain H. All these scores
are quite low, and by visual inspection, the cause appears to be that
the density map is very noisy.

3.5.3. Ribosome
The density map of the E-coli ribosome at 9 Å resolution (Ran-

son et al., 2006) (EMDB:1056) was segmented at a threshold of
43.4. A total of 32 smoothing and grouping steps of size 5.0 Å were
performed. This produces only two regions corresponding to the
large and small subunits. The structure of the large (PDB:2aw4)
and small (PDB:2avy) subunits were fitted correctly by alignment
to the corresponding regions using the principal-axes transform,
taking less than 10 s for each structure. The shape-match scores
between the segmented regions and subunit-masked regions were
0.79 and 0.77.

Each of the 49 protein structures in the two subunits were also
fitted into the density map using the automated procedure. About
1000 groups were considered for each structure, and the alignment
process took about 10 min using the principal-axes transform, or
about 30 min using rotational search for each structure. The rota-
tional search was used when the best fit obtained using the princi-
pal-axes transform was not correct. To decide whether the fit for a
structure was correct, the RMSD between the fitted protein struc-
ture and the corresponding protein structure in the entire fitted
subunit was measured. The correctly fitted structures produced
low (<5 Å) RMSDs whereas the incorrect fits produced much higher
RMSDs >15 Å. The cross-correlation scores of the correct fits were
also significantly higher than those of incorrect fits. Of the 49 pro-
teins, 33 were correctly fitted. The shape-match scores computed
density maps from the electron microscopy data bank (EMDB).

f proteins
s

Step size
(Å)

Number
of steps

Number of
regions obtained

Time
(s)

8 3 14 33
5 3 37 30
5 32 2 30

s n/a 0 897 9
6 4 236 128
3 1 1553 56
4 4 43 13

ryo-EM density map segmentation by watershed and scale-space filtering,
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for the regions and the protein-masked regions ranged between
0.436 and 0.784. For the proteins that were not fitted correctly,
the potential cause is that the protein–RNA boundary in the den-
sity is perhaps more difficult to discern for some proteins than oth-
ers, and regions obtained for some of the proteins may not have
been produced at all.

3.5.4. Bacteriophage lambda
The density map of bacteriophage lambda at 14.5 Å resolution

(Valle et al., 2003) (EMDB:1507) contains a symmetric half of the
T = 7 icosahedral lattice, and thus about 30 asymmetric units(A-
SU)—a full capsid contains 60 ASUs, and each ASU consists of only
seven proteins in this case. The map was segmented at a threshold
of 4.0, and the resulting 6688 regions were grouped with four steps
of size 6 Å. In total, 236 regions were produced, and single regions
corresponded to individual proteins.

The seven regions making up an ASU were interactively selected
and extracted from the rest of the regions. The structure of a single
protein (PDB:3bqw) was aligned to automatically generated
groups. Only 12 groups were considered, and the process took
about 20 s. All the correct fits were produced using the principal-
axes transform. The shape-match scores computed between seg-
mented regions and protein-masked regions were quite high, rang-
ing between 0.84 and 0.89.

3.5.5. Rice dwarf virus (RDV)
The density maps of the rice dwarf virus at 6.8 Å resolution

(Lander et al., 2008) (EMDB:1060) was segmented at a threshold
of 2.5, resulting in 17,195 regions. This map contains a symmetric
half of the entire capsid along with enclosed DNA. At the threshold
of 2.5, only the capsid is segmented, since the DNA region has low-
er density values. The map was smoothed with 1 step of size of
3.0 Å, and grouping resulted in 1553 regions. Individual proteins
in the outer capsid could be seen in this segmentation, correspond-
ing with groups of two regions each.

The crystal structure of the asymmetric unit (PDB:1uf2) is com-
posed of 13 proteins that form 4 + 1/3 trimers in the outer capsid,
and two proteins in the inner capsid. The structure of one of the tri-
mer proteins (chain C), was fitted into the map by alignment with
two of the segmented regions, which were selected interactively.
The structure of the entire asymmetric unit was fitted into the den-
sity map by aligning the corresponding chain in the structure to
the structure fit by alignment to the group of two regions. The
cryo-EM map was masked using this structure, thus extracting a
map the asymmetric unit alone. This was done to simplify further
segmentation and fitting of structures.

The map of the asymmetric unit was then segmented alone,
with the segmentation of the non-smoothed map producing
1113 regions. It was smoothed with four steps of size 4.0 Å, and
after grouping of reiongs, 43 regions resulted. Groups of two re-
gions corresponded to proteins in the outer capsid, and groups of
five regions to proteins in the inner capsid. Structures of each pro-
tein (chains A, B, and C) from PDB:1uf2 were fitted by selecting re-
gions interactively and aligning the structures with them, taking
only a few seconds per structure. All three structures were cor-
rectly fitted using only the principal-axes transform. The shape-
match scores between the resulting regions and protein-masked
regions were between 0.57 and 0.71. These scores are quite low,
signifying lower segmentation accuracy and/or more substantial
differences between crystal and cryo-EM structures.
4. Conclusions

We have presented a segmentation method based on the
immersive watershed algorithm and scale-spaced grouping of the
Please cite this article in press as: Pintilie, G.D., et al. Quantitative analysis of c
and fitting of structures by alignment to regions. J. Struct. Biol. (2010), doi:10.
resulting regions. The method is very easy to use and requires little
prior structural knowledge. The method yields reproducible results
given only three parameters: the initial threshold, the smoothing
step size, and the number of smoothing steps. The results are typ-
ically such that either single regions or small groups of regions cor-
respond to individual components. The segmentation accuracy was
measured using a shape-based metric. Good segmentation accura-
cies were obtained for some complexes, although narrow protrud-
ing segments tend to be incorrectly segmented, resulting in low
accuracies for other complexes. In the Segger interface, manual
ungrouping and regrouping of regions is possible, and thus through
some interactive effort on the part of the user, segmentations can
be improved.

We also showed that structures of individual components can
be rigidly fit into a density map through the alignment of struc-
tures to segmented regions. A correct fit can be found for a single
structure in as little as a few seconds. When structures are aligned
with multiple, automatically generated groups of regions, in cases
where each structure corresponds to a single region, the fitting of
all structures is again extremely fast, taking only tens of seconds.
When each structure corresponds to multiple regions, the number
of generated groups is higher, and thus longer times are required.

On top of thoroughly measuring the accuracies of these meth-
ods, we have also aimed to make the methods presented here easy
to use and widely accessible to the public (http://people.csail.mit.
edu/gdp/segger, 2009). Continued effort in this direction should
lead to improved tools allowing us to more quickly and accurately
extract important biological information from density maps ob-
tained by the increasingly popular cryo-EM method.
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